Instanton Corrections and
 Black Holes Partition Functions

Boris Pioline
LPTHE, Université Pierre et Marie Curie, Paris

Edinburgh, June 17, 2008

Introduction

- Explaining the microscopic origin of the thermodynamical properties of black holes is a pass/fail test for any theory of quantum gravity. String theory has passed this test with great success for BPS BH in the strict limit $Q=\infty$. How about $1 / Q^{n}$ corrections, or even $Q=\mathcal{O}(1)$?
- Asking detailed questions of this kind may lead to new connections with advanced mathematics, which will remain even if String Theory was a TOE-bN: enumerative geometry, automorphic forms, number theory,...
- I will argue that precision counting of BPS BH in 4D is closely related to studying instanton corrections to certain couplings in 3D, a problem of physical interest in its own right.

Outline

- Solitons in D dimensions vs instantons in D - 1 $D=3$ gauge theories, D-instantons vs D-branes, ...
- Black holes vs instantons in $D=4, \mathcal{N}=2$ SUGRA GW vs GV vs DT, OSV conjecture, ...
- Instanton corrections to hypermultiplet moduli space Linear perturbations of QK manifolds, Kontsevich Soibelman,. . .

Based on work with Gunaydin, Neitzke, Vandoren, Waldron [hep-th/0512296, 0607227,0701214,0707.0267] and work in progress with Alexandrov, Saueressig, Vandoren.

Solitons vs. instantons

Instanton physics in D-dimensions and soliton spectrum in $D+1$ dimensions are oftentimes related:

- The instantons responsible for confinement of compact QED in $D=2+1$ are obtained by dimensional reduction of the 't Hooft-Polyakov magnetic monopole in $D=3+1$.
- Some aspects of $D=3+1 \mathcal{N}=2$ SYM can be studied by considering its reduction on a circle. This is a non-linear sigma model on a HK space \mathcal{M}_{3}, a torus bundle over the 4D moduli space. Dyons in $D=3+1$ generate instanton corrections to the metric on \mathcal{M}_{3}.

D-branes vs. D-instantons

D-instanton corrections to R^{4} couplings in $D=9$ type II string theories are directly related to the D0-brane spectrum in $D=9+1$ type IIA:

- the Witten index of the $U(N)$ Matrix QM splits into "bulk" and "boundary" contributions,

$$
\left.\operatorname{Tr}(-1)^{F} e^{-\beta H}\right|_{\beta \rightarrow \infty}=\left.\operatorname{Tr}(-1)^{F} e^{-\beta H}\right|_{\beta \rightarrow 0}+\left.\int_{0}^{\infty} d \beta \frac{\partial}{\partial \beta} \operatorname{Tr}(-1)^{F} e^{-\beta H}\right|_{\beta \rightarrow \infty} ^{\text {Yi; Sethi Stern }}
$$

- The "bulk" part is non-zero due to the continuous part of the spectrum. The "boundary" contribution $\beta \rightarrow 0$ reproduces the D-instanton measure, as a consequence of T-duality:

$$
1=\left(1+\sum_{d \mid N, d<N} \frac{1}{d^{2}}\right)-\sum_{d \mid N, d<N} \frac{1}{d^{2}}: \quad \Omega(N) \sim \mu(N)
$$

Black holes vs. world-sheet instantons I

Topological amplitudes $\sum F_{g}(t) R_{+}^{2} F_{+}^{2 g-2}$ in $\mathcal{N}=2 D=4$ SUGRA are determined by the black hole spectrum in $D=5$:

- One-loop contributions of 5D BH in M/CY in a graviphoton background yield all ws instanton contributions in type IIA/CY:

$$
F\left(t^{i}, \lambda\right)-F_{\mathrm{polar}}=\sum_{Q_{i}, d, r, m} n_{Q}^{r} \frac{1}{m}\left(2 \sinh \frac{m \lambda}{2}\right)^{2 r-2} e^{2 \pi i Q_{i} t^{i}}
$$

- the GV invariants n_{Q}^{r} are related to indexed degeneracies of BMPV BHs in 5D, realized as M2-branes wrapping 2-cycles:

$$
\Omega_{5}\left(Q, J_{L}^{3}\right)=(-)^{r+1} \sum_{r}\binom{2 r+2}{r+1+2 J_{L}^{3}} n_{Q}^{r} \quad \sim e^{\sqrt{Q^{3}-\left(J_{L}^{3}\right)^{2}}}
$$

D-dim Black hole entropy and D-dim effective action I

- The Bekenstein-Hawking-Wald formula relates the effective action to the number of BH micro-states (provided the thermo ensemble is correctly identified):

$$
S_{B H W}=2 \pi \int \frac{\partial \mathcal{L}}{\partial R_{\mu \nu \rho \sigma}} \epsilon^{\mu \nu} \epsilon^{\rho \sigma} \sqrt{g} d^{2} \sigma
$$

- For BPS black holes in $\mathcal{N}=2$ SUGRA, in the presence of the infinite set of topological amplitudes $\sum F_{g}(t) R_{+}^{2} F_{+}^{2 g-2}$,

$$
S_{B H W}\left(p^{\prime}, q_{I}\right)=\left\langle\pi \operatorname{Im} F\left(p^{\prime}+i \phi^{\prime}\right)-q_{I} \phi^{\prime}\right\rangle
$$

Cardoso de Wit Mohaupt
suggestive of the OSV conjecture

$$
\Omega\left(p^{\prime}, q_{l}\right)=\int d \phi^{\prime}\left|Z_{\mathrm{top}}\left(p^{\prime}+i \phi^{\prime}\right)\right|^{2} e^{-q_{l} \phi^{\prime}}
$$

D-dim Black hole entropy and D-dim effective action II

- This potentially relates worldsheet instantons in IIA/CY to 4D black hole degeneracies. However $\Omega(p, q)$, while locally constant in t^{i}, jumps at lines of marginal stability. Is there a formula for $\Omega\left(p^{\prime}, q_{l} ; t^{i}\right)$ at any point t^{i} in moduli space ?
- The asymmetric treatment of electric and magnetic charges raises concern about electric-magnetic duality non-manifest.

Cardoso de Wit Mohaupt

- As l'll try to advocate, instanton corrections to certain terms in the 3D effective action may be the right framework to address these issues.

4D BH spectrum and instanton corrections in 3D I

- In $D=4, \mathcal{N}=2$ SUGRA with n_{V} vector multiplets and n_{H} hypers, the moduli space splits into a product of a projective Kähler manifold and a quaternionic-Kähler manifold,

$$
\mathcal{M}_{V}^{\left(2 n_{V}\right)} \times \mathcal{M}_{H}^{\left(4 n_{H}\right)}
$$

- Upon reducing along (Euclideanized) time, \mathcal{M}_{H} goes along for the ride, while \mathcal{M}_{V} is extended to a second QK manifold

$$
\mathcal{M}=\mathbb{R}_{U}^{+} \times \mathcal{M}_{V} \times T_{\zeta^{\prime}, \tilde{\zeta}_{I}}^{2 n_{v}+2} \times S_{\sigma}^{1} \equiv \mathrm{c}-\operatorname{map}\left(\mathcal{M}_{V}\right)
$$

where e^{U} is the radius of the time direction, $\zeta^{\prime}, \tilde{\zeta}_{1}$ are the electric and magnetic Wilson lines, and σ is the NUT scalar, dual to the KK connection. The σ circle is non-trivially fibered over $T^{2 n_{v}+2}$.

4D BH spectrum and instanton corrections in 3D II

- At tree level, the 4D hypermultiplet space \mathcal{M}_{H} is also given by the c-map construction from the v.m. moduli space $\mathcal{M}_{\tilde{V}}$ of the T-dual string theory on the same CY. There is also a one-loop correction $\propto \chi(X)$, and probably no higher order perturbative corrections.

Cecotti Ferrara Girardello; Antoniadis Minasian Theisen Vanhove; Robles-Llana, Saueressig, Vandoren

- The QK metric on \mathcal{M}_{H} receives instanton corrections from from D2-branes wrapped on $\Gamma \in H_{3}(X)$, and from k NS5-branes on X. The contributions of D2-branes wrapped on A-cycles can be computed using type IIB S-duality.

Becker Becker Strominger; Robles Llana Saueressig Vandoren

- Similarly, the QK metric on \mathcal{M} receives instanton corrections from 4D black holes with charge $\Gamma \in H_{\text {even }}(X)$, as well as geometries with non-trivial NUT charge along the time direction.

4D Black holes and BPS geodesics I

- Spherically symmetric, stationary, extremal black holes fall in the ansatz

$$
d s_{4}^{2}=-e^{2 U}(d t+\omega)^{2}+e^{-2 U}\left(d r^{2}+r^{2} d \Omega_{2}^{2}\right)
$$

Eom imply that $U, t^{i}, \bar{t}^{i}, \zeta^{\prime}, \tilde{\zeta}_{I}, \sigma$ as functions of the inverse radial distance $\rho=1 / r$ trace out a null geodesic on \mathcal{M}^{*}, the analytic continuation of \mathcal{M} under $(\zeta, \tilde{\zeta}) \rightarrow(i \zeta, i \tilde{\zeta})$. The electric q_{l}, magnetic p_{l} and NUT charge k correspond to the momenta on $T^{2 n_{v}+2} \times S^{1}$.

- BPS black holes correspond to special geodesic, such that at each point,

$$
\exists \epsilon^{A^{\prime}} / p_{A A^{\prime}} \epsilon^{A^{\prime}}=0 \quad \text { i.e. } \quad \epsilon^{A^{\prime} B^{\prime}} p_{A A^{\prime}} p_{B B^{\prime}}=0
$$

Here $p_{A A^{\prime}}$ is the momentum in the "quaternionic viel-bein" basis, afforded by the restricted holonomy $S U(2) \times U S p\left(2 n_{v}+2\right)$ of \mathcal{M}_{3}.

4D Black holes and BPS geodesics II

- For vanishing k, this reproduces the attractor flow equations

$$
d U / d \rho=-e^{U}|Z|, \quad d t^{i} / d \rho=-2 e^{U} g_{i \bar{j}} \partial_{j}|Z|
$$

where $Z=e^{K / 2}\left(q_{l} X^{\prime}-p^{\prime} F_{l}\right)$ is the central charge.

- The flow eqs can be recast in Hamilton-Jacobi form as

$$
p_{a}=\partial_{\phi^{a}} S, \quad S_{p, q}=e^{U}\left|Z_{p, q}\right|+p^{\prime} \tilde{\zeta}_{l}-q / \zeta^{\prime}
$$

- Semi-classically, the radial wave function for a BPS BH with charges p^{\prime}, q_{l} is therefore $\Psi_{p, q} \sim e^{i S_{p, q}}$. Quantum mechanically, the equations $\left(\epsilon^{A^{\prime} B^{\prime}} \nabla_{A A^{\prime}} \nabla_{B B^{\prime}}+\kappa \Sigma_{A B}\right) \Psi=0$ are solved by

$$
\Psi_{p, q}=e^{-2 U} J_{0}\left(e^{U}\left|Z_{p, q}\right|\right) e^{i\left(p^{\prime} \tilde{\zeta}_{1}-q_{/} \zeta^{\prime}\right)}
$$

BPS instantons and BPS geodesics I

- Similarly, spherically symmetric instantons in D-dim SUGRA are of the form

$$
d s_{D}^{2}=e^{f(r)}\left(d r^{2}+r^{2} d \Omega_{D-1}^{2}\right)
$$

The eom require that $U, t^{i}, \zeta^{\prime}, \tilde{\zeta}_{I}, \sigma$, as a function of r^{α}, trace out a null geodesic in $\mathcal{M}^{* *}$, the analytic continuation $\operatorname{Re}\left(t^{i}\right) \rightarrow i \operatorname{Re}\left(t^{i}\right)$, $\tilde{\zeta}_{I} \rightarrow i \tilde{\zeta}_{I}, \sigma \rightarrow i \sigma$ of \mathcal{M}.

- Supersymmetry requires the same condition as for BPS BH's,

$$
\exists \epsilon^{A^{\prime}} / p_{A A^{\prime}} \epsilon^{A^{\prime}}=0 \quad \text { i.e. } \quad \epsilon^{A^{\prime} B^{\prime}} p_{A A^{\prime}} p_{B B^{\prime}}=0
$$

The hypermultiplets are attracted to fixed values at the waist $r \rightarrow 0$ of the wormhole.

Bernhdt, Gaida, Luest, Mohapatra, Mohaupt; Gutperle Spalinski

BPS instantons and BPS geodesics II

- The classical action of the instanton is therefore an analytic continuation of the WKB phase of the BH radial wave function, e.g. for $k=0$

$$
S_{p, q}=e^{U}\left|Z_{p, q}\right|+i\left(p^{\prime} \tilde{\zeta}_{I}-q_{/} \zeta^{\prime}\right)
$$

The real part agrees with (length of circle) \times (mass of 4D BH). Instantons will contribute like e^{-S}. How about loop corrections in the instanton background?

- If we could identify some coupling in the 3D action governed by the same equation as for the BH wave function, namely $\left(\epsilon^{A^{\prime} B^{\prime}} \nabla_{A A^{\prime}} \nabla_{B B^{\prime}}+\kappa \Sigma_{A B}\right) \Psi=0$, we would be in business !

Instanton corrections to the hypermultiplet metric I

- Instanton corrections to the QK metric can be encoded in a single function χ, the hyperkähler potential on \mathcal{S}, the Swann bundle (or HKC) of \mathcal{M} :

$$
\mathbb{C}^{2} \backslash\{(0,0)\} \rightarrow \mathcal{S} \rightarrow \mathcal{M}
$$

\mathcal{S} is a hyperkähler manifold with an isometric $S U(2)$ action and homothetic Killing vector.

- Perturbations of χ around a given solution precisely satisfy this equation! As shown by Lebrun, deformations of a QK manifold \mathcal{M} are governed by $H 1(Z, \mathcal{O}(2))$, where $Z=\mathcal{S} / / U(1)$ is the twistor space of \mathcal{M} :

$$
\delta \chi=e^{-2 U} \oint \frac{d z}{2 \pi i z} \Phi\left[\xi^{\prime}(z), \tilde{\xi}^{\prime}(z), \alpha(z)\right]
$$

For $\Phi=e^{i\left(p, \xi^{\prime}-\tilde{\xi}, q^{\prime}\right)}$, one recovers the BH wave function!

HK manifolds and symplectomorphisms I

- The HK \mathcal{S} manifold carries an S^{2} worth of complex structures,

$$
J=\frac{\zeta+\bar{\zeta}}{1+\zeta \bar{\zeta}} J^{1}+\frac{i(\zeta-\bar{\zeta})}{1+\zeta \bar{\zeta}} J^{2}+\frac{1-\zeta \bar{\zeta}}{1+\zeta \bar{\zeta}} J^{3}
$$

- With respect to this J,

$$
\Omega=\left(\omega_{1}+i \omega_{2}\right)+\zeta \omega_{3}-\left(\omega_{1}-i \omega_{2}\right) \zeta^{2}
$$

is a holomorphic symplectic form (twisted by $\mathcal{O}(2)$).

- Locally, around $\zeta=\zeta_{i}$, there exist complex Darboux coordinates such that $\Omega=d \nu_{i}^{\prime} \wedge d \mu_{l i}$.

HK manifolds and symplectomorphisms II

- On the overlap of two patches, $\left(\nu_{i}^{\prime}, \mu_{i j}\right)$ and $\left(\nu_{j}^{\prime} \wedge, \mu_{j i}\right)$ must be related by a complex symplectomorphism, generated by some function $S\left(\nu_{i}, \mu_{j}\right)$,

$$
\nu_{j}=\partial_{\mu_{j}} \mathcal{S}\left(\nu_{i}, \mu_{j}\right), \quad \mu_{i}=\partial_{\nu_{i}} S\left(\nu_{i}, \mu_{j}\right) \quad(*)
$$

The HKC property requires that $S\left(\nu_{i}, \mu_{j}\right)$ is homogeneous of degree 1 in ν_{i}^{\prime}, and without explicit dependence on ζ.

- When $\nu_{i}^{\prime}(\zeta), \mu_{l i}(\zeta)$ are constrained to be Taylor series regular at 0 , the space of solutions to (${ }^{*}$) is finite dimensional, and equal to the HK space \mathcal{S} itself. Its Kahler form is obtained by Taylor expanding Ω to first order. The metric on the QK space \mathcal{M} is obtained by the standard superconformal quotient.

$\mathcal{O}(2)$ hyperkähler cones

- For $4 n$-dim HKC with n triholomorphic isometries, the ν^{l} 's can be chosen to be the globally defined $(\mathcal{O}(2)$ twisted) moment maps, so the transition functions take the form

$$
\nu_{j}=\nu_{i}, \quad \mu_{i}=\mu_{j}+\partial_{\nu_{i}} H\left(\nu_{i}\right), \quad S\left(\nu_{i}, \mu_{j}\right)=\nu_{i} \mu_{j}+H\left(\nu_{i}\right)
$$

$H\left(\nu_{l}\right)$ is homogeneous function of degree 1 , known as the "generalized prepotential" .

- the HK metric follows from the tensor Lagrangian

$$
\mathcal{L}\left(v^{L}, \bar{v}^{L}, x^{L}\right)=\oint \frac{d \zeta}{2 \pi i} H\left(\nu^{L}(\zeta)\right), \quad \nu^{L}=v^{L}+x^{L} \zeta^{L}-\bar{v}^{L} \zeta^{2}
$$

by Legendre transform,

$$
\left\langle\chi\left(v^{L}, \bar{v}^{L}, w_{L}+\bar{w}_{L}\right)+x^{L}\left(w_{L}+\bar{w}_{L}\right)\right\rangle=\mathcal{L}\left(v^{L}, \bar{v}^{L}, x^{L}\right)
$$

- For $\mathcal{S}=H K C\left(\mathrm{c}-\operatorname{map}\left(\mathcal{M}_{V}\right)\right), H\left(\nu^{L}\right)=F_{0}\left(\nu^{\prime}\right) / \nu^{\sharp}$

Perturbations around $\mathcal{O}(2)$ spaces

- General deformations of $\mathcal{O}(2)$ spaces can be described by perturbing the complex symplectomorphisms,

$$
S\left(\nu_{i}, \mu_{j}\right)=\nu_{i} \mu_{j}+H\left(\nu_{i}\right)+H^{(1)}\left(\nu_{i}, \mu_{j}\right)
$$

and working out the deformed twistor lines to linear order in $H^{(1)}$.

- After performing the superconformal quotient, one finds that, in accordance with Lebrun's theorem,

$$
\delta \chi=e^{-2 U} \oint \frac{d z}{2 \pi i z} H^{(1)}\left[1, \xi^{\prime}(z), \tilde{\xi}^{\prime}(z), \alpha(z)\right]
$$

Abelian and non-Abelian Fourier coefficients I

- The Fourier expansion of $\delta \chi$ along the twisted torus $T^{2 n_{v}+3}$ is

$$
\delta \chi=\sum_{p, q \in \mathbb{Z}^{2 n v}+2} \chi_{p, q}\left(U, t^{i}, \bar{t}^{i}\right) e^{i\left(q / s^{\prime}-p^{\prime} \tilde{\xi_{i}}\right)}+\sum_{k \in \mathbb{Z} \backslash\{0\}} \chi_{k} e^{i k \sigma}
$$

- The Abelian Fourier coefs $\chi_{p, q}\left(U, t^{i}, \bar{t}^{i}\right)$ are expected to encode (the boundary contribution to) 4D BH indexed degeneracies at given point in \mathcal{M}. If indeed $\chi_{p, q}\left(U, t^{i}, \bar{t}^{i}\right) \sim \Omega(p, q)$, the sum is severely divergent, and needs to be regularized.
- The non-Abelian coefs χ_{k} carry info about non-physical BH with non-trivial NUT charge along time direction. When $k \neq 0, p^{\prime}$ and q_{l} are no longer well-defined! Rather, one should use an appropriate basis of Landau wave functions on $T^{2 n_{v}+2}$ threaded with magnetic field $k d \zeta^{\prime} \wedge d \tilde{\zeta}_{/}$.

Abelian and non-Abelian Fourier coefficients II

- Beyond the linear approximation, one should consider finite symplectomorphisms of the twisted torus $T^{2 n_{v}+3}$. The infinite instanton sum should be replaced by a (non-commutative) product of symplectomorphisms. This seems to be the right physical set-up to make sense of Kontsevich-Soibelman wall crossing formula

$$
\prod_{\left(Z_{p, q}\right) \text { asc. }} T_{p, q}^{\Omega_{+}(p, q)}=\prod_{\arg \left(Z_{p, q}\right) \text { desc. }} T_{p, q}^{\Omega_{-}(p, q)}
$$

If so, this would support $\chi_{p, q} \sim \Omega(p, q)$, and possibly resolve the issue of divergences.

- Eventually, one hopes that modular invariances fixes all Fourier coefficients.

Conclusion

- We have suggested to study 4D BH degeneracies via their contributions to couplings in the 3D effective action. For $\mathcal{N}=2$ BH , this is equivalent to computing instanton corrections to the hypermultiplet metric. Can we go beyond leading order ?
- Just as the vector multiplet branch receives higher-derivative F-term corrections $F\left(\lambda, t^{i}\right)$, the hypermultiplet branch receives higher-derivative corrections $\tilde{F}\left(S, \lambda, t^{i}\right)$, which now depend on the string coupling $S . \Psi_{\text {gen }}=e^{\tilde{F}}$ should be a natural one-parameter generalization of $\Psi_{\text {top }}$. Can it be computed ?
- For $\mathcal{N}=8, \mathcal{N}=4$ (and magic $\mathcal{N}=2$) theories, this suggests that BPS BH degeneracies could be obtained as Fourier coefficients of the 3D duality group $S O\left(8, n_{v}+2\right)$ and $E_{8(8)}$. Relation to DVV-type genus 2 partition functions ?

