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The many faces of string theory

String theory has taken/lost shape over a long and tu-
multuous history:

late 1960s: Dual models introduced in order to de-
scribe hadronic resonances in fact correspond to a
relativistic string.

Recognized in 1974 by Scherk and Schwarz as a
potentially finite theory of all fundamental inter-
actions, where gravitons (closed strings) arise as
bound states of gluons (open strings).

The large tension limit of the few consistent super-
string theories reproduces all known supergravities,
except for a conspicuous 1l1l-dimensional theory of
Cremmer and Julia’s.

The stable extended solitons found in supergravity
are in fact non-perturbative states of string theory,
dubbed D-branes; their excitations are open strings
ending on them.

All string theories are different faces of the same ob-

ject, perturbative strings states are (D-brane) soli-
tons of a dual string theory.

? — strings — D-branes — membranes —777



T he theory formerly known as string theory

Worse, a theory that was believed to live in 10 dimen-
sions actually propagates in 11 dimensions at non-zero
coupling: type IIA string theory is a limit of an hypo-
thetical M-theory when one spacelike dimension shrinks
to zero radius.

Since string theory as yet is only defined by its perturba-
tive genus expansion, the existence of M-theory is still
conjectural. Several basic features are clear though:

e it admits eleven-dimensional vacua with maximal
supersymmetry: RV AdS,; x S74 (and the KG
plane wave, known for 20 years).

e It has no modulus in 11 dimensions, and a single
scale, l% = 1/Tyo. It is described by Cremmer-
Julia-Scherk 11D supergravity at low energies.

e It reduces to type IIA string theory with scale 1/12 =
R11/13; upon compactifying on a circle of radius
R11 = gsls

e It has extended objects such as membranes, five-
branes, (giant gravitons, Quantum Hall solitons,
D(NA)-branes...).



M for M(embranes,atrix,aldacena...) 7

Despite these hints, no satisfactory (computable) defi-
nition of M-theory exists as yet.

e String theory lacks a prescription to include non-
perturbative effects.

e Membranes might serve as fundamental degrees of
freedom (k symmetry implies 11D SUGRA eom),
but non-linearities have prevented their quantiza-
tion.

e M(atrix) theory purports to describe M-theory in
RY10 in the infinite momentum frame (and regu-
late the membrane) but the large N limit is hardly
tractable.

e NN =4 U(N) SYM in 341 dimensions is the same
as M-theory in AdSs x Ss x S1, but the description
is tied to this background.

Some of the most powerful techniques to obtain non-
perturbative results remain to make use of symmetries:
32 supersymmetries, dualities...



U-duality and the Ur-theorie

“Hidden symmetries’ were discovered as early as
1979 by Cremmer and Julia as continuous non-
compact symmetries E;(R) of the classical eom of
11D SUGRA (compactified on a torus T%).

A discrete arithmetic subgroup E, ;(Z) (compatible
with Dirac- Zwanziger quantization condition), dub-
bed U-duality, was conjectured to hold as an exact
quantum symmetry by Townsend and Hull in 1994.
It combines the perturbative T-duality of string the-
ory with the S-duality gs — 1/gs of type IIB.

In contrast to string dualities that relate equiva-
lent perturbative descriptions of a single physical
process, U-duality is a symmetry which relates pro-
cesses at different values of a same coupling con-
stant. Combining with analytic properties gives
powerful constraints.



M-automorphic forms

Mathematically, the moduli space is given by a sym-
metric space K\G, acted upon (from the right) by
the U-duality group G(Z). Hence physical ampli-
tudes have to be automorphic forms of U-duality.

Together with analyticity, this can be so strong as
to fix BPS amplitudes completely: ex, the Riemann?
amplitude in M-theory on torii. One can then read
off (D-brane, membrane) instantons effects not oth-
erwise calculable.

Perturbative string theory provides numerous exam-
ples of automorphic forms, in particular correspon-
dences between Sp(g,Z) (on the worldsheet) and
SO(d,d,Z) (in 10D target space): just integrate on
world-sheet moduli !

Can one similarly reproduce fully non-perturbative
amplitudes by quantizing the (BPS) membrane 7
can the membrane teach mathematicians a corre-
spondence between Si(3,7Z) (on the world-volume)
and E4;(Z) (in 11D target space) 7
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1. Symmetries of M-theory

Any diffeomorphism invariant theory compactified
on a torus T% has a discrete global symmetry, the
mapping class group of the torus :

Sry - VI VT Ry — R,
My —vr+as, AP - AP 4+1
where ds? = R2(dz! + AV da")2 + dz’ g rcdz’
Sy Ty = Si(d, Z)

Perturbative type IIA theory on a torus T¢ has in ad-
dition a discrete global symmetry valid to all orders,
namely (double) T-duality :
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T:R—1?/R, g¢gs— gsls/R

Si(d, Z) = (TyT») = SO(d, d, Z)

M-theory on a torus T¢ should exhibit quantum
mechanically both diffeomorphism invariance on T
and T-duality invariance on 791 : this is U-duality.

Si(d,Z2) =<1 SO(d—1,d—1,2) = Ey(2)



T-duality Weyl group

The action of the Weyl group can be represented
on a weight space :

T = gfoRflez . Rﬁd — A=2x2%0+ zter + - + 2%y

The Weyl generators T and S; act as orthogonal
reflections pag, pa,t =1...d—1
P
A= pa(N) =1 —22 24
(07 NeY
w.r.t. the signature (— 4+ +...) metric

ds? = —(dz®)? 4 (dz")? + dz°(dzt + - - - + dz9)
The Planck length V/g2(8 is invariant, so the action

restricts to the spacelike hyperplane § -z = 29 =0
normal to

0 =e1~+ -+ eq— 2eg

The Coxeter group is characterized by its Cartan
matrix or Dynkin diagram

S» — S3 —---— S

This is the Dynkin diagram of SO(d, d).



U-duality Weyl and Borel generators

e In M-theory variables, the T-duality
(Ri, Rj) — (1/Rj,1/R;) reads
Bt B i 3 13
ijjRZ_>—7 T TS o ) s T 5 5 0 ‘M7
R; R R.R; R R; R;R; R

e By a Si(d, Z) global diffeomorphism, it can be con-
jugated to

L3 5 3
) ZM —
RJRK RIRJRK
Hence T-duality really involves a set of three direc-

tions. A minimal set of Weyl transformations can
be chosen as T'=Ti23 and St : Ry < Rjy41.

Trjk : R —

e In addition, there are Borel generators correspond-
ing to positive roots: Dehn twists, shifts of gauge
backgrounds C[JK — C[JK -+ 1, cee

10




U-duality Weyl group

The action of the Weyl group can again be repre-
sented on a weight space :

T =13"RYR% ... Rﬁd — A =2 + zles + - + zley

The Weyl generators T and S; act as orthogonal
reflections

A
A= pa(N) =1 —22 24

o«
for the signature (— 4+ +...) metric

ds? = —(dz?)? 4 (dz%)?

The Planck length V/I3, being invariant, the action
restricts to the spacelike hyperplane §-x = 0 normal
to

d=e1+ -+es—3eo,

except when d = 9 where § is null.
The Coxeter group is characterized by its Cartan
matrix or Dynkin diagram

S — S22 — Sz — S4 —---— Si

This is the Dynkin diagram of (split) E4, or the
extended Dynkin diagram of Fg = Fg for d = 9.

11



Group disintegrations
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Weyl multiplets and BPS spectrum

e The representation of the finite group W(SO(d, d))
can be obtained from the fundamental weights dual
to the simple roots :

1
g
RiR, _ RiR.Rs |, 1
2 2

g: g: R,
/

R
g

e Kaluza-Klein modes and string winding states trans-
form as a vector of SO(d,d), with highest weight
M = 1/R; 1. DO-branes transform as a spinor of
SO(d,d) with highest weight M = 1/gl;, etc.

e The same holds for U-duality:

RyR,RsR. 1
9 R,

=
=X
&
=X
~ o A%U_ e
&

e For d = 9, the Weyl orbit becomes infinite. The
level k = 2! 4. -4+ 224+ 329 is the scaling dimension
of the tension. For d = 10, the Hell breaks loose.

13



Reaching boundary of moduli space

The boundaries of the moduli space correspond to a
scaling limit of the dilatonic scalars Ry, Iy parametris-
ing the Cartan *“torus’”. Modulo the action of the
Weyl group, we can choose them to lie in a Weyl
chamber such that a4 - A >0 :

Ri<Rx<---<Ry, R1RoR3 > I3,

The 11D SUGRA description is valid provided all
radii are larger than the Planck length :

11D SUGRA : Iy < Ri < Ry < ...

If one of the radii is smaller, then we may have
a type IIA description with weak coupling gz =
(R1/1y)3, provided all radii are larger than the string
length 12 =13,/R1 :

Ri <l , R1R3 > 13

If one of the radii is smaller than the above string
length, we may instead try a type IIB description
with weak coupling gs = R1/R», same string length
2 =13,/R1 and 10-th radius Rg = 13,/(R1R2). The
IIB radii are smaller than the string length provided

R1R? > 13, R1R5 < I3,
The first relation is automatically satisfied if R1R>R3
> [3 ., and the second implies R1 < lyy.

14



God played Pool with our Universe

e ThellD SUGRA, typellA and type IIB descriptions
therefore cover the complete asymptotic region of
the moduli space.

e For d > 9,10, the metric is now Lorentzian, and
the above Weyl chamber generates the future light
cone only. The space-like region admits no weakly
coupled description.

Banks, Fischler, Motl

e AsS one approaches a space-like singularity, one can
argue that a dimensional reduction down to 0+ 1
dimensions effectively takes place : the effective dy-
namics is that of a free particle on the fundamental
Weyl chamber of E1g: an hyperbolic billiard !

Damour, Henneaux, Julia, Nicolai

15



Moduli space and Iwasawa decomposition

e The moduli space of string/M-theory compactified
on a torus can be written as a symmetric space

e € K\G(R)

where G(R) is a non-compact real group and K its
maximal compact subgroup:

Gl(n, R) SO(n,n, R)
somn) 9P €550 xs0m)

(9) €

E,
(9,C,E,...) e 2L (M/T" 1)
Kn—l—l

e The gauge symmetry can be fixed using the Iwa-
sawa decomposition
e=k-a-neK-A-N

with k& compact (gauged to 1), a abelian (dilatonic
moduli) and N nilpotent (gauge backgrounds).

e U-duality acts by multiplication on the right by in-
teger valued matrices, e — eg. Borel shifts pre-
serve the upper triangular gauge, but Weyl reflex-
ions don't.

e the Mass/tension formula M? = m!- R(e)!R(e) - m
is manifestly invariant.

16



2. Non-perturbative BPS amplitudes

U-duality demands that physical amplitudes be func-
tions on the moduli space K\G invariant under right
multiplication by G(Z): automorphic forms.

The leading terms can often be computed pertur-
batively in string theory (gs — 0) or 11D SUGRA
(V — 0).

For particular amplitudes, with a small number of
derivatives, supersymmetry puts constraints as in-
variant differential operators, e.g. for 1/2 BPS am-
plitudes,

Agf =Af

In general, all automorphic forms are Eisenstein se-
ries or derivatives thereof (at least for Gi(n)):

o= S Mucors S ()

9€G(2) (m,n)7#(0,0)

When p is aligned with a weight vector, this gives a
more transparent formula as a sum over BPS states,

e8P(e) =" [m-R(e-e)-m] " 8(m?)
meNg
where the § insertion restricts to half-BPS states.

Identifying the right Eisenstein series and comput-
ing its Fourier expansion wrt the Borel moduli N
gives access to instanton effects.

17



R* couplings in IIA/T¢

e The tgtgR* couplings in type II/T? can be computed
at tree-level and one-loop:

V
fR4 :24:(3)?4—&14----

e Due to the BPS property, bosonic et fermionic os-
cillators cancel in the one-loop integral, leaving the
partition function of zero-modes only:

d2 0 Q|2 . '
F T2

T2

The action is the Polyakov action

1 . . . .
S= d2o /77 P 0, X 05X Gij + i €*P0,X"05X7 By

1 T . . .
1 2 i — i i
for v = N <7_2 |7_|2) , X' =m'ocy + n'oo.

e The integrand is manifestly invariant under world-
sheet modular transformations SIi(2,2).; less man-
ifestly under SO(n,n, Z) T-duality (it takes a Pois-
son resummation on m! to make it manifest)

18



R* couplings in M/Td+1

e For generic windings m/, n* and at large volume, the
modular integral is dominated by saddle points that
correspond to worldsheet instantons:

I ~ Zﬂ(m”) exp <_l_2 (m¥Y)? + 27TiijBij)

where m¥v = m'nJ — mint.

e The tree-level and one-loop contributions can be
recognized as T-duality invariant Eisenstein series:

!
fie = 2 €506 1 5040

S

e SUSY requires to have an eigenmode of the U-
duality Laplacian,

3(d+1)(2—-d)
2(8 —d)

A solution can be found in terms of U-duality in-
variant Eisenstein series,

AEde“ —

[re

Vit E(2)
fR4 — l9 gstring;s:3/2
M

Green Gutperle; Kiritsis BP; Obers BP
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D-instantons and membrane instantons

e Beyond the tree-level and one-loop terms, it ex-
hibits non-perturbative O(e~1/9) effects from instan-
tonic D-branes wrapped on T4

1 .
fn — fﬁert + K IU“({n})Kl <27T—S{n}) 62777,7%-71 4+ ...
gs (n} Siny gs

The summation measure has been rederived by a
matrix model computation.

Green Gutperle Vanhove, Kostov

(in D < 6, there are extra contributions which scale
2
as e 1/9°)
BP,Kiritsis

e If one expands instead at large volume in M-theory,
for d > 3, one finds membrane instantons:

QZ%
fre =

S s V (m )?
1/2 — 27/ (n3)?>42min>
+ wlMZ[ 3)2] u(nd)e &V mEmme

Q. Can one derive this result first principles in M-
theory 7

20



3. Quantizing the BPS membrane

e \We have seen that U-duality together with super-
symmetry determines the R* amplitude exactly, as
a non-trivial automorphic function. At one-loop in
string theory, only zero modes contribute, and yield
worldsheet instantons T2 — T".

e A microscopic definition of M-theory should be at
least be able to reproduce this simple result. Since
the large volume expansion shows that only toroidal
membrane instantons appear, it is reasonable to ex-
pect that a one-loop BPS membrane computation
yield the correct instantons.

e Some obvious (conservative) objections: the mem-
brane is strongly interacting, so no clearcut separa-
tion between zero and non-zero modes (but work
in @ winding sector). No genus expansion for either
(but fermionic zero-modes may pick up T3 topology
only). (Un)Success will decide on the correctness
of our assumptions.

21



The membrane one-loop amplitude (15 pass)

e By analogy with the string theory case, we may
construct the one-loop BPS membrane amplitude
by summing over zero-mode configurations X' =
m! o and constant v in SI(3)/SO(3), with Polyakov
action

1 a ) ]
S = E/d30_ﬁ(’y ﬁaaX 85X3G,-j—1) +

+i €779, X'05X70, X C;
Note the cubic coupling, inherent to membranes.

e Assuming uniform summation measure, the result-
ing partition function for T3 — T¢ maps,

Z = Zexp (ﬁ Tr[mym!'G] — 1) +iC - (m Am A m))

after integration over the volume u = det(y) and
the fundamental domain of SO(3)\SI(3) reproduces
the correct membrane instanton saddle points and
one-loop spectrum, but the summation measure

and spectrum degeneracy are off.
Nicolai, BP, Plefka, Waldron

e T his partition function is by construction modular
invariant SI1(3) on the wv and Si(d) in target-space,
but not under the full U-duality group E4;(Z). E.g.,
for d = 3, not under modular transforms of T =

C123 + V3.

22



Partition functions and correspondences

e Going back to the string partition function, the way
modular Si(2,7) and T-duality SO(n,n,Z) are si-
multaneously realized is that Z,, is really a symplec-
tic theta series

Zn(g, B; 7) = 05,(T) 1= ) _ exp (2mi m Ty m”)
mezZ?"

hence it is invariant under a larger group containing
both as commuting subgroups:

Si(2)xSO(n,n) C Sp(2n) : T — (AT+B)(CT+D) 1!

courtesy of Gaussian Poisson resummation.

e By integrating wrt to either factor, Z, furnishes
a correspondence between automorphic forms of
worldsheet Si(2,7) and target space SO(n,n, Z).

e In order to quantize the BPS membrane, one should
therefore construct an automorphic correspondence
between SI(3,7) and E ,(Z). For this, we need to
find a group containing the two as (maximal) com-
muting factors, and generalize Gaussian Poisson re-
summation to cubic characters...

23



Membrane correspondences

e For compactifications on 7%, the U-duality groups
can be unified with the modular Si(3) group as

d=3 SIl(3) x Sl(2) x RT x S1(3) C (51(3)3) C Es
d=4 SI(5) x RT x Sl(3) C SI(6) x SI(3) C E7
d=5 SO(5,5) x RT x SI(3) C SO(5,5) x Sl(4) C Es
d=6 FEgx SI(3) C FEs

e For d > 3 (no membrane instantons in d < 3) one
is thus left to construct Theta series for excep-
tional groups: mathematicians know them in prin-
Ciple, but in practice...

e One should also require that after integrating over
RT x SI(3), one gets an eigenmode of Ap, with the
correct eigenvalue. So before integration:

(AE, 4+ Agyz)y + 07 4 cste) Zg =0
This will be satisfied by construction...

e For d = 6, no integration on a volume factor is
required: the integral will be manifestly finite. In
addition to membrane instantons, the R* coupling
contains M5-brane instantons: membranes and five-
branes will be unified in this framework.

24



T heta series under the hood

The standard theta series can be deconstructed as

0(r) =3 exp(imrm?) = (37, p(en) f) | eT=(1 Tl) /N2

O 7
mez

e p(g) is a unitary representation of g € SI(2) on func-
tions of one variable:

1 |
By =ina?, Do== (a0 + ), B =-—02,
2 47

satisfying the SI(2, R) algebra,
[Do, E+] =+2FE+, Do=I[Ei,E ],
o f(z) = e */2 is a spherical vector, i.e. a func-
tion ¢ (quasi) annihilated by the compact generator

K = E4 + E_; in particular invariant under the Weyl|
generator exp(iwK) = Fourier.

e §7 is a distribution invariant under Si(2, 2),

s2@) =Y s@—my="" [ £,

meZ p prime

where each f, is invariant under Fourier transform
over the p-adic field.

All these parts can be engineered for any simply-laced G

25



Non-Gauss. Poisson resum. @ a toy model

e [ he invariance of the standard theta series under
T — —1/7 relies on Poisson resummation formula,

S fm) =3 Fm), = Fourier(f)

nez mes

and the fact that the Gaussian is preserved under
Fourier transform:

/da: exp(ixQ/h + ipx) = \/f_ieXD(—iﬁ p2)

In other words, for a Gaussian the semi-classical
(saddle) approximation is exact. Perturbative QFT
is arises from generalizing to oo z’'s.

e Interestingly, there exists a generalization of this to
cubic characters:

/dw0123(1/xo) exp (iwmm +pz-:c"> = (/po) exp <—mp1p2p3)

h xo Po

Again, the saddle point approximation is exact. Such
cubic forms are classified by (A)DE:

D, I3=£E1(LC2333—|—£C4$5—|—...)
Eesg © I3= det(3 X 3)

E; : I3=Pf(6 A6)

FEg : I3= 273|1

Etingof Kazhdan Polischuk

e T his observation is at the heart of the construction
of theta series for simply laced groups<azhdan Savin
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Minrep and conformal quantum mechanics

e [ herepresentation space is constructed as the Hilbert
space of a conformal quantum mechanical system
whose phase space is G's minimal nilpotent orbit.

de Alfaro Fubini Furlan

e C(Classically, the Lagrangian is manifestly invariant
under G,

d I3(x;
L = 2oy + 2330\/@ + T (—mo z(x ))

the Hamiltonian is invariant under Gi1 O Gg mixing
positions and momenta,

1
H=7p°+y>+ ?14(3317191)

and the conformal transformations, ¢t — (at+b)/(ct+
d) extend the symmetry group to G D G1 D Go.

BP Waldron; Gunaydin Koepsell Nicolai

e [ he quantization of this system produces the min-
imal representation of G as differential operators
acting on wave functions.

27



Quantization and spherical vector

e Quantization is carried out by replacing p; — id/dx;
and adding normal ordering terms so that the gen-
erators still close. More abstractly, it proceeds by a
sequence of induced representations.

Kazhdan Savin; Brylinsky Kostant

e T he Weyl generators

o dp; L
(S, zo,s...,xN-1) = g O)N/Q F(, D0, -, Pr—1) €F 2uimo P

113
(Af)(y,z0,1,...,xN_1) = €XP ( " y) f(—zo,y,x1,...,xN-1)
0

satisfy the correct relation (AS)3 = (SA)3 thanks to
the invariance of the cubic character under Fourier
transform.

e T he spherical vector is the ground state wave func-
tion of this quantum mechanical system, invariant
under the maximal compact subgroup K of G. It
can be found by solving PDEs E, + E_, = 0.

Kazhdan BP Waldron CMP 2001

e The summation measure dz is obtained by solving
the same problem (with different methods) over the
p-adic field Q5.

Kazhdan Polischuk

28



Minimal Nilpotent Orbit

Sl(n) D Sl(2) x Sl(n—2) x RT
ad] — (3,1,0)@[(2,7’1,—2,1)@(2,7’1,—2,—1)]@(1,&6{7,0)
= 162n—2)d[1dadj]P2(n—2)8 1
SO(2n) D Si(2) x SI(2) x SO(2n — 4)
CLdj — (37171)@(2727277’_4)@(17371)@(1717adj)
= 16 (2,2n—-4)d[1Padj]®(2,2n—4) P 1
Ee D Si(2) x Si(6)
78 = (3,1) & (2,20) ® (1,35)
= 14620014 35]020641
E+ D Si(2) x SO(6,6)
133 = (3,1)d (2,32) ® (1,66)
= 146320 [1466]032d1
Es 2 51(2) X FE7
248 = (3,1)d (2,56) ® (1,133)
= 19560 [19133]p56d1
G dim Hy G>'1< I3
Sl(n) n—1 Sl(n — 3) [n — 3] 0
SO(n,n) 2n—3 SOn—-3,n—3) 1®[2n—-6] x1(Q_ z2x2i+1)
Ee 11 Si1(3) x S1(3) (3,3) det
E+ 17 Si1(6) 15 Pf

Eg 29 Eg 27 27%:3|

29



Example: Dy = SO(4,4)

Bo+aoi, vi=P0o+aj+a,
Bot+oar+ar+az, w=pPF+

3 1042 Bi
Y0

1 4
a1 go a3
Is = r12073
Eg, = ybo E,, = ix0
Eg =yo1 E, =1iz1
EﬁQ — yag E% — 72:1:2
Eg, = y03 E,, =1iz3
E,=1y.
E,, = —2001 — % . E_, = 2100 + iy0203
Ea3 = —330(93 — It ] E_a3 = :1:380 —I— iyalag .

Y
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T T T

1T1L2X3
2
210 + % (1 4 2285 + £383) — 1209205
3100 + iy0do — y010203 + (2000 + 2101 + 202 + 2303) O

iy010 + (2 + 2000 + x101) 01 — xzyx:% do

do +

—x00 +

L1X2X3
y2

300 4 iyd2 + ~ + iwoOod +
Yy

1
+ (2101 + 2202 + x303) (0 + ;) + £0010203,

Hg, = —y0—+ z00o
o = —1—2000+ 101 — x202 — 2303
a — —1—x000 — 2101 + 202 — 2303
as = —1—2000 —x101 — 220> + 2303,

30-



Example: D4 = SO(4,4) (continued)

e Spherical vector: solve PDE (E, — E_,)f = 0:

AT (V(W + 22) (|22 + 22) (|27 + x§)> e

fp, =

ylz|2
Ed 2]

where z = y+41xg. This is manifestly invariant under
SO(4,4) triality, permuting z1,z2, z3.

e Rk: this minimal representation is equivalent to the
one arising from the string worldsheet instantons
on T%: by Fourier transforming on z3 and renaming
variables, we can rewrite f as

f= — : eIFlmmy = 0
Vv (m17)?
This implies that the one-loop BPS amplitude of
Het/T# is invariant under SO(4,4) triality, as pre-
dicted from Heterotic-Type II duality.

Kiritsis Obers BP
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Ee theta series and Membrane/T3

e For Fg the minimal nilpotent orbit is parameterized
by 11 positions (y,zo, M}) transforming as 1+ 1 +
(3,3) under the linearly represented subgroup Go =
S1(3) x SI(3): there are two unexpected quantum
numbers (y,zo0). The cubic form is simply I3 =
det(M).

e T he spherical vector invariant under the maximal
compact SU(8) can be obtained by integrating the
PDE (Eo— E_o)f =0:

e_(Sl+ZS2) .
fE6—W7 Z =y + 1iTo
vdet(M M + |2|2T3) zo det(M)
S1= 2 , OS2 = 2
2] y|2|

e T he variables M can be identified with the winding
numbers of the membrane X' = M!oc% 2z looks
like a complex scalar on the worldvolume, or rather
an Si(2) doublet of 3-form field strengths: no dof,
cosmological constant on the worldvolume.

e [ he representation satisfies identically

Asiz), = Asiz), = Asi3),
which agrees with the result expected for frs after
integrating over wv SI(3).
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4. Quantum cosmology and conformal
quantum mechanics

e Conformal quantum mechanics was first introduced
in 1976 by de Alfaro, Fubini and Furlan (DFF) as an
attempt to understand soft breaking of conformal
invariance.

e T he simplest example is a particle in one dimension,

_l 2 . 9
H_Q(p +q2)

The Hamiltonian H = E4 can be supplemented by
two generators

1

1 1 g
Ey=2¢°, Do=~— E-=-(p+5
+=54" Do=3(gprtra), 2( +q2>

that represent the conformal group SO(2,1) in 0+1
dimensions,

(E4,E_} =2Dy, {Do,E+}=+E.

e H is a parabolic element of SO(2,1), hence has a
continuous spectrum starting at 0. Adding a mass
term amounts to choosing a compact generator
H=F, + m2e_, rendering the spectrum discrete.
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Spacelike singularity and g-mechanics

As one approaches a cosmological (spacelike) sin-
gularity, the dynamics of nearby points decouple.
Belinski Khalatnikov Lifschitz

gw/(ta CE) ~ taguu(ty 550) + O(ta)
yielding a one-dimensional quantum mechanical sys-

tem at each point on a spacelike slice. This vali-
dates a minisuperspace ansatz,

n(t)
V()

the Einstein-Hilbert action reduces to

/dt &w =G (R—2A) =

/ di {21 [—2(” ~ Doy UMGMNUN] - 2/\n}
n

ds? = dt? + V2" (t) §i; (t) da'da

n

where V denotes the volume of the spatial met-
ric and UM coordinatize the symmetric space S =
Sl(n)/SO(n)

One recognizes the Lagrangian for a free particle
propagating on the Lorentzian cone

2(n—1)

n

do? = — dV? 4+ V2dUMG ynvdU"N .

BP Waldron
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Spacelike singularity and conformal
qg-mechanics

e T he effect of spatial gradients is to add potential
terms, behaving as reflection walls towards the sin-
gularity. These can be mimicked by modding out
by an arithmetic subgroup, Si(n, Z).

e Since the moduli space admits an homothetic Killing
vector Voy, the free particle should exhibit confor-
mal invariance.

e Choose n=1V, p=+,/8(n—1)V/n and p its canon-
ical conjugate. The eom for n is the Wheeler-
DeWitt equation,

We recognize the DFF Hamiltonian, with ¢ = 8(n—
1)A/n. The cosmological constant induces a mass
term m?2 = —nA/(4(n — 1)).

e For A < 0, the wave function of the universe is
therefore the spherical vector of SO(2,1) !

e The SO(2,1) algebra fixes ordering for the quan-
tized model.
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DFF vs WDW

Despite formal identity between the two problems, there
are some important differences:

e The WDW equation picks out zero-energy states
only. So boundedness from below of H is no longer
a requirement. Indeed, the sign of g depends on
boundary conditions on S (square integrable wave
functions have g < 0), and the sign of m? depends
on A (discrete spectrum for A < 0)

e Usual quantum mechanics analysis requires wave
functions to be square integrable. Here p should
be thought as a time variable, square integrability
along p should not be imposed. Instead perhaps,
use a Klein-Gordon type norm on spacelike slices
(and “third” quantize the system in order to get rid
of negative norm states)

Those are problems in any quantum cosmology investi-
gation, so we proceed anyway.
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Quantum cosmo. and nilpotent orbits

Our quantization of nilpotent coadjoint orbits produces
a wealth of conformal quantum mechanical systems -
could they be related to those appearing in g-cosmology
? Yes, consider D4 again:

Ds D Sl(2) x SI(2) x SI(2)
adj = [(1,1,1)+(3,1,1) +perm]o & (2,2,2)1 ® 12

The coordinates and momenta transform as a (2,2,2),
and satisfy the Heisenberg algebra

[quoz7 quB] — eabeABeaﬁ
The actions of each Si(2) factor in H are represented
by the angular momentum-like operators

Sh =0ty e eap g PP, [Z4, ] = @i

The quadratic Casimirs of all three SI(2)'s are identi-
cal and equal to the unique quartic invariant I, of the
(2,2,2) representation.

Choose Q4 = gl4® a5 positions, ¢24® as momenta. The
bispinor Q4 is a vector Q! of SO(2,2), parameterized
by three polar angles Q € Hz = S0O(2,2)/50(2,1) =
SO(2,1) and its length squared k2 = Qnr;Q”’, where
niy = (+ + ——). The quadratic Casimir is then the
angular momentum squared on the pseudo-sphere Hsi,
i.e. the Laplacian on SI(2).

This is the conformal mechanical model coming from
dimensional reduction of 2 4+ 1 dimensional gravity near
a spacelike singularity, except for a decoupled degree of
freedom .

37



Summary - prospects

Non-perturbative dualities such as U-duality of M-
theory bring automorphic forms into the realm of
physics, allowing to obtain exact amplitudes includ-
ing instanton effects.

Deriving these amplitudes from a microscopic def-
inition of M-theory is an important challenge. A
naive one-loop membrane computation produces the
right saddle points and spectrum, but misses the
non-trivial summation measure.

The correct one-loop membrane amplitude should
provide a correspondence between Si(3,72) and E; (Z)
automorphic forms. Since naive physics failed, maths
has to come to rescue.

We have obtained explicit formulae for the spheri-
cal vector of the minimal rep for D, and exceptional
groups Ee7s. In order to write a Theta series com-
pletely, one needs to understand degenerate contri-
butions. Can one find a simple combinatoric for-
mula for the summation measure 7

The construction relied on the invariance of the
cubic character exp(il3(x;)/zo) under Fourier trans-
form: a class of non-Gaussian yet free cubic models.
Can models be found with oo degrees of freedom 7
the topological open membrane 7
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Summary - prospects 2

Applied to the membrane, it predicts new quantum
numbers (y,zo) besides the expected windings n,.
What is their interpretation 7 Can their action be
generalized to include fluctuations while preserving
duality ? Finally, do we reproduce the right R*
amplitude after integrating out R x SI(3) ?

The quantization of coadjoint nilpotent orbits pro-
vides the Hilbert space for the minimal representa-
tion. This yields a new class of conformal quantum
mechanical model. Can they be useful for black
holes or other systems 7

We have found that quantum cosmology near a
spacelike singularity exhibits conformal invariance.
Not so surprising, since we are expanding around a
solution with power-like behavior. Can one identify
other models than D4 7

The chaotic mixing behavior is very very reminis-
cent of fully developped turbulency in fluid mechan-
ics. Does this conformal “inertial range” extend to
the singularity, or should pair creation provide a dis-
Ssipation cut-off for this cascade 7
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