Instanton corrected hypermultiplet moduli spaces and black hole counting

Boris Pioline

LPTHE, Paris

Based on arXiv:0806.4620, 0810.1675, 0812.4219 with S. Alexandrov, F. Saueressig, S. Vandoren

Harvard, Jan 22, 2009

Introduction I

The moduli space of $D=4, \mathcal{N}=2$ (ungauged) SUGRA splits into a product $\mathcal{M}_{V} \times \mathcal{M}_{H}$. The vector multiplet part \mathcal{M}_{V} is very well understood, but the hypermultiplet part \mathcal{M}_{H} is still largely mysterious:

- In Type II/CY compactifications, \mathcal{M}_{V} can be computed exactly in the $(2,2)$ SCFT. On the contrary, \mathcal{M}_{H} is subject to g_{s} corrections, especially instantons.
- In Het $/ K 3 \times T^{2}, \mathcal{M}_{H}$ can in principle be computed in the $(0,4)$ SCFT, but this is hard in practice.
- Technical difficulty: \mathcal{M}_{V} is a special Kähler manifold, conveniently described by a holomorphic prepotential. \mathcal{M}_{H} is a quaternionic-Kähler manifold, not even Kähler.

Introduction II

Computing the exact QK metric \mathcal{M}_{H} would have lots of applications:

- New CY topological invariants, higher rank Donaldson-Thomas invariants, NS5-D-brane bound states, ...
- A very useful packaging of black hole degeneracies, keeping track of the dependence on the moduli at infinity.
- New tests of Heterotic-type II duality, new K3 invariants, ...
- Possibly important for model building: the scalar potential in gauged supergravity generally depends on the hypermultiplet metric.

Beyond the QK metric, an infinite series of higher-derivative F-term interactions on \mathcal{M}_{H} awaits to be computed...

Outline

(1) Introduction
(2) The hypermultiplet landscape
(3) Twistor techniques for QK spaces
(4) Instanton corrections to hypermultiplets

Outline

(1) Introduction

(2) The hypermultiplet landscape
(3) Twistor techniques for QK spaces

4 Instanton corrections to hypermultiplets

The hypermultiplet landscape I

Consider type IIA/ $\mathbb{R}^{1,3} \times X$:

$$
\mathcal{M}_{4}=\mathcal{S} \mathcal{K}_{K}(X)_{2 h^{1,1}} \times \mathcal{Q} \mathcal{K}_{C X}(X)_{4\left(h^{1,2}+1\right)}
$$

- $\mathcal{S K}_{K}(X)$ parametrizes the complexified Kähler structure $J \in H^{2}(X, \mathbb{C})$. In the large volume limit, it is determined by the intersection product $C_{a b c}$ and $\chi(X)$. At finite volume it receives worldsheet instanton corrections: genus zero Gromov Witten invariants.
- $\mathcal{Q K}_{c x}(X)$ describes parametrizes the complex structure of X, the Wilson lines of the RR forms on $H_{\text {odd }}(X)$, and the axio-dilaton. It is well understood at zero string coupling, but gets one-loop correction and instanton corrections from D-branes $/ H_{\text {odd }}(X)$ and NS5/ X (see later)

The hypermultiplet landscape II

Consider now type IIA/ $\mathbb{R}^{1,2} \times S^{1} \times X$:

$$
\mathcal{M}_{3}=\mathcal{Q} \mathcal{K}_{K}(X)_{4\left(h^{1,1}+1\right)} \times \mathcal{Q} \mathcal{K}_{c x}(X)_{4\left(h^{1}, 2+1\right)}
$$

- $\mathcal{Q K}_{c x}(X)$ is identical to the HM moduli space in 4 dimensions.
- $\mathcal{Q K}_{K}(X)$ parametrizes, in addition to the complexified Kähler structure J, the Wilson lines of the RR forms on $H_{\text {even }}(X)$, the radius R of the circle and the NUT scalar, dual to the KK gauge field. At $R=\infty$, it is obtained by from $\mathcal{S K}_{K}(X)$ by the c-map,

$$
\tilde{T}_{2 h^{1,1}+3} \rightarrow \mathcal{Q} \mathcal{K}_{K}(X) \rightarrow \mathbb{R}^{+} \times \mathcal{S} \mathcal{K}_{K}(X)
$$

where $\tilde{T}_{2 h^{1,1}+3}$ is a twisted torus, a circle bundle over $T_{2 h^{1,1}+2}$.

The hypermultiplet landscape III

Similarly, consider type IIB/ $\mathbb{R}^{1,3} \times Y$:

$$
\mathcal{M}_{4}=\mathcal{S} \mathcal{K}_{c x}(Y)_{2 h^{1}, 2} \times \widetilde{\mathcal{Q}}_{K}(Y)_{4\left(h^{1,1}+1\right)}
$$

- $\mathcal{S K}_{c x}(Y)$ parametrizes the complex structure of Y, via the periods $X^{\wedge}=\int_{\gamma^{\wedge}} \Omega, F_{\Lambda}=\int_{\gamma_{\Lambda}} \Omega=\partial F / \partial X^{\wedge}$ of the holomorphic 3-form Ω. It has no quantum correction whatsoever.
- $\widetilde{\mathcal{Q K}}_{K}(Y)$ parametrizes the complexified Kähler structure, the Wilson lines of the RR forms on $H_{\text {even }}(Y)$, and the axio-dilaton. It is well understood at zero string coupling, but gets one-loop correction and instanton corrections from D-branes $/ H_{\text {even }}(Y)$ and NS5/ Y (see later).

The hypermultiplet landscape IV

Finally, consider now type IIB/ $\mathbb{R}^{1,2} \times S^{1} \times Y$:

$$
\mathcal{M}_{3}=\widetilde{\mathcal{Q} \mathcal{K}}_{C x}(Y)_{4\left(h^{1,2}+1\right)} \times \widetilde{\mathcal{Q K}}_{K}(Y)_{4\left(h^{1,1}+1\right)}
$$

- $\widetilde{\mathcal{Q K}}_{K}(Y)$ is identical to the HM moduli space in 4 dimensions.
- $\widetilde{\mathcal{Q K}}_{c x}(Y)$ parametrizes, in addition to the complex structure, the Wilson lines of the RR forms on $H_{\text {odd }}(X)$, the radius R of the circle and the NUT scalar, dual to the KK gauge field. At $R=\infty$, it is obtained by from $\mathcal{S} \mathcal{K}_{c x}(Y)$ by the c-map,

$$
\tilde{T}_{2 h^{1,2}+3} \rightarrow \widetilde{\mathcal{Q K}}_{c x}(Y) \rightarrow \mathbb{R}^{+} \times \mathcal{S} \mathcal{K}_{c x}(Y)
$$

where $\tilde{T}_{2 h^{1,2+3}}$ is a twisted torus, a circle bundle over $T_{2 h^{1,2+2}}$.

The hypermultiplet landscape V

Using dualities, we can reduce these 4 QK manifolds to a single one:

- Good old mirror symmetry $(Y=\tilde{X})$: exchanges Kahler and cx structures:

$$
\mathcal{S} \mathcal{K}_{K}(X)=\mathcal{S} \mathcal{K}_{c X}(\tilde{X})
$$

- T-duality on $S^{1}(Y=X)$: exchanges VM and HM , radius and coupling:

$$
\mathcal{Q K}_{K}(X)=\widetilde{\mathcal{Q K}}_{K}(X), \quad \mathcal{Q K}_{c x}(X)=\widetilde{\mathcal{Q K}}_{c x}(X)
$$

- Generalized mirror symmetry:

$$
\mathcal{Q K}_{K}(X)=\mathcal{Q} \mathcal{K}_{c x}(\tilde{X})
$$

- S-duality of type IIB, or lift IIA to M-theory on $X \times T^{2}: S L(2, \mathbb{Z})$ should act isometrically any of these spaces.

The hypermultiplet landscape VI

More slowly:

- T-duality implies that the 4D HM spaces $\mathcal{Q K}{ }_{c x}(X), \widetilde{\mathcal{Q K}}_{K}(Y)$ at $g_{s}=0$ are given by the c-map of $\mathcal{S K}_{c x}(X), \mathcal{S K}_{K}(Y)$.
- The 4D HM spaces are known to have a one-loop correction proportional to χ, inducing a further twist of $\tilde{T}^{2 h+3}$ over the SK base. This predicts a one-loop correction to the 3D VM spaces $\mathcal{Q K}_{K}(X), \widehat{\mathcal{Q}}_{c x}(Y)$, coming from loops of gravitons along S^{1}.

Antoniadis Minasian Theisen Vanhove; Robles-Llana, Saueressig, Vandoren

- Moreover, D-instanton on (resp. NS5-instanton) corrections to $\mathcal{Q K}_{c x}(X)$ must equal contributions from black holes winding around S^{1} (resp. Taub-NUT instantons) to $\widetilde{\mathcal{Q K}}_{c x}(X)$. Thus $\mathcal{Q K}_{c x}(X)$ looks like a very good way to package degeneracies of BPS black holes, keeping track of moduli dependence!

The hypermultiplet landscape VII

To summarize: to a given CY 3 -fold X one may associate two QK spaces:

- $\mathcal{Q} \mathcal{K}_{K}(X)$, describing the complexified Kähler structure of X, together with stable objects in the derived category of coherent sheaves on X, and NS5.
- $\mathcal{Q K}_{c x}(X)$, describing the complex structure of X, together with stable objects in the derived Fukaya category of special Lagrangian submanifolds (SLAG) on X, and NS5.
- Generalized (homological) mirror symmetry identifies $\mathcal{Q} \mathcal{K}_{K}(X)=\mathcal{Q K}_{c x}(\tilde{X})$.
- $S L(2, \mathbb{Z})$ (and, if X is K3 fibered, $S L(3, \mathbb{Z})$ by Het/type II duality) must act isometrically on $\mathcal{K}_{K}(X)$.

Outline

(1) Introduction

(2) The hypermultiplet landscape

(3) Twistor techniques for QK spaces

4 Instanton corrections to hypermultiplets

Twistor techniques for QK spaces I

- Recall that a $4 d$-dimensional manifold \mathcal{M} is QK if its holonomy is $S p(d) \times S p(1) \subset S O(4 d) . \mathcal{M}$ is an Einstein space, in general non Kähler. The relevant spaces for SUGRA have negative curvature.
- QK manifolds \mathcal{M} of dimension $4 d$ are in (local) 1-1 correspondence with HK cones \mathcal{S} of dimension $4 d+4$: HK manifolds with a homothetic vector and a $S U(2)$ isometric action rotating the 3 complex structures.

Swann; De Wit Rocek Vandoren

- By Hitchin's theorem, HK manifolds \mathcal{S} of dimension $4 d+4$ are in $1-1$ correspondence with complex spaces $\mathcal{Z}_{\mathcal{S}}=\mathcal{S} \times \mathbb{C} P^{1}$ equipped with a complex symplectic structure Ω (and some more data).
- The HKC condition restricts $\mathcal{Z}_{\mathcal{S}}$ to have a \mathbb{C}^{*} action under which Ω is homogeneous. The complex symplectic structure Ω descends to a complex contact structure on $\mathcal{Z}=\mathcal{M} \ltimes \mathbb{C} P^{1}=\mathcal{S} / \mathbb{C}^{*}$.

Lebrun Salamon; APSV; Ionas Neitzke

Twistor techniques for QK spaces II

- QK manifolds of dimension 4d are in (local) 1-1 correspondence with complex contact manifolds \mathcal{Z} of dimension $4 d+2 . \mathcal{Z}$ is a $\mathbb{C} P^{1}$ bundle over \mathcal{M}, and carries a (Lorentzian) Kähler-Einstein metric:

$$
d s_{\mathcal{Z}}^{2}=\frac{|D \zeta|^{2}}{(1+\zeta \bar{\zeta})^{2}}+\frac{\nu}{4} \mathrm{~d} s_{\mathcal{M}}^{2}
$$

where

$$
D \zeta \equiv \mathrm{~d} \zeta+p_{+}-\mathrm{i} p_{3} \zeta+p_{-} \zeta^{2}
$$

is the canonical (1,0)-form on \mathcal{Z}, \vec{p} is the $S p(1)=S U(2)$ part of the Levi-Civitta connection on \mathcal{M}, and $\nu \propto R(\mathcal{M})<0$ is a numerical constant.

Lebrun, Salamon

Twistor techniques for QK spaces III

- Locally in a patch U_{i}, one can always find a function $\Phi_{[j]}\left(x^{\mu}, \zeta\right)$, defined up to addition of a holomorphic function, such that

$$
\mathcal{X}^{[]]}=2\left(e^{\Phi_{[]}} D \zeta\right) / \zeta,
$$

is a holomorphic one-form (i.e. $\bar{\partial}$ closed) on \mathcal{Z}, invariant under the real structure

$$
\overline{\tau\left(\mathcal{X}^{[]]}\right)}=-\mathcal{X}^{[\overline{[]}]},
$$

where τ is the antipodal map acting as $\tau: \zeta \rightarrow-1 / \bar{\zeta}$.

- The "contact potential" $\Phi_{[j]}$ yields a Kähler potential for $d s_{\mathcal{Z}}^{2}$:

$$
K_{\mathcal{Z}}^{[1]}=\log \frac{1+\zeta \bar{\zeta}}{|\zeta|}+\operatorname{Re} \Phi_{[\overline{1}}\left(x^{\mu}, \zeta\right) .
$$

APSV

Twistor techniques for QK spaces IV

- Locally on U_{i}, there exist complex Darboux coordinates such that

$$
\mathcal{X}^{[i]}=\mathrm{d} \alpha^{[i]}+\xi_{[i]}^{\wedge} \mathrm{d} \tilde{\xi}_{\Lambda}^{[i]} .
$$

- The global information is provided by complex contact transformations relating Darboux coordinates on $U_{i} \cap U_{j}$. These are generated by holomorphic functions $S^{[i j]}\left(\xi_{[i]}^{\wedge}, \tilde{\xi}_{\Lambda}^{[j]}, \alpha^{[j]}\right)$:

$$
\begin{array}{rlrl}
\xi_{[j]}^{\wedge} & =f_{i j}^{-2} \partial_{\tilde{\xi}_{\Lambda}^{[\lambda}} S^{[i j]}, & \tilde{\xi}_{\Lambda}^{[i]}=\partial_{\xi_{[j]}^{\wedge}} S^{[i j]}, \\
\alpha^{[i]} & =S^{[i j]}-\xi_{[i]}^{\wedge} \partial_{\xi_{[j}^{\wedge}} S^{[i j]}, & & e^{\Phi_{[j]}}=f_{i j}^{2} e^{\Phi_{[j]}},
\end{array}
$$

where $f_{i j}^{2} \equiv \partial_{\alpha[]} S^{[j]}$, in such a way that $\mathcal{X}^{[i]}=f_{i j}^{2} \mathcal{X}^{[j]}$.

- $S^{[j]}$ are subject to consistency conditions $S^{[j i k]}$, gauge equivalence under local contact transformations $S^{[i]}$, and reality constraints.

Twistor techniques for QK spaces V

- For generic choices of $S^{[j]}$, the moduli space of solutions of the above gluing conditions, regular in each patch, is finite dimensional, and equal to (a circle bundle over) \mathcal{M} itself.
- On each patch $U_{i}, u_{m}^{[i]}=\left(\xi_{[i]}^{\wedge}, \tilde{\xi}_{\Lambda}^{[i]}, \alpha^{[i]}\right)$ admit a Taylor expansion in ζ around ζ_{i}, whose coefficients are functions on \mathcal{M}. The functions $u_{m}^{[i]}\left(\zeta, x^{\mu}\right)$ parametrize the "twistor line" over $x^{\mu} \in \mathcal{M}$.
- The metric on \mathcal{M} can be obtained by expanding $\mathcal{X}^{[i]}$ and $\mathrm{d} u_{m}^{[i]}$ around ζ_{i}, extracting the $S U(2)$ connection \vec{p} and a basis of $(1,0)$ forms on \mathcal{M} in almost complex structure $J\left(\zeta_{i}\right)$, and using $\mathrm{d} \vec{p}+\frac{1}{2} \vec{p} \times \vec{p}=\frac{\nu}{2} \vec{\omega}$.
- Deformations of \mathcal{M} correspond to deformations of $S^{[j]}$, so are parametrized by $H^{1}(\mathcal{Z}, \mathcal{O}(2))$.

Lebrun, Salamon

Twistor techniques for QK spaces VI

- Any (infinitesimal) isometry $\kappa_{\mathcal{M}}$ of \mathcal{M} lifts to a holomorphic isometry $\kappa_{\mathcal{Z}}$ of \mathcal{Z}. The moment map construction provides an element of $H^{0}(\mathcal{Z}, \mathcal{O}(2))$, given locally by holomorphic functions

$$
\mu_{[i]}=\kappa \mathcal{Z} \cdot \mathcal{X}^{[]]}=e^{\Phi_{[I]}}\left(\mu_{+} \zeta^{-1}-\mathrm{i} \mu_{3}+\mu_{-} \zeta\right) .
$$

The moment map of the Lie bracket $\left[\kappa_{1}, \kappa_{2}\right]$ is the contact-Poisson bracket of the moment maps.

- Toric QK manifolds are those which admit $d+1$ commuting isometries. In this case, one can choose $\mu_{[]]}$as the position coordinates. The transition functions must then take the form

$$
S^{[j]}=\alpha^{[j]}+\xi_{[1} \tilde{\xi}_{\Lambda}^{[j]}-H^{[i]},
$$

where $H^{[j]}$ depends on $\xi_{[j]}^{\wedge}$ only.

Twistor techniques for QK spaces VII

- More generally, one can consider "nearly toric QK", where $H^{[i]}$ is a general function but its derivatives wrt to $\tilde{\xi}_{\Lambda}^{[]]}, \alpha^{[j]}$ are taken to be infinitesimal.
- The twistor lines can then be obtained by Penrose-type integrals. The formulae are simplest when $\partial_{\alpha[j} H^{[+j]}=0$, and in the absence of "anomalous dimensions", e.g.

$$
\begin{gathered}
\xi_{[j]}^{\wedge}\left(\zeta, x^{\mu}\right)=\zeta^{\wedge}+\frac{Y^{\wedge}}{\zeta}-\zeta \bar{Y}^{\wedge}-\frac{1}{2} \sum_{j} \oint_{C_{j}} \frac{\mathrm{~d} \zeta^{\prime}}{2 \pi \mathrm{i} \zeta^{\prime}} \frac{\zeta^{\prime}+\zeta}{\zeta^{\prime}-\zeta}\left(\partial_{\tilde{z}_{\Lambda}^{[j]}}-\xi_{[i]}^{\wedge} \partial_{\alpha[]}\right) H^{[+} \\
e^{\Phi_{[j]}}=\frac{1}{4} \sum_{j} \oint_{C_{j}} \frac{\mathrm{~d} \zeta^{\prime}}{2 \pi \mathrm{i} \zeta^{\prime}}\left(\zeta^{\prime-1} Y^{\wedge}-\zeta^{\prime} \bar{Y}^{\wedge}\right) \partial_{\xi_{[]]}} H^{[+j]}\left(\xi\left(\zeta^{\prime}\right), \tilde{\xi}\left(\zeta^{\prime}\right)\right)
\end{gathered}
$$

Outline

(1) Introduction

(2) The hypermultiplet landscape

(3) Twistor techniques for QK spaces
(4) Instanton corrections to hypermultiplets

The perturbative hypermultiplet moduli space I

- Consider the HM moduli space $\mathcal{M}=\widetilde{\mathcal{Q K}}_{K}$ in type IIB compactified on Y. Recall that at tree level, $\mathcal{M} \sim \mathrm{c}-\operatorname{map}\left(\mathcal{S} \mathcal{K}_{K}\right)$. The latter is governed by the prepotential $F(X)$, given at large volume by

$$
F\left(X^{\wedge}\right)=-\kappa_{a b c} \frac{X^{a} X^{b} X^{c}}{6 X^{0}}+\frac{\zeta(3)\left(X^{0}\right)^{2}}{2(2 \pi \mathrm{i})^{3}} \chi_{Y}-\frac{\left(X^{0}\right)^{2}}{(2 \pi \mathrm{i})^{3}} \sum_{q_{a}>0} n_{q_{a}}^{(0)} \operatorname{Li}_{3}\left(e^{2 \pi \mathrm{i} q_{\mathrm{a}} \frac{q^{a}}{\chi^{0}}}\right)
$$

- The twistor space of the c-map is governed by

$$
H_{\text {tree }}^{[0+]}=\frac{i}{2} F\left(\xi^{\wedge}\right), \quad H_{\text {tree }}^{[0-]}=\frac{i}{2} \bar{F}\left(\xi^{\wedge}\right)
$$

Roček Vafa Vandoren

- The effect of the one-loop correction is to induce an "anomalous dimension" $c_{\alpha}=\frac{1}{96 \pi} \chi_{Y}$ for the action coordinate α near $\zeta=0$.

The perturbative hypermultiplet moduli space II

- As a result, the twistor lines are given at one loop by

$$
\begin{aligned}
& \xi^{\wedge}=\zeta^{\wedge}+\frac{1}{2} \tau_{2}\left(\zeta^{-1} z^{\wedge}-\zeta \bar{z}^{\wedge}\right) \\
& \rho_{\Lambda}= \tilde{\zeta}_{\Lambda}+\frac{1}{2} \tau_{2}\left(\zeta^{-1} F_{\Lambda}(z)-\zeta \bar{F}_{\Lambda}(\bar{z})\right), \\
& \tilde{\alpha}= \sigma+\frac{1}{2} \tau_{2}\left(\zeta^{-1} W(z)-\zeta \bar{W}(\bar{z})\right)-\frac{i \chi_{Y}}{24 \pi} \log \zeta, \\
& \quad \text { Neitzke BP Vandoren; Alexandrov; APSV } \\
& e^{\Phi}= \frac{\tau_{2}^{2}}{2} V\left(t^{a}\right)-\frac{\chi Y \zeta(3)}{8(2 \pi)^{3}} \tau_{2}^{2}-\frac{\chi Y}{192 \pi} \\
&+ \frac{\tau_{2}^{2}}{4(2 \pi)^{3}} \sum_{q_{a} \gamma^{a} \in H_{2}^{+}(Y)} n_{q_{a}}^{(0)}{\operatorname{Re}\left[\operatorname{Li}_{3}(X)+2 \pi q_{a} t^{a} L_{2}(X)\right]}_{W(z) \equiv} F_{\Lambda}(z) \zeta^{\Lambda}-z^{\wedge} \tilde{\zeta}_{\Lambda}, \quad X=e^{2 \pi \mathrm{i} q_{a} z^{a}}, \quad z^{a}=b^{a}+\mathrm{i} t^{a}, \\
& \rho_{\Lambda} \equiv-2 \tilde{\xi}_{\Lambda}^{[0]}, \quad \tilde{\alpha} \equiv 4 \mathrm{i} \alpha^{[0]}+2 \mathrm{i}_{\Lambda}^{[0]} \xi^{\Lambda},
\end{aligned}
$$

Enforcing S-duality and electric-magnetic duality I

- In the absence of one-loop and worldsheet instanton corrections, \mathcal{M} admits an isometric action of $S L(2, \mathbb{R})$. This can be shown by producing global sections of $H^{0}(\mathcal{Z}, \mathcal{O}(2))$ satisfying the $S L(2, \mathbb{R})$ algebra under (contact) Poisson bracket:

$$
\begin{aligned}
\xi^{0} & \mapsto \frac{a \xi^{0}+b}{c \xi^{0}+d}, \quad \xi^{a} \mapsto \frac{\xi^{a}}{c \xi^{0}+d} \\
\tilde{\xi}_{a} & \mapsto \tilde{\xi}_{a}+\frac{\mathrm{i} c}{4\left(c \xi^{0}+d\right)} \kappa_{a b c} \xi^{b} \xi^{c} \\
\binom{\tilde{\xi}_{0}}{\alpha} & \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{\xi}_{0}}{\alpha}+\frac{\mathrm{i} c \kappa_{a b c} \xi^{a} \xi^{b} \xi^{c}}{12\left(c \xi^{0}+d\right)^{2}}\binom{c\left(c \xi^{0}+d\right)}{-\left[c\left(a \xi^{0}+b\right)+2\right]} .
\end{aligned}
$$

Berkovits Siegel; Robles-Llana Roček Saueressig Theis Vandoren; APSV

Enforcing S-duality and electric-magnetic duality II

- This descends to the standard action of $S L(2, \mathbb{R})$ on \mathcal{M},

$$
\begin{gathered}
\tau \mapsto \frac{a \tau+b}{c \tau+d}, \quad t^{a} \mapsto t^{a}|c \tau+d|, \quad c_{a} \mapsto c_{a}, \\
\binom{c^{a}}{b^{a}} \mapsto\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{c^{a}}{b^{a}}, \quad\binom{c_{0}}{\psi} \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{c_{0}}{\psi}
\end{gathered}
$$

where the type IIB fields $c^{0}, c^{a}, c_{a}, c_{0}, \psi$ are related to the type IIA variables $\zeta^{\wedge}, \tilde{\zeta}_{\Lambda}, \sigma$ by the "generalized mirror map"

$$
\begin{aligned}
\zeta^{0} & =\tau_{1}, \quad \zeta^{a}=-\left(c^{a}-\tau_{1} b^{a}\right) \\
\tilde{\zeta}_{a} & =c_{a}+\frac{1}{2} \kappa_{a b c} b^{b}\left(c^{c}-\tau_{1} b^{c}\right), \quad \tilde{\zeta}_{0}=c_{0}-\frac{1}{6} \kappa_{a b c} b^{a} b^{b}\left(c^{c}-\tau_{1} b^{c}\right) \\
\sigma & =-2\left(\psi+\frac{1}{2} \tau_{1} c_{0}\right)+c_{a}\left(c^{a}-\tau_{1} b^{a}\right)-\frac{1}{6} \kappa_{a b c} b^{a} c^{b}\left(c^{c}-\tau_{1} b^{c}\right)
\end{aligned}
$$

Enforcing S-duality and electric-magnetic duality III

- The contact potential $e^{\Phi}=\frac{\tau_{2}^{2}}{2} V\left(t^{a}\right)$ is not invariant, but transforms so that $K_{\mathcal{Z}}$ undergoes a Kähler transformation,

$$
e^{\Phi} \mapsto \frac{e^{\Phi}}{|c \tau+d|}, \quad K_{\mathcal{Z}} \mapsto K_{\mathcal{Z}}-\log \left(\left|c \xi^{0}+d\right|\right), \quad \mathcal{X}^{[i]} \rightarrow \frac{\mathcal{X}^{[i]}}{c \xi^{0}+d}
$$

- The one-loop term and worldsheet instanton corrections break $S L(2, \mathbb{R})$ continuous S-duality. A discrete subgroup $S L(2, \mathbb{Z})$ can be restored by summing over images:

$$
\operatorname{Li}_{k}\left(e^{2 \pi i q_{a} z^{a}}\right) \rightarrow \sum_{m, n}^{\prime} \frac{\tau_{2}^{k / 2}}{|m \tau+n|^{k}} e^{-S_{m, n}}
$$

where $S_{m, n}=2 \pi q_{a}|m \tau+n| t^{a}-2 \pi \mathrm{i} q_{a}\left(m c^{a}+n b^{a}\right)$ is the action of a (m, n)-string wrapped on $q_{a} \gamma^{a}$.

Enforcing S-duality and electric-magnetic duality IV

- The tree-level $2 \zeta(3) \chi_{Y} / g_{s}^{2}$ and $\zeta(2) \chi_{Y}$ are unified together with D-instantons, while the worldsheet instantons are unified with Euclidean D- string instantons.
- After Poisson resummation on $n \rightarrow q_{0}$, we get a sum over D(-1)-D1 bound states,

$$
\begin{aligned}
& e^{\Phi}=\cdots+\frac{\tau_{2}}{8 \pi^{2}} \sum_{q_{\Lambda}}^{\prime} n_{q_{a}}^{(0)} \sum_{m=1}^{\infty} \frac{\left|k_{\Lambda} z^{\wedge}\right|}{m} \cos \left(2 \pi m q_{\Lambda} \zeta^{\wedge}\right) K_{1}\left(2 \pi m\left|q_{\wedge} z^{\wedge}\right| \tau_{2}\right) \\
& \quad \text { where } z^{0}=1, q_{0} \in \mathbb{Z}, q_{a} \gamma^{a} \in H_{2}^{+}(Y), n_{0}^{(0)}=-\chi_{Y} / 2
\end{aligned}
$$

Enforcing S-duality and electric-magnetic duality V

- From the point of view of type IIA on the mirror CY $X, D(-1)$ and $D 1$ correspond to $D 2$ wrapped on A-cycles in $H_{3}(X, \mathbb{Z})$. B-cycles can be restored by symplectic invariance:

$$
\begin{gathered}
e^{\Phi}=\cdots+\frac{\tau_{2}}{8 \pi^{2}} \sum_{\gamma} n_{\gamma} \sum_{m=1}^{\infty} \frac{\left|W_{\gamma}\right|}{m} \cos \left(2 \pi m \Theta_{\gamma}\right) K_{1}\left(2 \pi m\left|W_{\gamma}\right|\right) \\
W_{\gamma} \equiv \frac{1}{2} \tau_{2}\left(q_{\Lambda} z^{\wedge}-p^{\wedge} F_{\Lambda}\right), \quad \Theta_{\gamma} \equiv q_{\Lambda} \zeta^{\wedge}-p^{\wedge} \tilde{\zeta}_{\Lambda}
\end{gathered}
$$

where n_{γ} are a priori new topological invariants of X. However this result can only hold in the "one instanton" approximation.

- The exponent $\left|W_{\gamma}\right| \pm i \Theta_{\gamma}$ agrees with the classical action of D2-branes wrapped on a SLAG γ, or D5-branes with a coherent sheaf F.

The hypermultiplet twistor space I

- The contact structure on the twistor space can be obtained by inserting an elementary symplectomorphism generated by

$$
S_{\gamma}^{[i j]}\left(\xi_{[j]}^{\Lambda} \tilde{\xi}_{\Lambda}^{[j]}, \alpha^{[j]}\right)=\alpha^{[j]}+\xi_{[i]}^{\wedge} \tilde{\xi}_{\Lambda}^{[j]}+\frac{\mathrm{i}}{2(2 \pi)^{2}} n_{\gamma} \operatorname{Li}_{2}\left(\mathcal{X}_{\gamma}\right) .
$$

Gaiotto Moore Neitzke
across the "BPS ray" $\ell(\gamma)$,

$$
\begin{aligned}
\ell(\gamma) & =\left\{\zeta: \pm W_{\gamma} / \zeta \in \mathrm{i} \mathbb{R}^{-}\right\} \\
\mathcal{X}_{\gamma} & =e^{-2 \pi \mathrm{i}\left(q_{\wedge} \xi_{[1]}^{\hat{n}^{\prime}}+2 \mathrm{i} \wedge^{\wedge} \tilde{\xi}_{\Lambda}^{[J]}\right)}
\end{aligned}
$$

- The BPS rays and the invariants n_{γ} in general depend on the point in $\mathcal{S K}(X)$.

The hypermultiplet twistor space II

- BPS rays $\ell\left(\gamma_{1}\right)$ and $\ell\left(\gamma_{2}\right)$ cross at lines of marginal stability. The wall crossing formula

$$
\prod_{\substack{\gamma=n \gamma_{1}+m \gamma_{2} \\ m>0, n>0}} U_{\gamma}^{n^{-}(\gamma)}=\prod_{\substack{\gamma=n \gamma_{1}+m \gamma_{2} \\ m>0, n>0}} U_{\gamma}^{n^{+}(\gamma)}
$$

ensures that the consistency of the twistor space across the LMS.
Gaiotto Neitzke Moore; Kontsevich Soibelman; Joyce; ...

- The metric is regular across the LMN. Physically, single instanton contributions on one side of the wall get replaced by multiinstanton configurations on the other side.

Counting BH and NS5-branes I

- If indeed $n_{p, q}$ counts the number of BH microstates, the instanton series will be severely divergent. It is conceivable that the finite radius of the circle puts a cut-off on allowed charges, or that only polar states contribute...
- We know of one example where the instanton measure and BPS degeneracy differ: R^{4} couplings in $D=9$ type II string theories. The $\mathrm{D}(-1)$ instanton measure $n(N)$ is given by the $U(N)$ matrix integral, while the index degeneracy $\Omega(N)$ of N D0-branes is given by the Witten index of the $U(N)$ Matrix at zero temperature:

$$
\Omega(N)=1=\left(1+\sum_{d \mid N, d<N} \frac{1}{d^{2}}\right)-\sum_{d \mid N, d<N} \frac{1}{d^{2}}=n(N)+b(N)
$$

The difference $b(N)$ comes from a "bulk contributiontrr,tocter iadere due to flat directions in the potential.

NS5-brane or NUT contributions I

- In contrast to D-instantons, NS5-brane instantons should induce genuine contact transformations, with $S^{[i]]} \propto e^{i k \alpha]} F_{k}(\xi, \tilde{\xi})$. It is not clear a priori what function F_{k} to consider.
- One might hope to determine the NS5 instantons by $S L(2, \mathbb{Z})$ duality from the D5-instantons. This is difficult due to the complicated transformation rule of $\tilde{\xi}_{\Lambda}, \alpha$, and the fact that e^{Φ} becomes ζ-dependent.
- Enforcing a larger duality group, e.g. $S L(3, \mathbb{Z})$ as apparent in the dual heterotic string on $K 3 \times T^{3}$, may allow to shortcut this route and obtain NS5-brane contributions from perturbative corrections.

Halmagyi BP

NS5-brane or NUT contributions II

- When the NS5-brane charge k is non-zero, electric and magnetic translations no longer commute: $\left[p^{\wedge}, q_{\Sigma}\right]=k \delta_{\Sigma}^{\Lambda}$. As a result, the Fourier coefficients become wave functions:

$$
F_{k}(\xi, \tilde{\xi})=\sum_{\Lambda \wedge \in \Gamma_{e} /\left(2|k| \Gamma_{e}\right)} \sum_{n^{\wedge} \in \Gamma_{e}+/^{\wedge}} \Psi^{\wedge}\left(\xi^{\wedge}+n^{\wedge}, k\right) e^{4 \pi \mathrm{i} k n^{\wedge} \tilde{\xi}_{\wedge}}
$$

- To relate ψ on different patches, the contact transformations must be quantized, consistently with wall crossing: the quantum dilogarithm is a natural candidate for this task...
- Does ψ bear any connection to the (generalized) topological amplitude ?

Conclusion I

- Twistors give a powerful parametrization of QK manifolds. Determining the exact twistor space is hard, for lack of a consistent framework for non-perturbative string theory. Recent developments in mathematics are suggestive...
- The exact metric on $\mathcal{Q} \mathcal{K}_{K, c x}(X)$ seems to offer a very convenient packaging of the degeneracies of 4D black holes, although the issue of divergence remains to be understood.
- In some cases with a high degree of symmetry, one may hope that automorphy will fix the hypermultiplet metric exactly.
- One may also consider higher derivative \tilde{F}_{g}-type corrections to the hypers, suggestive of a generalized topological wave function.

