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Introduction

• Much e�ort in string theory has been directed into
searching for compacti�cations to �at Minkowski
space which reproduce the Standard Model at low
energies. Alas, tLHC > 2008, and chances to ob-
serve strings directly are moderate.

• In contrast, observational cosmology is undergo-
ing a fast revolution, from an order-of-magnitude
Regime to a high-precision Era, posing a new chal-
lenge to string theory:
ωΛ = 71.0% , ωbaryon = 4.7% , ωdark = 24.3%

• While string-inspired cosmological scenarios have
been much discussed in e�ective �eld theory, string
theory in time-dependent backgrounds remains a
mostly uncharted territory.
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Strings in time-dependent backgrounds
Perturbative string theory is well-suited for S-matrix
computations in asymptotically �at space.

Many questions arise in trying to generalize to (smooth)
time-dependent backgrounds:

• No (unitary) analytic continuation to Euclidean sig-
nature, neither in target space nor on the world-
sheet: amplitudes are super�cially divergent, mod-
ular group acts ergodically...

• Many di�erent choices of vacuum are possible, how
can one implement Bogolioubov transformations from
one to another ? Is worldsheet locality sacred ?

• Observables are unclear, especially in the case of
closed universes, or with pathological asymptotic
regions like such as the Cheshire's Cat Universe and
its whiskers.

String Field Theory seems a crying need in order to
address these issues.
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Strings at cosmological singularities
More questions arise in relation with spacelike singular-
ities, which a purported theory of quantum gravity had
better address:

• Can perturbative string theory still hold, despite the
in�nite blueshift towards the singularity ?

• Can extra degrees of freedom of string theory re-
solve spacelike singularities, or rather prevent their
appearance ? How can one evade the no-bounce
theorem ?

• If instead spacelike singularies signify the End or
Beginning of time, how can one specify boundary
conditions there ?

• Is the BKL oscillatory behaviour generic also in
string theory ? As di�erent bits of the string fall
outside of causal contact at the spacelike singular-
ity, does the string reduce to a Matrix model ?
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Cosmological Singularities: a Toy Story
Various toy models have been proposed recently to study
time-dependence and cosmological singularities in string
theory:

• The Lorentzian orbifold, quotient of R1,1 by a boost
J: this gives a free-�eld realization of the Milne
Universe

ds2 = −dt2 + t2dx2 , x ≡ x + 2π

together with two whiskers with CTC,
ds2 = −r2dt2 + dr2 , t ≡ t + 2π

Horowitz Steif; Seiberg; Nekrasov

• The Parabolic orbifold, quotient of R1,2 by the prod-
uct of a boost J01 and a rotation R12,

ds2 = −2dy+dy− + (y+)2dy2 , y ≡ y + 2π

which is better thought of as a singular gravitational
wave.

Simon; Liu Moore Seiberg

• Flux branes and null branes, where the boost is
combined with a translation on an extra coordinate,
hence lifting any �xed point; WZW models such as
the Nappi Witten cosmology, which reduces to the
Lorentzian orbifold at the singularity.

Cornalba Costa; LMS; Craps Kutasov Rajesh
Elitzur Giveon Kutasov Rabinovici
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Toys are broken

• These models all seem to be plagued with pertur-
bative divergences, related to a large backreaction
at the singularity. Divergences may be avoided by
�ne-tuning initial conditions.

Liu Moore Seiberg
Berkooz Craps Kutasov Rajesh

• In addition, due to high blue-shift, the images of the
particles on the covering space may non-perturbatively
form a large black hole, that eats up the space.
Combining with a translation does not cure this in-
stability except in high dimension.

Horowitz Polchinski

• These models are also highly non-generic trajec-
tories on the cosmological billiard: can one study
more general Kasner singularities ? �nd the BKL
behaviour ?

Damour Henneaux

6



More toys: open strings in electric �elds
For the purpose of studying time-dependence in string
theory, it may be simpler to consider time-dependent
D-brane con�gurations, or equivalently open strings in
electric �elds:

• Backreaction in the closed string sector may be ne-
glected as gs → 0. Yet production of open strings
is retained. Backreaction in the open string sector
is analogous to D-brane recoil.

• Powerful techniques are available: boundary states,
string �eld theory . . . Classical con�gurations can
often be found explicitly due to the fact that the
worldsheet theory is free in the bulk.

• Analogues of spacelike singularities are D-brane head-
on collisions, or (in the simplest case) a constant
electric �eld. Analogues of null singularities are null
scissor con�gurations, or a constant null �eld.

Bachas Hull

• The analogy is very precise: charged open strings
in an electric �eld have (half) the same mode struc-
ture as twisted closed strings in a Lorentzian orb-
ifold. Physical states can be discussed along the
same lines. Vertex operators are twist �elds on the
boundary.

7



Outline

1. Introduction

2. Open strings in constant electromagnetic �eld

3. Open strings in electromagnetic waves

4. Open strings in a constant electric �eld, revisited

5. Remarks on Milne universe
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Open strings in a constant electromag �eld

• Open strings couple to an electromagnetic �eld
through their boundary only. The embedding coor-
dinates are therefore free bosons in the bulk of the
Minkowskian strip 0 < σ < π, τ ∈ R,

Xµ(τ, σ) = fµ(τ + σ) + gµ(τ − σ)

• The electric �eld may be di�erent on each of the
two D-branes. The boundary conditions at σ = σa ∈
{0, π}

∂σXµ + (2πα′)F µ
ν;a(X)∂τX

ν = 0

• For a constant F , this is a linear system of non-local
ODEs,

ḟµ − ġµ + (2πα′)F µ
ν;0

(
ḟν + ġν

)
= 0

T ḟµ − T−1ġµ + (2πα′)F µ
ν;1

(
T ḟν + T−1ġν

)
= 0

where · = d/dτ and Tf(τ) = f(τ + π).
• This can be solved in Fourier space, T = e−iπω, ∂/∂τ =
−iω. Eigenmodes satisfy, assuming [F0, F1] = 0,

e−2πiωn =
1 + F0

1− F0
· 1− F1

1 + F1
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Open strings in a constant electromag �eld
The dispersion relation again:

T 2 = e−2πiωn =
1 + F0

1− F0
· 1− F1

1 + F1

• Magnetic �eld: F = b

(
0 1
−1 0

)
→ {ib,−ib} hence

|T | = 1 and frequencies are real:
ωn = n± ν , πν = ArcTan b1 −ArcTan b0

The string is stable and follows Landau orbits.

• Electric �eld: F = e

(
0 1
1 0

)
→ {e,−e} hence |T | 6= 1

and frequencies have an imaginary part:
ωn = n± iν , πν = ArcTanh e1 −ArcTanh e0

This instability is due to Schwinger pair production:

A = (e0 + e1)

∫ ∞

0

dt

t13
e−πν2t 1

η21(it)θ1(νt | it)

=(A) ∼
∞∑

k=1

a(k) exp

(
−πk

ν

)

Bachas Porrati
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Born-Infeld critical electric �eld

• At the critical electric �eld ea = 1/α′, the electric
force pulling the two ends of the string apart over-
whelms the string tension, leading to the production
of stretched macroscopic strings, that discharge the
condensator at in�nity.

• By scaling eaα′ → 1 and α′ → 0 while keeping the ef-
fective tension of charged strings �xed, one obtains
NCOS, a theory of interacting non-commutative
open strings, decoupled from closed strings, prop-
agating in a �xed open string metric.

Gopakumar Maldacena Minwalla Strominger
Seiberg Sussking Toumbas

• This classical instability occurs already for neutral
dipoles. In contrast, the non-perturbative Schwinger
pair production requires charged particles.
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Open strings in a null electric �eld

• A generic Fµν can always be brought to the electric
or magnetic form depending on sgn FµνF µν. How-
ever there is a non-generic possibility,
F = Φdx ∧ dx+ , x± = (x0 ± x1)/

√
2 , x = x2

which satis�es FµνF µν = 0. In 4D, it amounts to
a con�guration with crossed �elds ~E ⊥ ~B of equal
magnitude | ~E| = | ~B|.

• The matrix F µ
ν now has a non-trivial Jordan form,

(the only non-trivial from for SO(1, d− 1))

F = Φ




0 1
0 1

0


 → {0,0,0}

hence the spectrum is una�ected, ωn = n ∈ Z. Pre-
cise eigenmodes do depend on Φ however.

• This agrees with the fact that there is no polar-
ization in a con�guration with null electric �eld. In
fact, this con�guration preserves half SUSY, namely
the generators such that Γ+ε = 0.

• After T-duality on x, this describes a null scis-
sor con�guration, i.e. two intersecting straight D-
branes whose intersection point moves with the
speed of light.

Bachas Hull
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Relativistic string in a pulse

• More generally, one may allow an arbitrary depen-
dence in the light-cone time x+:

A = Φ(x+)xdx+ , F = Φ′(x+)dx ∧ dx+

All contractions of Fx+ and ∂+ vanish, hence this
is an exact supersymmetric solution of the open
strings eom to all orders in α′: an in�nite dimen-
sional moduli space of solutions.

• In light-cone gauge X+ = x+
0 + p+τ , the boundary

conditions receive a time-dependent source term,
∂σX + (2πα′)p+Φ′

a(X
+) = 0 , σ = σa ∈ {0, π}

while X is still free in the bulk, (∂2
τ − ∂2

σ)X = 0.
Classical solutions can be computed by linear re-
sponse.

• Assuming that the electric �eld vanishes at x+ =
±∞, it is now straightforward to compute the quan-
tum mechanical transition amplitudes. An incoming
string in its ground state will in general emerge in
an excited state, depending on the pro�le Φ(x+).

• After T-duality along x, the bc becomes
X(τ) = −(2πα′)Φ(a)(X+(τ)) + b(a)

It describes open strings stretched between two D-
branes with a null intersection: null scissors

Bachas
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Colliding plane waves

• A string probe with p+ 6= 0 can be thought as a
perturbation colliding with the background wave.
Its state after the collision can be extracted simply
from the Bogolioubov transformation in light-cone
gauge.

• Quantum mechanically, part of the string will be
scattered o� the background wave, hence alter or
back-react on the background wave through emis-
sion of p+ = 0 states.

• This should induce an in�nitesimal motion on the
in�nite moduli space of plane waves. Can this be
described by a �ow on the space of time-dependent
boundary states ?

Hikida Takayanagi2

• A similar issue in the context of gravitational waves
arises. For this one needs to go beyond the light-
cone gauge.

(D'Appolonio Kiritsis)2; Gutperle P.
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Exact travelling waves

• As a matter of fact, the class of electromagnetic
waves which are exact solutions of open string the-
ory is much larger:

A = Φ(x+, xi)dx+ , F = ∂iΦ(x+, xi)dxi ∧ dx+

Maxwell's equations require that Φ be an harmonic
function in transverse space.

• The corresponding open string metric is a gravita-
tional wave in Brinkmann coordinates:
ds2 = 2dx+dx−+Gijdxidxj+(2πα′)2

∣∣∂iΦ(x+, xi)
∣∣2 (dx+)2

• In light-cone gauge X+ = x+
0 + p+τ , the boundary

conditions read
∂σXi + (2πα′)p+∂iΦ(X) = 0

Just like closed strings in pp-waves, conformal in-
variance is broken in the light-cone gauge, but only
through boundary e�ects.

Durin P.

• A constant magnetic �eld Bij can be added, at the
cost of using the open string metric in the har-
monicity equation.
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Solvable travelling waves and tachyons

• The simplest harmonic solution is a linear potential
Φ(x+, xi) = φi(x+)xi, leading to the uniform null
�eld already discussed.

• The next simplest case is a quadratic potential
Φ(x+, xi) = hij(x

+)xixj/2

leading to a massive linear boundary condition:
∂σXi + p+(ha)ij(x

+)Xj , σ = σa

• This is very reminiscent of studies of open string
tachyon condensation in BSFT. However,
(i) due to the tracelessness of h, the boundary de-
formation p+

∮
Φ(x+, xi)dX+ is unbounded from be-

low or above.
(ii) the worldsheet is a Lorentzian strip, instead of
an Euclidean cylinder or annulus. Can tachyon dy-
namics be derived from Born-Infeld ?

Witten, Shatashvilii; Kutasov Marino Moore
Arutyunov Pankiewicz Stefanski, Bardakci Konechny

• As for gravitational waves, supersymmetric non-
conformal boundary deformations, in particular in-
tegrable, can be used to construct on-shell exact
backgrounds.

Maldacena Maoz
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A word on T-duality

• In terms of the T-dual coordinate
X̃i = f i(τ + σ)− gi(τ − σ)

the bc become, after di�erentiating once,
∂2

τ X̃i + p+(ha)ij∂σX̃j = 0,

This is an open string with two beads of mass
h−1

a /p+ at its ends.

• This corresponds to a boundary deformation (h−1)ij∮
Xi∂2

τ Xj/p+ by an excited state. Deformations by
more general excited states X∂nX are also solvable.

• When h = 0, this is a Dirichlet bc. However, at
�nite coupling, D0-branes have �nite mass 1/gs,
hence h ∼ gs: D-brane recoil can be taken into
account by going o�-conformality.

• We will momentarily predict an instability of the T-
dual system, at a critical line m0 −m1 = α′p+: fast
elastic rotator ?

• A T-dual-like but inequivalent bc would be to take
∂τX

i + p+∂iΦ(X) = 0

The ends of the open string follow the gradient
lines of Φ: we are back to null scissors of arbitrary
shape.
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Point particles in electromagnetic waves

• The action for a charged particle is

S =

∫ [
1

2e
(∂τX

µ)2 − e m2

]
dτ + AµdXµ

• After choosing the gauge e = 1, the eom read
1. (d2/dτ2)X+ = 0

2. (d2/dτ2)Xi + ∂iΦ ∂τX
+ + Bij∂τX

j = 0

3. (d2/dτ2)X− − ∂iΦ ∂τX
i = 0

• 1. can be integrated to X+(τ) = x+
0 + p+τ . 2. and

3. imply that

H =
1

2
(pi)

2 + p+p− + p+Φ(X+, Xi) + m2

is a constant, where pi = ∂τXi − BijXj and p− =
dX−/dτ −Φ are the canonical momenta conjugate
to Xi and to X+.

• The motion in transverse coordinates is therefore
that of a non-relativistic particle in an electrostatic
potential V = Φ(X+, X i).

• Similarly, a relativistic string in an electromag wave
behaves as a non-relativistic elastic dipole (possibly
with overall charge)
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Non-relativistic dipole and critical gradient
• We have seen that on the light-cone, a relativistic
string behaves like a non-relativistic dipole. This
implies that its tensive energy is proportional to the
square of its length:

Vt =
1

α′p+
(xL − xR)2

• For a quadrupolar wave, the electrostatic energy
scales also like the square of the distance,

Ve = p+
(
h0

ijx
i
Lxj

L − h1
ijx

i
Rxj

R

)

•

At the line of critical elec-
tric gradients
h1 − h0 − π(p+)2α′h0h1 = 0

the two forces balance
against each other, leading
to stretched macroscopic
strings:
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A non-relativistic analogue of the Born-Infeld criti-
cal �eld. What is the analogue of the open string
metric ?

• Does there exist a decoupled theory of non-relativistic
interacting open strings at that point, analogue to
NCOS ? This theory would have to exhibit light-like
non-commutativity.

Aharony Gomis Mehem
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First quantization
• Since the bulk theory is still free, one may separate

X into left and right movers,
Xi = f i(τ + σ) + gi(τ − σ)

which satisfy boundary conditions:
ḟ(τ)− ġ(τ) + p+h0

(
f(τ) + g(τ)

)

T 2ḟ(τ)− ġ(τ) + p+h1

(
T 2f(τ) + g(τ)

)
= 0

• Again, we can work in Fourier space, and �nd the
dispersion relation (ei = πp+hi)

tan(πω) =
(e1 − e0)πω

(πω)2 + e0e1

Indeed, a pair of real roots disappear at the critical
line e0 − e1 − e0e1 = 0:

1 2 3 4 5
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• The partition function for open strings in a quadrupo-
lar �eld is then simply

Zop(t, e0, e1) = qEX

∞∏
n=1

(1− qωn)−1×
{

(1− qω0)−1 if D > 0(
1− qik0

)−1 if D < 0

with EX =
∑∞

n=0 ωn the zero-point energy.
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Dynamical instability

•

For a quadratic potential
depending on a single di-
rection, the motion is sta-
ble in the shaded region,
extending slightly outside
the domain of stability of a
dipole with vanishing ten-
sion:
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• For a traceless quadratic potential hij, the motion
is always unstable, due to the convexity of the sta-
bility domain. However, this is a kinematical insta-
bility of the string probes, not of the background it-
self: much like the divergence of geodesics in purely
gravitational plane waves,

ds2 = 2dx+dx− + dx2 + dy2 − µ2(x2 − y2)(dx+)2

Marolf Zayas; Brecher Gregory Sa�n

• (Former) atomic physicists know how to deal with
these instabilities...
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Strings in quadrupolar ion traps
Several ways to make a stable electromagnetic trap:

a. The Penning trap: use a static magnetic �eld to
con�ne charged particles in the transverse unstable
plane:

V (x) = −e

2
(x2 + y2 − 2z2) , B = bdx ∧ dy

is stable if b2 > e and e > 0.

b. The RF or Paul trap: no mag-
netic �eld, but modulate the elec-
tric �eld at a frequency such that
the particle experiences a restor-
ing force on average: parametric
resonance

V = (ω2 + α2 cos t)(x2 − y2) -1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

c. The quadrupolar trap: a static quadrupolar poten-
tial con�nes neutral particles with a negative polar-
izability, by drawing them to regions of low elec-
tric �eld strength: W = −αE2. Degenerate excited
states usually have negative polarizability

Mechanisms a. and b. carry over to the string case
straightforwardly.
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Closed string channel and boundary state

• In the closed string channel the boundary states
satis�es

∂τX +
ê

π
X |B(ê)〉 = 0

This is solved by the usual coherent state tech-
niques,

|B(ê)〉 = N (ê) ei
πp2

0
2ê exp

( ∞∑
n=1

−1

n

iπn + ê

iπn− ê
α−nα̃−n

)
|0, 0̃〉

• The partition function is therefore given by the
overlap of the two boundary states,

Zcl(t̂, ê0, ê1) = N (ê0)N (ê1)

√√√√ 2

t̂ + i
(

1
ê1
− 1

ê0

)eπt̂/12

∞∏
n=1

(
1− iπn + ê0

iπn− ê0

iπn− ê1

iπn + ê1
e−2πnt̂

)−1

Arutyunov Pankiewicz Stefanski, Bardakci Konechny
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Open-closed duality

• Equality with the open string channel can be for-
mally seen by representing the sum by a residue
integral

logZop =
1

2π

∫

C

(logΦcl)
d logΦop

dz
dz

with

Φop(z) = 1−e−2πiz iπz + e0

iπz − e0

iπz − e1

iπz + e1
, Φcl(z) = 1−e−2πtz

Integrating by parts shows that
Zop(t, e0, e1) = Zcl(t̂, ê0, ê1)

where the deformation parameters are related by
t̂ = 1/t , êa = eat

in full agreement with open/closed duality of the
one-loop amplitude (after compactifying the light-
cone).

• A careful proof takes much more e�ort, but can be
made along the lines of a similar computation in
the context of D-branes in gravitational waves.

Bergman Gaberdiel Green
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Strings in time-dependent quadrupolar �elds

• We now take ha(x+) with �nite support in x+. At
τ → ±∞ we have free �eld mode expansions,

X = x0 + p0τ + +i
∑

n6=0

2

n
an cos(nσ)e−inτ

and a similar expansion with primes at τ →∞.

• The two sets of modes are related by a symplectic
matrix, the Bogolioubov transformation:




x′0
p′0
a′m


 =




α β An

γ δ Bn

Ãm B̃m Bmn







x0

p0

an




• In the Born approximation (h ¿ 1), the incoming
state is a source for the outcoming perturbation,
and one �nds easily e.g.

Bmn = δmn +
i

π2n

∫ ∞

−∞
(e0 − (Te1))(p

+τ)e−i(n−m)τdτ

• The �nal excitation number of the mode n is
〈0in|a′−mam|0in〉 =

∑

n 6=0

|Bm,−n|2 + . . .

hence the total energy diverges if ha(x+) has a delta
function singularity.
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Half a degree of freedom

• In fact, the open string zero-mode has an ambiguity
which corresponds to the splitting between left- and
right-movers:

x0 = f0 + g0 , a = f0 − g0

a is the position of the T-dual D-brane, hence the
value of the worldvolume U(1) gauge �eld Ax on
the original D-brane.

• In �at space, a can be changed by a gauge trans-
formation hence has no physical meaning.

• In a time-dependent situation, this is no more the
case: the di�erence a(x+ = +∞) − a(x+ = −∞) is
the electric �eld F+x. In the Born approximation,

δf0 − δg0 = −1

π

∫ ∞

−∞
e0(p

+τ)X(σ = 0, τ)dτ

This is possibly the simplest computation of the
backreaction of an open string on an electric back-
ground.

• Similar computations can be made in the adiabatic
approximation, but keeping ha(±∞) �nite, as the
limit h → 0 is non adiabatic.
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Electric �eld and Lorentzian orbifold
• Closed strings in the w-th twisted sector of the
Lorentzian orbifold satisfy

X±(σ + 2π, τ) = e±νX±(σ, τ) , ν = wβ

Expanding in left and right movers, we have the
normal mode expansion:

X±
R(τ − σ) =

i

2

∞∑
n=−∞

(n± iν)−1/2α±n e−i(n±iν)(τ−σ)

X±
L (τ + σ) = − i

2

∞∑
n=−∞

(−n∓ iν)−1/2α̃±n e−i(−n∓iν)(τ+σ)

• Upon identifying the oscillators
α±n = a±n , α̃±−n = (a±n )∗

adding a zero mode and setting
X±

open = x± + X±
R(τ − σ) + X±

L (−τ − σ) ,

this reduces to the open string mode expansion

X± = x± + ia±0 φ±0 (σ, τ) + i

∞∑
n=1

[
a±n φ±n (σ, τ)− h.c.

]

where φ±n (σ, τ) = (n± iν)−
1

2 e−i(n±iν)τ cos[(n± iν)σ]

• Canonical commutation relations are
[α+

n , (α−n )∗] = [α−n , (α+
n )∗] = [α̃−n , (α+

n )∗] = [α̃−n , (α̃+
n )∗] = −1
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Are there physical states ?

• The worldsheet Hamiltonian for open strings reads,
after normal ordering (a± := a±0 )

L0 = −
∞∑

n=1

(n−iν)(a+
n )∗a−n −

∞∑
n=0

(n+iν)(a−n )∗a+
n +

1

2
iν(1−iν)−1+Lint

• Representing in a Fock space with vacuum annihi-
lated by all a−n≥0 and a+

n>0, eigenstates have imagi-
nary energy. This does not contradict hermiticity,
since they also have zero norm ! Hence the physical
state condition L0 = 1 has no solutions.

• For Milne Universe it is the same story with tildas.
The no-physical state statement is warranted by
modular invariance of the one-loop amplitude.

Nekrasov
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Scattering states and tunnelling
• Alas, this vacuum is the one obtained by analytic
continuation from Euclidean, i.e. for strings in a
magnetic �eld (disregarding time direction). There
physical states are Landau states, corresponding to
discrete normalizable eigenmodes of an harmonic
oscillator (times a continuous degeneracy label):

m2 = aa† + a†a = P 2 + Q2

• In the Minkowskian (electric) case, the harmonic os-
cillator becomes inverted, and the continued Lan-
dau states now have imaginary energy. However
there is now a continuum of delta-normalizable phys-
ical scattering states with real energy:

m2 = a+a− + a−a+ = P 2 −Q2

Das Jevicki; Moore; Alexandrov Kazakov Kostov

• Physically, these represent electrons and positrons
being de�ected by the electric �eld. Tunneling
through the barrier is just induced Schwinger emis-
sion, e− → µe− + (1 + µ)e+.

Brezin Itzykson
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Vertex operators and scattering

• String vertex operators can be represented at the
massless level by eigenmodes of the inverted har-
monic oscillator:

ψ+ = e−iu2/4
1F1

(
1

4
+ i

m2

8ν
,

1

2
; iu2/2

)

ψ− = u e−iu2/4
1F1

(
3

4
+ i

m2

8ν
,

3

2
; iu2/2

)

where u = (p + νx)
√

2/ν.

• They admit a free-boson representation in terms of
excited twist �elds, much as in the magnetic case.

D'Appollonio Kiritsis

• Scattering amplitudes may be computed in the Eu-
clidean (magnetic) theory, after expanding the scat-
tering states on the basis of (analytically continued)
�Landau states� � and proper regularization.

Berkooz P., in progress
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. . . Electric �eld and Milne Universe. . .
• A constant electric �eld F = edx+ ∧ dx− preserves
symmetries under boost. One may consider states
of �xed boost momentum J, and use adapted Rindler
coordinates x± = ±ey±η in the R region. Radial mo-
tion is now controlled by

(dy/dη)2 + 4m2e2y − (J + ν e2y)2 = 0

For ν = 0 this is a Liouville wall. For ν 6= 0
tunelling is possible, and describes Schwinger pro-
duction across the horizon.

Narozhny Mur Fedotov

• Winding closed strings in the Lorentzian orbifold
behave exactly as massive charged particles in Rindler
space, with boost momentum �xed by the match-
ing condition wJ = NL−NR. For J = 0 they are all
going across the singularity, or stay in the whiskers.

• The e�ect of particle production in strong electric
�elds has been often studied semiclassically or us-
ing transport equations: the electric �eld is slowly
screened, leading possibly to plasma oscillations.

Ambjorn Wolfram; Mottola Cooper;
Tomaras Tsamis Woodard. . .

• Winding strings will be pair-produced and should
backreact on the geometry so as to �discharge the
condensator�: is there enough time for the cosmo-
logical singularity to take place ?
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Electric �elds are full of promises
for the study of Time and String
Theory...
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