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Black hole thermodynamics and microscopic counting

• In general relativity, one associates to a macroscopic black hole with mass M , horizon
area A and surface gravity κ an entropy SBH = A/4GN and temperature T = κ/2π

such properties analogous to the standard laws of thermodynamics are obeyed

1) dSBH =
1

TH
dM + ωdJ . . . , 2) d(SBH + Smatter) > 0

Christodolou, Bekenstein, Hawking

• String theory is famously known to provide a microscopic description of black hole
microstates, reproducing the macroscopic Bekenstein-Hawking entropy. Eg, “4-charge”
extremal black holes in 4D have a macroscopic entropy:

SBH = 2π
p
Q1Q5QKKP ,

They can be represented as a D1-D5-P-KKM bound state, whose microstates are
described by a 2D CFT. Their entropy can be counted by using the Cardy formula

Smicro = ln Ω ∼ 2π
q
cN/6 ∼ SBH

Strominger Vafa; Maldacena Strominger; Johnson Khuri Myers
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Black hole entropy beyond leading order

• This agreement relies on the “thermodynamical” limit where A� GN , or Q� 1, and
classical gravity can be trusted. Can we test this beyond leading order, and compare
gravitational corrections to the Bekenstein-Hawking entropy to finite size effects on the
microscopic side ?
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BH entropy beyond leading order (macroscopics)

• On the macroscopic side, the Bekenstein-Hawking “area law” receives corrections due to
higher-derivative interactions in the low energy effective action. E.g, for 4D Einstein with
polynomial interactions in Rµνρσ,

SBHW = 2π

Z
Σ

∂L
∂Rµνρσ

ε
µν
ε
ρσ
√
hdΩ ∼

1

4
A+ . . .

Wald; Jacobson Kang Myers

where εµν is the binormal on the horizon Σ. In addition, the geometry itself is deformed
(sometimes in a drastic way).

• Recently, de Wit et al have been able to compute an infinite set of corrections to the BH
entropy of extremal BH in type II string compactified on a Calabi-Yau 3-fold Y , due to a
class of higher derivative interactions

Fh(X
A
)R

2
+F

2h−2
+

where Fh is given by the genus-h topological string amplitude.
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BH entropy beyond leading order (microscopics)

• On the microscopic side, the entropy is defined as the Legendre transform of the free
energy, which depends on a choice of statistical ensemble. In the thermodynamical limit,
the entropy is universal, but subleading corrections are not.

• Recently, Ooguri Strominger and Vafa (OSV) have proposed to identify the specific
statistical ensemble implicit in the macroscopic computation as a “mixed” ensemble, where
the magnetic charges are fixed micro-canonically but electric charges are allowed to
fluctuate at a fixed electric potential:

Z(p
A
, φ

A
) :=

X
qA∈Λel

Ω(p
A
, qA)e

−φAqA

• In combination with the macroscopic computation, this gives a conjectural relation between
microscopic degeneracies Ω(pA, qA) and the topological string amplitudes Fh(XA):

(OSV ) Z(p
A
, φ

A
)

?
= | exp

„
iπ

2
=(p

A
+ iφ

A
)

«
|2
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Outline of the talk

• Aim: test the OSV proposal, in cases where the two sides of the equations can be
computed to arbitrary accuracy.

• Tools: small black holes, heterotic/ type II duality, Rademacher formula

• Report: matched an infinite number of subleading corrections to the BHW entropy with a
microscopic counting.

1. Review: BH entropy and D-brane counting

2. Attractor mechanism and the OSV conjecture

3. A benchmark case: K3 × T 2

4. N = 4 CHL strings

5. N = 2 orbifolds

6. Towards an exact OSV-type formula

7. Discussion
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Microscopic origin of the Bekenstein-Hawking entropy
Strominger Vafa 1996

Consider a 5D extremal Reissner-Nordström black hole in type II string theory on K3 × S1:

• Solutions preserving 1/4 SUSY and carrying a minimum of 3 charges have a smooth event
horizon, with an associated Bekenstein-Hawking entropy

SBH = 2π
p
N1N5P

• Consider a configuration of N1 D1-branes wrapping S1, N5 D5-branes wrapping K3 × S1,
with P units of momentum along S1. At strong string coupling, it becomes an extremal RN
black hole, and carries the same quantum numbers as above.

• In the limit where K3 is small the effective D=1+1 field theory on the brane is a
supersymmetric (4,4) sigma model on the (deformed) permutation orbifold

(K3)
⊗N1N5/SN1N5

since D1-branes can be seen as Yang-Mills instantons on the D5-brane world-volume.
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• The central charge is therefore c = 6N1N5. BPS states with charge P are ground states
on the left, and carry level P excitation on the right. By the Cardy formula,

Smicro = 2π
q
cP/6 = 2π

p
N1N5P

which matches with the macroscopic entropy !

• Similar results hold in situations with a different amount of SUSY: 1/8-BPS black holes on
T 5 have a BH entropy

SBH = 2π
q
I3(Q)

where Q are the general 27 electric charges, and I3 is the cubic invariant of E6(6), while
1/2 BPS black holes in M theory on CY can be described as bound states of M2-brane
wrapped on 2-cycles, with BH entropy

SBH = 2π
p
DABCpApBpC

were DABC are the intersection numbers of 2-cycles. Microscopic counting remains ill
understood in the latter case.

Maldacena Moore Strominger

Katz Klemm Vafa
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• Microscopic degeneracies can also be computed by noting that the near-horizon geometry
is AdS3 × S3 × T 4 factor. This admits an holographic description as a 2D CFT on the
boundary, whose central charge is given by

c =
3Λ

2GN

reproducing the correct entropy via Cardy’s formula.
Brown Henneaux; Carlip; Strominger
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Entropy of 4-dim black holes

• 4-dim 1/4 BPS black holes in type IIA / K3 × T 2 can be described by a D6-D2-NS5 bound
state wrapped on K3, with momentum along S1:

SBH = 2π
p
Q2Q5Q6P

By allowing the D2-branes to end on the NS5-branes, one can reproduce this entropy
microscopically just as in the 5D case.

Maldacena Strominger

• Equivalently, the same system can be described by a bound state of D1-D5-P with QK KK
monopole: the same entropy arises by taking into account fractional D-branes in the ALE
geometry.

Johnson Khuri Myers, Constable Khuri Myers

• More generally, in N = 4 backgrounds, the BH entropy is given by the Sl(2)× SO(6, n)

invariant discriminant

SBH = 2π
q

(~p · ~p)(~q · ~q)− (~p · ~q)2

A formula for the exact degeneracies has been proposed, but remains to be tested.
Dijkgraaf Verlinde Verlinde
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• In N = 8 backgrounds, the BH entropy is given by the E7 quartic invariant,

SBH = 2π
q
I4(Q)

reproduced by a similar counting as above. Exact degeneracies are still unknown.
Kallosh Kol

• In N = 2 backgrounds, such as type II / CY, the tree-level BH entropy is

SBH = 2π
p
DABCpApBpCq0

but receives corrections from higher-derivative interactions. The first subleading correction
can be obtained by considering an M5-brane wrapping γ4 × S1, where γ4 is a 4-cycle in
CY. The reduced theory on γ4 is a (0, 4) sigma model, and the Cardy formula predicts

Smicro = 2π
q

(DABCpApBpC + c2ApA/6)q0

in agreement with 1-loop R2 corrections.
Maldacena Strominger Witten; de Wit L.Cardoso Mohaupt

• In general, the near-horizon geometry of these 4D extremal RN black holes is
AdS2 × S2 ×M6. One expects a dual description by a conformal quantum mechanics
leaving on the boundary, but no concrete example is known.
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The attractor mechanism

• Consider a general ansatz for a spherically symmetry RN BH in type IIA/CY:

ds
2
= −e2U(r)+2r

dt
2
+ e

−2U(r)
“
dr

2
+ r

2
dΩ

2
2

”
+ ds

2
CY

The shape of the CY is parameterized by Kähler moduli XA(r), and complex structure
moduli. The latter decouple and can be taken to be constant.

• The tree-level lagrangian is controlled by the prepotential, an homogeneous holomorphic
function F (XI) given by

F (X
A
) = −

1

6
CABC

XAXBXC

X0
+ worldsheet instantons

Notation: FA = ∂F/∂XA.
• The SUSY equations can be rewritten as

<
„
X
A −

d

dr
X
A

«
= p

A
, <

„
FA −

d

dr
FA

«
= qA
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• At the horizon, the geometry becomes AdS2 × S2 × CY where the Kähler moduli are
fixed by the attractor equations,

Re(X
A
) = p

A
, Re(FA) = qA

Ferrara Kallosh Strominger

• The Bekenstein-Hawking entropy is thus a function of the charges only,

SBH =
iπ

2

“
qAX̄

A − p
A
F̄A
”
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The attractor mechanism, revisited

• This is usefully recast as follows: set XA = pA + iφA where φA is real. The second
equation becomes

qA =
1

2

“
∂F0/∂X

A
+ ∂F̄0/∂X̄

A
”

=
1

2i

“
∂F0/∂φ

A − ∂F̄0/∂φ̄
A
”

hence

qA = π ∂F/∂φ̄A where F0(p
A
, φ

A
) =

1

π
ImF0(p

A
+ iφ

A
)

• In addition, the BH entropy may be rewritten as

SBH = F0(p
A
, φ

A
) + π qAφ

A

• The BH entropy SBH(pA, qA) is thus recognized as the Legendre transform of the free
energy F0(p

A, φA) ! To compute the latter, no need to solve the attractor equations !
Ooguri Vafa Strominger
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Leading entropy of large black holes

• As an application, let us compute the tree-level entropy of a black hole with arbitrary
charges, except for p0 = 0: the tree-level superpotential is

F = −
1

6
CABC

XAXBXC

X0
⇒ F(p, φ) = −

π

6

C(p)

φ0
+
π

2

CAB(p)φAφB

φ0

C(p) = CABCp
A
p
B
p
C
, CAB(p) = CABCp

C
, A = 1, . . . nV − 1

• The Legendre transform with respect to φA leads to

φ
A
∗ = −CAB

(p)qBφ
0
, φ

0
∗ = ±

q
−Ĉ(p)/6q̂0

q̂0 = q0 +
1

2
qAC

AB
(p)qB
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• The tree-level Bekenstein-Hawking entropy is therefore the square-root of a quartic
polynomial in the charges,

SBH = 2π
q
C(p)q̂0/6

in agreement from the microscopic counting at leading order.

• When C(p) = 0, the tree-level BH entropy vanishes, indicating a singular solution. We
shall be interested in such “small black holes”, which get a non-vanishing entropy from
higher order contributions.
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Higher derivative interactions and the topological string

• Recall that the (2, 2) sigma-model on a CY threefold can be topologically twisted into the
A-model topological string, which depends only on the Kähler moduli XA. This defines a
quantum field theory of Kähler structures, known as Kähler gravity.

• The topological A-model can be related to the physical type II superstring: the genus-h
topological amplitude (without insertions) Fh(X) is equal to the coefficient of the
R2

+F
2h−2
+ amplitude in the low energy effective action

Z
d

8
θF (X;W

2
) =

Z
d

8
θ

∞X
h=0

Fh(X)W
2h

∞X
h=0

Fh(X)R
2
+F

2h−2

• The all-genus topological A-model thus resums an infinite number of higher-derivative
F-term corrections. The topological coupling constant λ is proportional to the graviphoton
field-strength,

λ =
π

4

W

X0
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The attractor mechanism, to all orders

• In the presence of R2
+F

2h−2
+ corrections, the attractor formalism goes through upon

replacing the tree-level prepotential F0(X) by the generating function

F (X
A
,W

2
) =

∞X
h=0

Fh(X
A
)W

2

and enforcing the additional attractor equation W/X0 = ±24.

• The Bekenstein-Hawking-Wald entropy is thus the Legendre transform of the free energy

F(p
A
, φ

A
) =

1

π
ImF

“
p
A

+ iφ
A
; (2

4
X

0
)
2
”

• One may interpret F(pA, φA) as the free energy of a statistical ensemble of black holes
with magnetic charge pA and electric potential φA.
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The OSV conjecture for BH degeneracies

• It is thus natural to conjecture that the relevant microscopic statistical ensemble is a
“mixed” ensemble, where magnetic charges are treated micro-canonically but electric
charges are treated canonically:

Z(p
A
, φ

A
) :=

X
qA∈Λel

Ω(p
A
, qA)e

−φAqA ?
= e

F(pA,φA)
=

˛̨̨̨
exp

„
iπ

2
F (p

A
+ iφ

A
)

«˛̨̨̨2

Ooguri Strominger Vafa

• If correct, this provides a way to compute the microscopic degeneracies Ω(pA, qA) (or
rather a suitable index) from the topological string amplitude F (W,X), by inverse Laplace
transform,

Ω(p
A
, qA) ≡

Z
dφ

A

˛̨̨̨
exp

„
iπ

2
F (p

A
+ iφ

A
)

«˛̨̨̨2
e
φAqA

• Conversely, one may hope to understand the non-perturbative completion of the
topological string from the knowledge of black hole micro-states.
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More on the OSV conjecture

• There are several versions of the OSV conjecture: the weaker form is supposed to relate
the topological string amplitude with some suitable index, and hold only asymptotically to
all orders in inverse charges.

• The OSV proposal is somewhat formal: what is the precise integration measure and
contour ? How about holomorphic anomalies, curves of marginal stability ? Should we
count micro-states with arbitrary angular momentum or only J = 0 ? etc

• The proposal has been tested in the case of non-compact CY: O(−m)⊕O(m) → T 2:
BPS states are counted by topologically twisted SYM on N D4-brane wrapped on a
4-cycle O(−m) → T 2, which is equivalent to 2D Yang Mills. Using the factorization
properties in the large N limit, one can show that OSV is correct to all orders in 1/N .

Vafa; Aganagic Ooguri Saulina Vafa

• A recent “proof” has been given by reinterpreting the BH partition function as (the inner
product of) the wave function of the Universe in a minisuperspace formulation.

Ooguri Verlinde Vafa
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Testing OSV: small black holes

• Our goal is to test the OSV conjecture in cases where black holes degeneracies are
exactly known. For this, restrict to K3-fibered CY, which admit a dual description as
heterotic / K3 × T 2.

• The heterotic string admits a class of perturbative BPS states, known as
Dabholkar-Harvey states:

|osc,N〉 ⊗ |osc, 0〉 × |ni, wi〉

satisfying the matching condition N − 1 = niw
i. They carry purely electric charge, in the

natural heterotic polarization. They are counted by simple modular forms.

• At strong coupling, these states remain stable and become black holes, carrying both
electric and magnetic charges, in the natural type II polarization. In contrast to the general
“4-charge” black holes, they are singular at tree-level, but acquire a smooth horizon due to
R2 interactions.

Sen 95; Dabholkar 04; Kallosh Maloney Dabholkar; Hubeny Maloney Rangamani; Bak Kim Rey
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Large Black Hole degeneracies from OSV

• The A-model topological string amplitude on a CY Y F (XA,W 2) is an homogeneous
function of degree 2 in (XA,W ):

F = −
1

6
CABC

XAXBXC

X0
−

W 2

64 · 24
cAX

A

X0
−

X2
0

(2πi)3

∞X
h=0

X
β

„
πW

4X0

«2h

Nh,βe
2πiβAX

A/X0

where A = 1..nV − 1 runs over 2-cycles of Y , CABC =
R
Y
JAJBJC are triple

intersection numbers, XA/X0 = BA + iV A are the Kähler moduli,
cA =

R
Y
JAc2(T

1,0(X)) and Nh,β are rational numbers known as the Gromov-Witten
invariants.

• From these we compute the free energy

F(p, φ) = −
π

6

Ĉ(p)

φ0
+
π

2

CAB(p)φAφB

φ0
+ 2Re(FGW )

where

Ĉ(p) = C(p) + cAp
A
, C(p) = CABCp

A
p
B
p
C
, CAB(p) = CABCp

C
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• For now, let us drop FGW and compute the Laplace transform

ΩOSV (p
A
, qA) =

Z
dφ

0
dφ

A
exp

“
F(p, φ) + πφ

A
qA
”

can be computed exactly: the φA integral is Gaussian, with saddle at
φA∗ = −CAB(p)qBφ

0:

ΩOSV (p
A
, qA) =

Z
dφ

0
φ

(nV −1)/2

0 det[CAB(p)]
−1/2

exp

 
−
π

6

Ĉ(p)

φ0
+ πφ

0
q̂0

!

with q0 = q0 + 1
2qAC

AB(p)qB.

• The φ0 integral is now of Bessel type, with saddle at φ0
∗ = ±

q
−Ĉ(p)/6q̂0. For an

appropriate contour, we find

ΩOSV (p
A
, qA) = det[CAB(p)]

−1/2
[Ĉ(p)]

(nV +1)/2
Î(nV +1)/2

»
2π

q
Ĉ(p)q̂0/6

–
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• Using the asymptotics

Îν(z) ∼ z
−ν−1

2e
z
“
1 + a/z + b/z

2
+ . . .

”
we find the micro-canonical entropy predicted by OSV:

SOSV (p
A
, qA) ∼ 2π

q
Ĉ(p)q̂0/6−

nV + 2

2
log[Ĉ(p)q̂0] + . . .

• The leading square-root term reproduces the tree-level Bekenstein- Hawking entropy
SBH = 2π

p
C(p)q̂0 at large magnetic charge. The replacement

C(p) → Ĉ(p) = C(p) + CAp
A is due to the one-loop R2 interaction, and guarantees

that the entropy is non-vanishing for “small black holes” which have C(p).

• In general, our understanding of the microstates is too rough to allow us to test this
prediction.
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Small black holes and K3-fibered CY

• Let us now restrict to type II on a K3-fibered CY 3-fold, dual to heterotic/ K3 × T 2. The
Kähler moduli split into the modulus X1/X0 of the base, and the moduli Xa/X0 of the
fiber (a = 2, . . . nV − 1). The intersection form factorizes into

CABCX
A
X
B
X
C

= X
1
CabX

a
X
b

• Further consider a state whose only non-vanishing magnetic charge is p1:

C(p) = 0 , Ĉ(p) = 24p
1
, CAB(p) =

„
0 0

0 p1Cab

«
• The dependence on φ1 now disappears from the integrand. Since Ftop is invariant under

monodromies φ1 → φ1 + φ0, it is natural to restrict the integration range to [0, φ0]:

ΩOSV (p
1
, qA) =

Z
dφ

0
φ
nV /2

0 exp

„
−

4πp1

φ0
+ πφ

0
q̂0

«
∼ Î(nV +2)/2

h
4π
p
p1q̂0

i
where q̂0 = q0 + 1

2C
abqaqb/p1.
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Comments

• Integrals have been carried out somewhat formally. Since CAB(p) in general has
signature (1, nV − 2), the gaussian integral needs to be computed by rotating the contour
for φA to the imaginary axis.

• In addition to the Bessel Î function, the OSV integration measure leads to extra
p-dependent factors, which, if taken literally, contradict T-duality on the heterotic side. The
ratio ΩOSV (p, q)/ΩOSV (p′, q) seems to be free of these ambiguities.

• In the derivation, we neglected GW instanton contributions. Non-degenerate instantons
contributions are exponentially suppressed in the large charge limit, and can be
consistently neglected if (pa)2q0 � C(p). When χ 6= 0, the series of point-like instantons
appears to be strongly coupled but, after resummation to the Mac-Mahon representation,
can be consistently neglected if q0 � p1.



LPTHE - APRIL 29, 2005 26

Pointlike instantons

• In particular, the point-like instantons with β′ = 0 lead to n0
0 = −χ/2 (χ=Euler number of

CY). They contribute an infinite series of higher-genus contributions to the topological
amplitude:

Fpoint = −
χ

2

"
ζ(3)

λ2
+ A+

∞X
h=2

λ
2h−2(2h− 1)B2hB2h−2

(2h− 2)(2h)!

#
• The ζ(3) term follows from the tree-level R4 amplitude in 10D, the term with h ≥ 2 is

proportional to the Euler number of the moduli space of genus-h Riemann surfaces without
punctures, and A is a naively divergent quantity, but, when properly regulated

A =
1

12
log(2π/λ) + finite

• This asymptotic expansion is valid at λ� 1. If λ is large, an alternative representation is
provided by the Mac Mahon function,

Fpoint = −χ/2
∞X
n=0

n log(1− q
n
) q = e

−λ

leading to an infinite product representation for eF .
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A benchmark case: II/K3× T 2 vs Het/T 6

• On the macroscopic side: thanks to N = 4, Fh>1 = 0. F1 can be extracted from R2

coupling,
fR2 ∼ log T2|η(T )|4 ⇒ F1 = log η

24
(T ) , T = X1/X0

• The gauge group is U(1)6 × U(1)22, however upon decomposition into N = 2 multiplets
4 U(1) are part of gravitino multiplets, and not covered by the attractor formalism. So
nV = 24.

• According to the above, the OSV prediction for small BH degeneracies is

ΩOSV (p
1
, q0) = Î13

h
4π
p
p1q̂0

i
• On the heterotic side, these small BPS BH are dual to Dabholkar Harvey states,

enumerated by
1

η24
=

∞X
N=0

p24(N)q
N−1

, N − 1 = p
1
q0

• The leading exponential behavior is given by Cardy’s formula log p24 = 2π
p
N.24/6.

Subleading corrections are given by the Rademacher formula...
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The Rademacher expansion
Consider a vector-valued modular form fµ=1..r(τ) of weight w < 0,

fµ(τ + 1) = e
2πi∆µfµ(τ) , fµ(−1/τ) = (−iτ)wSµνfν(τ)

with Fourier expansion fµ(τ) = q∆µ
P∞

m=0 Ωµ(m)qm

• Claim: the Fourier coefs can be expressed as an infinite series

Ων(n) =

∞X
c=1

rX
µ=1

X
m+∆µ<0

c
w−2

Kl(n, ν;m,µ; c)|m+ ∆µ|1−w

×Ωµ(m)Î1−w

»
4π

c

q
|m+ ∆µ|(n+ ∆ν)

–
where Kl(n, ν;m,µ; c) are generalized Kloosterman sums, equal to S−1

νµ for c = 1 and
Îν(z) is a modified, modified Bessel function of the 1st kind,

Îν(z) = 2π

„
z

4π

«−ν
Iν(z) ∼ z

−ν−1
2e
z
(1 + a/z + b/z

2
+ . . . )
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• All c > 1 contributions are exponentially suppressed wrt to c = 1, yet they are
exponentially large in an absolute sense.

• The Cardy-Hardy-Ramanujan formula emerges by keeping the leading term
c = 1,m = 0, using ∆ = c/24:

log Ων(n) ∼ 4π
q
|δµ|(n+ ∆ν) = 2π

s
c(n+ ∆ν)

6

• In addition to this leading term, there are log corrections, as well as an infinite series of
power-suppressed terms.

• The Rademacher expansion depends only on the polar part
P

m+∆µ<0 Ωµ(m)qm+∆µ

(and modular data). Indeed, one proof is to represent fµ(τ) (or rather its Farey transform
q∂1−w

q f ) as the Poincaré series (i.e. sum over Sl(2, Z) images) of its polar part.
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Back to the bench

• In particular, for the inverse of the Dedekind function, w = −12, ∆ = −1,Ω(0) = 1

hence
p24(N) = Î13

h
4π
p
p1q̂0

i
+ 2

−14
Î13
h
2π
p
p1q̂0

i
+ . . .

• Comparing to the OSV prediction, we find agreement to ALL orders in 1/(p1q0) !

• However, OSV fails to reproduce subleading corrections which grow like e2π
√
p1q0.

• Note that for this to work, we had to drop non-holomorphic contributions from fR2, and
consider the degeneracies of states with arbitrary angular momentum j.
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N = 4 CHL strings

• More general N = 4 models with 0 ≤ k ≤ 22 vector multiplets of N = 4 can be
constructed, either as orbifolds of type II/ K3× T 2 by an Enriques involution, or as freely
acting asymmetric orbifolds of Het/T 6.

• In the untwisted sector of the orbifold, the BPS states are a projection of the DH states in
the Het/T 6 model. Their degeneracies are now counted by a modular form of the form

Zuntw =
1

2
(
θ

η24
+ ψ)

where θ is a partition function for the lattice of electric charges under the 22− k gauge
fields which have been projected out, and ψ enforces the projection. Modular weight:

w =
1

2
(22− k)− 12 = −1− k/2 ⇒ 1− w = (k + 4)/2 = (nV + 2)/2

Degeneracies are dominated by θ/η24, and are in agreement with the OSV prediction.
• In addition, there are BPS states in the twisted sectors, which are counted by modular

forms related to ψ by modular transformation. Their asymptotics appears to be equal to
that of the untwisted, unprojected sector, again vindicating OSV.
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N = 4 CHL strings (a case study)

• Consider the simplest case:

Γ6,22 = E8(−1)⊕ E8(−1)⊕ II
1,1 ⊕ II

5,5

orbifolded by g|P1, P2, P3, P4〉 = e2πiδ·P3|P2, P1, P3, P4〉 This projects out the U(1)

associated to P1 − P2, leaving only the physical electric charges Q = (P1 + P2, P3, P4).
• DH states arise in the untwisted sector by taking the ground state on the right, an arbitrary,

orbifold invariant excitation of the 24 oscillators on the left, and level-matched internal
momentum:

Zuntw =
1

2

 
Z6,6[

0
0]θ

2
E8[1](τ)

η24(τ)
+
Z6,6[

0
1]θE8[1](2τ)

η8(τ)η8(2τ)

!
• From this we need to extract the number of states with given Q = (P1 + P2, P3, P4). For

this, change basis from (P1, P2) to

P1 + P2 = 2Σ + ℘ , P1 − P2 = 2∆− ℘

where S,∆ take values in the E8 root lattice, and P is an element of the finite group
Z = Λr(E8)/2Λr(E8).



LPTHE - APRIL 29, 2005 33

• In order to sum over the “unphysical charges” ∆, introduce E8 level-2 theta functions with
characteristics:

ΘE8[2],℘(τ) :=
X

∆∈E8(1)

e
2πiτ(∆−1

2℘)2

and use

θ
2
E8[1](τ) =

X
P∈E8/2E8

θE8[2],P(τ)θE8[2],P(τ) , θE8[1](2τ) = θE8[2],0(τ)

hence

Zu =
θ2
E8[2],P(τ)

η24(τ)
±

1

η8(τ)η8(2τ)
:= q

∆±
∞X
N=0

d
u
±(N)q

N
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CHL strings, cont.

• In the twisted sector, the situation is simpler:

Zt =
1

2

„
1

η12θ4
4

±
1

η12θ4
3

«
:= q

∆±
∞X
N=0

d
t
±(N)q

N

• Using the Rademacher formula, we find

dimHBPS(Q) = 2
−5
Î9

„
4π
q
Q2/2

«

+Î9

„
4π
q
Q2/4

«8>>>><>>>>:
15 · 2−10 + 2−6e2πiP ·δ , ℘ ∈ O1

2−10 , ℘ ∈ O248

−2−10 , ℘ ∈ O3875

2−10eiπQ
2
, Q ∈ Λ1

+ . . .

Hence we have agreement to all orders with OSV in all sectors. Subleading terms however
are not captured by OSV, and depend crucially on the sector.
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An N = 4 exception to OSV

• Let us consider typeII/K3× T 2 at the Z2 orbifold point, and perform a further orbifold by
the “quantum symmetry” acting as -1 on each twisted sector, combined with a shift along
T 2: this gives a type II N = 4 model with 6+6 gauge fields.

• The heterotic dual is unclear; however, another dual description can be obtained by
making a Z2 orbifold of type II/T 4xT 2 by (−1)FL times a shift on T 2 This projects out all
RR fields, leaving 6+6 vectors. In constrast to the previous (2,2) case, SUSY is realized as
(4,0) on the worldsheet.

Vafa Sen

• The amplitude F1 can be computed at one-loop on the (2,2) case: one finds
F1 ∼ log θ4(T ), which has no perturbative part but only instantons: thus small black holes
remain small, even with R2 corrections !

Kounnas Gregori Obers Pioline Petropoulos

• Just as in the heterotic case, the (4,0) model admits a spectrum of DH states, enumerated
by θ4

i/η
12. The microscopic degeneracies thus grow as Î5(2π

p
2p1q0), not matched by

OSV !
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Absolute degeneracies vs. helicity supertraces

• We obtained agreement to all orders between the OSV prediction (at strong gravitational
coupling) and the absolute degeneracy of DH states (at weak coupling). In general
however, we expect that only a suitable index can be trusted in comparing weak and
strong coupling results.

• The natural indexes to invoke are helicity supertraces:

Ωn = Tr(−1)
F
J
n
3

where F is the target space fermion number, and J3 one generator of the little group of a
massive particle in D=3+1. For low n, and large supersymmetry, this index receives only
contributions from short multiplets, while long (non BPS) multiplets cancel out.

• For N = 4 SUSY, the natural index for 1/2 (resp. 1/4) BPS states is Ω4 (resp. Ω6). In
heterotic orbifold constructions, Ω4 is in fact equal to the absolute degeneracy of 1/2-BPS
states, “explaining” agreement.

• For N = 2 SUSY, the natural index is Ω2 ∼ NV −NH. As we shall see, in heterotic
orbifolds this can be much smaller than the absolute degeneracy !
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A few words on N = 2 models

• A number of type II/CY - Het/K3× T 2 dual pairs are known, where OSV can be tested.
While Fh>1 are now 6= 0, the degeneracies of small BH predicted by OSV, to all orders in
1/p1q0, at small p1/q0 are universally given by

ΩOSV = Î(nV +2)/2(4π
q
Q2/2)

• For heterotic asymmetric orbifolds with N = 2 supersymmetry, the DH states can be
counted as before. In contrast to N = 4, in the untwisted sector DH states typically come
in vector/hyper pairs, and the helicity supertrace Ω2 is much smaller than the OSV
prediction. The absolute degeneracies agree with ΩOSV at leading order only.

• In contrast, twisted states are all hypers, and have Ωabs = Ω2 in agreement to ΩOSV to all
orders in 1/Q.

• In a class of models such as Het/K3 with standard embedding, untwisted and twisted
states cannot be distinguished, hence OSV gives the correct result to all orders.

• In other models such as FHSV, untwisted and twisted states can be distinguished by the
modding of their charges, and OSV appears to fail in reproducing either Ωabs or Ω2, unless
some coarse-graining is made.
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Could the OSV formula be exact ?

• Go back to the benchmark case: exact degeneracies can be extracted from

1/η
24

=
∞X
N=0

p24(N)q
N−1

:= 1/∆(q)

by a contour integral:

p24(N) =
1

2πi

I
q
−N
dq/∆(q) =

Z
dt t

−14
exp

“
π(N−1)

t

”
∆ (e−4πt)

• By contrast, the OSV formula can be rewritten as

ΩOSV (p
1
, q0) ∼

Z
dτ1 dτ2 τ

−14
2

exp
“
π(N−1)
τ2

”
|∆ (e−2πτ2+2πiτ1) |2

• The two agree asymptotically when ∆(q) ∼ q, but the OSV formula does not appear to
make sense non-perturbatively !
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Reverse engineering

• Rather than extracting BH degeneracies from the topological amplitude, one may try to
construct the BH partition function from our partial knowledge of exact degeneracies.

• In type II/K3× T 2, the lattices of electric charges are

Λ
IIA
elec = D0(q0)⊕D2/T2(q1)⊕D2/γ2(qa)⊕ . . .

Λ
IIA
mag = D6/K3× T

2
(p

0
)⊕D4/K3(p

1
)⊕D4/T2 × γ2(p

a
)⊕ . . .

Exact degeneracies are known for purely electric heterotic states , i.e. for vanishing
D2/T2, D4/T 2 × γ2, D6/K3× T 2.

• Setting p0 = pa = 0, the BH partition function includes terms with q1 = 0:

Z
′
BH =

X
q0,qa∈II3,19

p24

„
1 + p

1
q0 +

1

2
qaC

ab
qb

«
e
−π(q0φ

0+qaφ
a)
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• Inserting the unity

1 =
X
N

δ

»
N − 1−

1

2
qaC

ab
qb

–
=
X
N

p1−1X
k0=0

1

p1
e

2πik0(N−1−1
2qaC

abqb)/p
1

inside the sum, the sum over N reconstructs the Dedekind function

Z
′
BH =

1

p1

p1−1X
k0=0

e−2πiτqaC
abqb−πφ

aqa

∆(τ)
, τ =

iφ0 + 2k0

2p1

Doing a modular transformation on τ and a Poisson resummation on qa gives

Z
′
BH =

p1−1X
k0=0

X
ka∈II19,3

Z0(φ
A

+ 2ik
A
) , Z0(φ

A
) =

exp

»
−π

2

p1Cabφ
aφb

φ0

–
(p1)2 ∆

“
2ip1
φ0

”
• While Z0 looks close to the topological string amplitude, it is in fact different: no |∆|2, and

the argument has no φ1 dependence !
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• The sum over translations φA → φA + 2ikA guarantees that the BH partition function has
the expected periodicity due to the charge quantization. Yet much of the information in the
topological string amplitude could be lost in the process of averaging !

• It is tempting to conjecture that the exact black hole partition function is a theta series
whose general term is the topological string amplitude.

• Indeed, in a unrelated development, non-Gaussian theta series have been constructed
based on cubic characters exp(I3(X

A)/X0) quite similar to CY prepotentials. It would be
very interesting if invariance under monodromies in the CY moduli space could be realized
in the same fashion.

Kazhdan Pioline Waldron; Kontsevitch
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Discussion

• The OSV conjecture for the partition function of BPS black holes has passed several
non-trivial tests, leading to agreement with microscopic degeneracies to all orders in 1/Q2.

• For this to hold, a number of ambiguities had to be lifted: integration contour, holomorphic
anomalies, identification of ΩOSV with helicity supertraces, count states with arbitrary J .

• OSV is very successful in N = 4 models, less so in some N = 2 models. When χ 6= 0,
the saddle point lies at strong coupling of the pointlike instanton series, requiring a
non-perturbative completion of the topological amplitude in this sector.

• At the non-perturbative level, a relation like “ZBH = |eF |2” cannot hold, if only because
the rhs is not periodic in φ modulo 2i. This suggests that the BH partition function may
instead be a theta series built on eF , possibly with interesting automorphic properties.

• In a rather orthogonal approach, Sen was able to reproduce the BH entropy to all orders
using a different ensemble, with a chemical potential µ for Q2 rather than Q, and keeping
non-holomorphic corrections. It would be interesting to relate the two approaches.


