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Cosmology is a challenging arena for string theory:

e Observational Cosmology is currently supplying us with abundant high-precision
experimental data, more is to come.

e These results are so far very well accounted by inflationary models, yet the validity of
effective field theory is unclear: large energy densities, transplankian fluctuations, nature
of the inflaton...

e With the expected improved accuracy of cosmological measurements, one may hope that
distinctive features of string theory reveal themselves: exponentially large density of
states, limiting Hagedorn temperature, winding states and other extended states,
fundamental cosmic strings...

Brandenberger Vafa

e Most importantly, inflation does not get rid of the initial singularity. Can string theory evade
the usual divergences of perturbative gravity and “no-bounce theorems” ?

Gasperini Veneziano
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Time dependence in string theory

Not to mention cosmological singularities, attempts to discuss time dependent backgrounds in
string theory immediately face difficulties:

e First-quantized string theory is well suited for particle physics S-matrix computations
around a stable vacuum. In contrast, time dependent backgrounds have no canonical
vacuum state, due to particle/string production. On-shell S-matrix elements should
perhaps be replaced by off-shell transition amplitudes.

e Closed string field theory would seem to be the natural framework to address these
guestions, unfortunately it remains untractable to this day, and possibly may not exist in
principle . To what extent can the first-quantized, on-shell formalism be pushed to describe
particle production and backreaction ?

e Perturbative string theory requires an Euclidean worldsheet, hence Euclidean target
space. Even if a Lorentzian target space may be obtained by analytic continuation,
Lorentzian observables may be quite different from their Euclidean counterparts.
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Cosmological backgrounds in string theory

e Even before quantum (g,) corrections, string theory backgrounds undergo classical (')
corrections. Very few examples of cosmological solutions of tree-level string theory are

known.

Antoniadis Bachas Ellis Nanopoulos, Kounnas Lust, Nappi Witten...

e In this talk, | will discuss an example of a classically exact cosmological background with a
space-like singularity: Misner space, aka the “Lorentzian” orbifold.
Horowitz Steif; Khoury Seiberg Turok Steinhardt

e Our aim will be to understand classical aspects of string propagation in this singular
background, and compute tree-level particle/string production rates. A much more
ambitious task is to incorporate gravitational backreaction, and determine whether or not

the cosmological singularity is resolved.
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Outline of the talk

1. Euclidean and Lorentzian orbifolds, and their avatars

Misner, Taub-NUT, Grant...
2. Untwisted strings in Misner space

Hiscock, Konkowski; Berkooz Craps Kutasov Rajesh, ...
3. Twisted strings in Misner space: first pass

Nekrasov
4. A detour: Open strings in electric fields

Bachas Porrati; Berkooz BP
5. Twisted strings in Misner space: second pass

Berkooz BP Rozali
6. Comments on backreaction from winding strings
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e Well-known examples of orbifolds are the circle, R/Z, and the rotation orbifold R*/Z;.

Dixon Harvey Vafa Witten
e Modular invariance requires that the spectrum should also include closed strings in the

guotient theory which close up to the action of G in the parent theory: twisted states.
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e When G acts non-freely, the twisted sector states are localized at the fixed points. They
yield new localized degrees of freedom, which ensure the consistency of the background:
anomaly free, divergence free, modular invariance...
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Strings on Euclidean orbifolds - twisted sectors (cont.)

o Well-known examples of orbifolds are the circle, R/Z, and the rotation orbifold R*/Z;.

Dixon Harvey Vafa Witten
e Modular invariance requires that the spectrum should also include closed strings in the

guotient theory which close up to the action of G in the parent theory: twisted states.

e Additionally, each twisted sector admits excited levels. The ground state can be thought of
as a Gaussian wave function centered at the origin.

e The condensation of these twisted states changes the vacuum, and effectively resolves
the singularity: R*/Z, — R*/Z,_1 — ... (tachyon), R*/Z; — multi-centered
Eguchi-Hanson (massless mode).

e The Lorentzian orbifold shares features with both examples: an infinite number of winding
sectors, and a, non compact, fixed locus.
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of flat Minkowski space by a discrete boost, also known as Misner space (1967):
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e The future (past) regions X+ X~ > 0 describes a cosmological universe often known as
the Milne universe (1932), linearly expanding away from a Big Bang singularity (or
contracting into a Big Crunch singularity):

ds® = —dT? + B*°T?d6” + (dX")?, 0=6+2r, X =Te""/V2

This is a Kasner-type singularity with zero curvature except at 7' = 0.
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The Lorentzian orbifold

e One of the (superficially) simplest examples of space-like singularities is the quotient of flat
Minkowski space by a discrete boost, also known as Misner space (1967):

ds® = —2dXTdX +(dX")*

Big Crunch

e In addition, the spacelike regions XX~ < 0 describe two Rindler wedges with compact
time, often known as whiskers, leading to closed time-like curves:

ds®> = dr® — 8*r’dn® + (dX)° ,n=n+2r, X =+re?/V2

e Finally, the lightcone XX~ = 0 gives rise to a null, non-Hausdorff locus attached to the
singularity.
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+2 1 ]2
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ds® = 4l°U (t)os+4losdt+(t*+1%) (o7 +03), U(t) = —1+

A bouncing universe, isomorphic to R /boost x S* around each
singularity.

e A close variant of Misner space is the quotient of flat space by the combination of a
discrete boost and a translation on an extra direction, often known as the Grant space:

ds’ = —2dXTdX ™ +dX*>+ (dX")?, (X5, X)~ (e X X + 27R)

This describes the space away from two moving cosmic strings. The cosmological
singularity is smoothed out, but regions with CTC remain.

Gott 91, Grant 93; Cornalba, Costa, Kounnas
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Close relatives of the Misner Universe

e Misner space was first introduced as a local model of Lorentzian Taub-NUT space:

o2mt + 12

ds’ = AU (t)os+4losdt+(E+1) (o1 405) . U(t) = —1+—5—

A bouncing universe, isomorphic to R /boost x S* around each
singularity.

e A close variant of Misner space is the quotient of flat space by the combination of a
discrete boost and a translation on an extra direction, often known as the Grant space:

ds’ = —2dXTdX ™ +dX*>+ (dX")?, (X5, X)~ (e X X + 27R)

This describes the space away from two moving cosmic strings. The cosmological
singularity is smoothed out, but regions with CTC remain.

Gott 91, Grant 93; Cornalba, Costa, Kounnas

e The Misner geometry arose again more recently as the M-theory lift of a simple (ekpyrotic)
cosmological solution of Einstein-dilaton gravity with no potential.

Khoury Ovrut Seiberg Steinhard Turok
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Close relatives of the Misner Universe (cont)

e The gauged WZW model SI(2) x SI(2)/U(1) x U(1) describes
a bouncing 4-dimensional Universe, with singularities analogous to
the Lorentzian orbifold.

Nappi Witten; Elitzur Giveon Kutasov Rabinovici
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Close relatives of the Misner Universe (cont)

e The gauged WZW model SI(2) x SI(2)/U(1) x U(1) describes
a bouncing 4-dimensional Universe, with singularities analogous to
the Lorentzian orbifold.

Nappi Witten; Elitzur Giveon Kutasov Rabinovici

e The gauged WZW model Si(2)/U (1) at negative level
orbifolded by a boost J describes two parallel Universes .
with a curvature and a Milne singularity, and compact ( O : >
whiskers. “

Tseytlin Vafa; Craps Kutasov Rajesh; Craps Ovrut O >
A"

e The Lorentzian orientifold TIB/[(—)*boost]/[Q(—)*L] was also recently argued to
describe orientifolds of non-supersymmetric strings with non-vanishing Neveu-Schwarz
tadpoles.

Dudas Mourad Timirgaziu
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Classical particles in the Misner Universe

e Classical particles propagate along straight lines on the covering space:

X+ = ac(jf + piT
2p’p” = M°
j = pwy —p xg

e As the particle approaches the singularity from the past, it starts spinning faster and faster,
0 ~ log |T|, implying large gravitational backreaction.

e In the Rindler wedges, the particle winds infinitely many times around the time direction: at

any fixed Rindler time, there is an infinity of copies of the particle, each with energy j: the
total Rindler energy is infinite.
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Quantum particles in the Misner Universe

e Quantum mechanically, the radial motion, for fixed boost momentum 7, is governed by a
Liouville-type potential:

;87,7“87«4—‘;—2 = MQ, r=c¢e’, V(y):—]2—‘,—M262y:
1 j2 2 x .2 2 2x
_?8T8T_ﬁ = M~ T =¢€", V(i) =—j3"—M"e" =0

The singularity is at infinite distance in the canonically normalized x or y coordinate.

e Wave functions of boost momentum ;5 and spin s can be expressed as superpositions of
plane waves on the covering space (s =spin)

fj,M2,3<x+a CC_) — / dv exp <’I:k+X_€_27TﬁU -+ ik_X+€27TBv + ’I,kZXZ -+ ’L’Uj + ’US)

— 0

e They can be defined globally by continuing across the horizons. The in and out states
defined at T' = —oo and T' = +-oco are identical, hence no overall particle production.
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Tree-level scattering of untwisted states

e As in standard orbifold constructions, part of the spectrum consists of closed strings of the
parent theory, invariant under the orbifold projection. These topologically trivial states
behave at low energy just like ordinary point particles.

e Tree-level scattering amplitudes of untwisted sector states can be computed from those in
flat space by the inheritance principle,

<V(j1’ kl) T V(]”? k:n)>Misner — / dvi...dv, ei(j1U1+---+jnvn)

<V(€Bvlki, e_ﬁvlkl_, ki) c e V(eﬁvnk:, e_ﬁvnk_, k':l)>Mz'nkowski

n

14
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e As in standard orbifold constructions, part of the spectrum consists of closed strings of the
parent theory, invariant under the orbifold projection. These topologically trivial states
behave at low energy just like ordinary point particles.

e Tree-level scattering amplitudes of untwisted sector states can be computed from those in
flat space by the inheritance principle,

<V(~j1’ kl) T V(]”? k:n)>Misner — / dvi...dv, ei(j1U1+---+jnvn)

<V(€Bvlki, e_ﬁvlkl_, ki) c e V(eﬁvnk:, e_ﬁvnk_, k':l)>Mz'nkowski

n

e String amplitudes are suppressed in the high energy regime (fixed s/t, s/u). However, in
the deep inelastic regime, (s — oo, t fixed), they exhibit Regge behavior A ~ s, as if
strings acquired a size v/In s:

172 N2 . .
langleV (ji, k1) - .. V (G, ka)) atisner o / do o3I +ilia=i)

which diverges if (k} — k%) < 2, as a result of large graviton exchange near the
cosmological singularity.

Berkooz Craps Rajesh Kutasov
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Quantum fluctuations in field theory

e In the Minkowski vacuum (inherited from the covering space), the renormalized propagator
can be obtained as a sum over images,

G(z; ) = Z#/ dT/dp

/
exp (—ip_(:n+ — ¥l —ipT (e — ¥ ) —ip'(a’ — ))
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e The one-loop stress-energy tensor follows from the propagator at coinciding points
G(x, x), e.g for a free scalar field in 4D,

(Tp) = lim [(1 — 26)V,V) — 26V, V) + (26 — %)gabvcv'C] G(z, )
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Quantum fluctuations in field theory

e In the Minkowski vacuum (inherited from the covering space), the renormalized propagator
can be obtained as a sum over images,

G(z; ) = Z#/ dT/dp

/
exp (—ip_(:n+ — ¥l —ipT (e — ¥ ) —ip'(a’ — ))

e The one-loop stress-energy tensor follows from the propagator at coinciding points
G(x, x), e.g for a free scalar field in 4D,

(Tp) = lim [(1 — 26)V,V) — 26V, V) + (26 — %)gabvcv'C] G(z, )

LIZ'—>.'B

This leads to a divergent quantum backreaction (worse if the spin |s| > 1):

2 + cosh 27wl
[cosh 273 — 1]2

(T,) = ,—3,1,1), K = Z cosh(2m(3ls)

1272

Hiscock Konkowski 82
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One-loop vacuum amplitude in field and string theory

e On the other hand, in string theory (T}7) (z) is an off-shell quantity, and only its integral
over space-time is well defined:

2
> dp e P

dedz” G(x, x) = io
pP/2sinh? (7 f51)

l=—0o0
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One-loop vacuum amplitude in field and string theory

e On the other hand, in string theory (T}7) (z) is an off-shell quantity, and only its integral
over space-time is well defined:

2
> dp e P

dedz” G(x, x) = io
pP/2sinh? (7 f51)

l=—0o0

e As usual, the ultraviolet divergence at p — 0 is regularlzed in string theory by modular

invariance:
dpdp e
Abos _/ Z 22 5,)13 .21 - < 9) |12
Fra— o 27202) 2 02 (p) 0.(iB(1 4+ wp); p)|

—27T62w2p2

91(7) ,0) - 2q Sln T H (1 . 27rw n)(l —q )(1 . e—27mv n) g = e27rip

Nekrasov; Cornalba Costa; Berkooz BP Rozali
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One-loop vacuum amplitude in field and string theory

e On the other hand, in string theory (T}7) (z) is an off-shell quantity, and only its integral
over space-time is well defined:

+00 m?

> dp e P

dztdz~ G T, Tr) = /
/ ( )= Z_Z:oo pP/2sinh? (7 51)
e As usual, the ultraviolet divergence at p — 0 is regularized in string theory by modular
invariance: 5 o
bos —
F iz o (2m202)"% |21 (p) 61(iB(L + wp); p) |’

91(’1} p) — 2q Sln TV H (1 _ 271'7,1) n)(l _ q )(1 . 6—27'('21) n) q — 627Tip

Nekrasov; Cornalba Costa; Berkooz BP Rozali

e The existence of Regge trajectories with arbitrary high spin implies new (log) divergences
in the bulk of the moduli space which resemble long string poles in AdSs.

16



DURHAM UNIVERSITY - NOVEMBER 12, 2004

Closed string in Misner space - twisted sectors

e In addition, there is an infinite set of twisted sectors, corresponding to strings on the
covering space that close up to the action of the orbifold group:

XF(o+2m,7) =X (0,7), v=2mwl
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e In addition, there is an infinite set of twisted sectors, corresponding to strings on the
covering space that close up to the action of the orbifold group:
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Closed string in Misner space - twisted sectors

e In addition, there is an infinite set of twisted sectors, corresponding to strings on the
covering space that close up to the action of the orbifold group:

XF(o+2m,7) =X (0,7), v=2mwl
e They have a normal mode expansion:

Xi _ % Z (n i iy)—lai: e—i(n:}:iu)(T—a) + % Z (n == ’I:l/)_l(‘i{i: e—i(nqiiu)(T—Fa)

n=—oo n=—oo

with canonical commutation relations

rtuo‘a:] = —(m+w)émin [64:;, & ] = —(m — iv)dmin
+

+ + ~
(am>* — O4—Tn ? (

e’
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Closed string in Misner space - twisted sectors

e In addition, there is an infinite set of twisted sectors, corresponding to strings on the
covering space that close up to the action of the orbifold group:

XF(o+2m,7) =X (0,7), v=2mwl
e They have a normal mode expansion:
Z (n i ’LI/) Q& —z(n:i:u/)(T o) _|_ Z (n == ’LI/) Q& e—’L(?’L:FZV)(T+O')

with canonical commutation relations

ol a ] = —(m+iv)bmin , [&,a]=—(m —iv)dmin
()" =02, (&) =aZ,

e We will focus on the guasi zero-mode sector, which consists of two commuting pairs of real
(i.e. hermitian) canonically conjugate operators,

[O‘E)'_?Oé(;]:_iya [aO’aa]:iV
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Physical states (absence thereof)

e A natural way to quantize the system is to represent the oscillators on a Fock space with

vacuum |0) annihilated by half of them, say o=, , &oy,  og » &F
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Physical states (absence thereof)

e A natural way to quantize the system is to represent the oscillators on a Fock space with
vacuum |0) annihilated by half of them, say o=, , &oy,  og » &F
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Physical states (absence thereof)

e A natural way to quantize the system is to represent the oscillators on a Fock space with

vacuum |0) annihilated by half of them, say o=, , &oy,  og » &F

e The worldsheet Hamiltonian, normal-ordered wrt to this vacuum, reads

_ Z (a:)*an Z (o, )" a — —’LV(]. —iv) — 1+ Ly
n=0

n=1

e The vacuum energy agrees with that of the Euclidean rotation orbifold, 26(1 — ) after
analytically continuing 6 — v.

e All states in the Fock space have imaginary energy, hence none satisfy the Virasoro
condition Ly = Ly = 0: There are no physical states in the twisted sectors !

e This conclusion is consistent with the one-loop amplitude in the twisted sectors:

i z(n—l—%)ﬁw
2 s1nh(6w,0)

n=1

However, this scheme overlooks the fact that of and « are self-hermitian !
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A detour via Open strings in electric field

e A very similar puzzle is faced in the case of colliding D-branes, or in the T-dual process of
charged open strings in a constant electric field:
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A detour via Open strings in electric field

e A very similar puzzle is faced in the case of colliding D-branes, or in the T-dual process of
charged open strings in a constant electric field:

%WWW\/\T AAVAVAYAYAVAVAVA
E E¢§ i/f

e Open strings stretched between two D-branes with electric fields Ey and E; have a
spectrum

Wp =N + v, v := Arctanhm E; — Arctanhm E

e This reproduces (one half of) the spectrum of Closed strings in Misner space upon
identifying v = w(3. The large winding number limit w — oo amounts to a near critical
electric field E — 1/m.

e In particular, the open string zero-modes describe the motion of a charged particle in an
electric field, and have a structure isomorphic to the closed string case.

19
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Charged particle and open string zero-modes

e Recall the first quantized charged particle in an electric field:

v

L= %m (—28TX+8TX_ + (aTX")2) 3 (X*@TX— - X_8TX+)
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Charged particle and open string zero-modes

Recall the first quantized charged particle in an electric field:
1 .
L= m (—28TX+8TX_ n (8TXZ)2) n % (X+8TX_ - X_8TX+)

Classical trajectories are hyperbolas centered at an

arbitrary point,
+ 1 :I: j:l/T \
X = :130 :I: \
Pt = iuaza—L is the conserved linear momentum, and /
a; the velocity.

Canonical quantization imply the open string zero-mode commutation relations
_ _ 1
lag,a5] = —iv, [zg,x5]=——, Lo= —aga, —|———|—eXCIted
1%

Upon quantizing a(jf as creation/annihilation operators in a Fock space, electrons and
positrons would have no physical state...
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Charged particle and Klein-Gordon equation

e Quantum mechanically, one represents the canonical momenta as derivatives,

= = i9/0z7T, hence a7, xF as covariant derivatives

v 1 v
a,(:)t = 10+ £ g , a:f)t = F— | 10 F g
2 1 2

acting on wave functions f(z*, 7).
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Charged particle and Klein-Gordon equation

e Quantum mechanically, one represents the canonical momenta as derivatives,

= = i9/0z7T, hence a7, xF as covariant derivatives

v 1 v
a,(:)t = 10+ £ g , a:f)t = F— | 10 F g
2 1 2

acting on wave functions f(z*, 7).
e This satisfies the right hermiticity properties under the inner product

(flg) = / detde £z, 27) gz, @)

e The zero-mode piece of L, including the bothersome %

) 1
LY = —afa; + % = —~(V'V 4V V)
IS just the Klein-Gordon operator of a particle of charge v, and has well-behaved

eigenmodes Ly = —m? for any m? > 0.
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Klein-Gordon and the inverted harmonic oscillator

e Defining a§ = (P + Q)/+/2, the Klein-Gordon operator can be rewritten as an inverted
harmonic oscillator:

M2:_%(P2_Q2)a [PaQ]:Z

e The latter admits a respectable delta-normalizable spectrum of scattering states, in terms
of parabolic cylinder functions.
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of parabolic cylinder functions.
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Klein-Gordon and the inverted harmonic oscillator

e Defining af{ = (P + Q)/+/2, the Klein-Gordon operator can be rewritten as an inverted
harmonic oscillator:

M2:_%(P2_Q2)a [PaQ]:Z

e The latter admits a respectable delta-normalizable spectrum of scattering states, in terms
of parabolic cylinder functions.

e These correspond to non-compact trajectories of charged
particles in the electric field. Tunnelling is just (stimulated)
Schwinger pair creation,

e_—>(1—|—77)e_—|—77<ﬂfL

. . 2
e The tunneling rate can be computed semiclassically, n ~ exp (—2 $ PdQ) — M7 /v
which reproduces the Schwinger pair creation rate.

Brezin Itzykson; Brout Massar Parentani Spindel
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L orentzian vs Euclidean states

e The Wick rotation X° — —i X" v — iv turns the electric field (Schwinger) problem in
RY! into the magnetic field (Landau) problem in R>.
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e The real discrete normalizable spectrum of the Landau problem rotates to a with discrete
spectrum with imaginary energy in the Schwinger problem.

e The correct Lorentzian spectrum of the electric problem consists of a continuous
delta-normalizable spectrum with real mass squared.

e The zero-mode contribution to the one-loop amplitude can be interpreted either way,

2
o Z —z(n—l— \1%3 _ / dMQp(MQ)e—M t/2

21 sm(yt/2) —

The density of states is semi-classically from the reflection phase,

2
(M?) = 11 AL d ( t i )
PR = OB T i OB (1 - i2)
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Lorentzian vs Euclidean states

e The Wick rotation X° — —i X" v — iv turns the electric field (Schwinger) problem in
RY! into the magnetic field (Landau) problem in R>.

e The real discrete normalizable spectrum of the Landau problem rotates to a with discrete
spectrum with imaginary energy in the Schwinger problem.

e The correct Lorentzian spectrum of the electric problem consists of a continuous
delta-normalizable spectrum with real mass squared.

e The zero-mode contribution to the one-loop amplitude can be interpreted either way,

2
_ 3 it / dAM p(M2)e M2

21 sm(yt/2) —

The density of states is semi-classically from the reflection phase,

9
(M%) = Llogn — ¢ £(2+ i)
p T 08 2me dM? Ogr(l_iM_2>
2 2v

e The physical spectrum of the charged open string can be explicitely worked out, and is
free of ghosts: a tachyon at level O, a transverse gauge boson at level 1, ...
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Charged particle in Rindler space

e For applications to the Milne universe, one should diagonalize the boost momentum J, ie
consider an accelerated observer.

Gabriel Spindel; Mottola Cooper
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Charged particle in Rindler space

e For applications to the Milne universe, one should diagonalize the boost momentum J, ie

consider an accelerated observer.
Gabriel Spindel; Mottola Cooper

e In the Rindler patch R, letting f(r,n) =
e f;(r)and r = €Y, one gets a Schrodinger
equation for a particle in a potential

1
V(y) = M? = (j + Jv ™)’
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e If 5 < 0, the electron and positron branches
are in the same Rindler quadrant. Tunneling
corresponds to Schwinger particle production.
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e In the Rindler patch R, letting f(r,n) =
e f;(r)and r = €Y, one gets a Schrodinger
equation for a particle in a potential

1
V(y) = M? = (j + Jv ™)’

e If 5 < 0, the electron and positron branches
are in the same Rindler quadrant. Tunneling
corresponds to Schwinger particle production.

o If0 < j < M?/(2v), the two electron branches
are in the same Rindler quadrant. Tunneling
corresponds to Hawking radiation.
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Charged particle in Rindler space

e For applications to the Milne universe, one should diagonalize the boost momentum J, ie
consider an accelerated observer.

Gabriel Spindel; Mottola Cooper

e In the Rindler patch R, letting f(r,n) =
e f;(r)and r = €Y, one gets a Schrodinger
equation for a particle in a potential

1
Vy) = M? = (j + Sv ™)’

e If 5 < 0, the electron and positron branches
are in the same Rindler quadrant. Tunneling
corresponds to Schwinger particle production.

o If0 < j < M?/(2v), the two electron branches
are in the same Rindler quadrant. Tunneling
corresponds to Hawking radiation.

o If 5 > M?/(2v), the electron branches cross
the horizons. regions. There is no tunneling,
but partial reflection amounts to a combination
of Schwinger and Hawking emission.

24



DURHAM UNIVERSITY - NOVEMBER 12, 2004

Rindler modes

e Incoming modes from Rindler infinity I, read, in terms of parabolic cylinder functions:

R 2
Ving=¢€¢ T M_i(l_mQ) 5 (tvr™/2)
272w )T

Incoming modes from the Rindler horizon H, read

Z/{Z-jn,R = e_ij"r_lwi(i_m_g) ﬂ(—iurz/Z)

da —G T4y +93

| +1
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Rindler modes

e Incoming modes from Rindler infinity I, read, in terms of parabolic cylinder functions:

R 2
Ving=¢€¢ T M_i(i_mQ) 5 (tvr™/2)
272w )T

Incoming modes from the Rindler horizon H, read

Z/{Z-jn,R = e_ij"r_lwi(l_m_g) ﬁ(—iurz/Z)

da —G T4y +93
Fl +1

e The reflection coefficients can be computed (g1 = 1 — g2, g3 = q4 + 1):

Q2 =€ 2 , Qe =€ 2V : :
cosh [71' ( ) — M—QH | sinh 77|

2
2 |sinhg] spzeosh [ (7= 47)




DURHAM UNIVERSITY - NOVEMBER 12, 2004 26

Global Charged Unruh Modes

e Global modes may be defined by patching together Rindler modes, ie by analytic
continuation across the horizons. Unruh modes are those which are superposition of
positive energy Minkowski modes,

Qo = Vip=CwX XOXY/XTW_ ey
o)y
wgn,— = uq;]ﬁ,P — (iVX+X_)[X+/X_]_ij/2M-(J m2) ij
9722
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’ ’ —ig=2u )%
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Global Charged Unruh Modes

e Global modes may be defined by patching together Rindler modes, ie by analytic
continuation across the horizons. Unruh modes are those which are superposition of
positive energy Minkowski modes,

Qo = Vip=(CwX XOXYXTVW_ e,
o)y
wgn,— = uq;]ﬁ,P — (iVX+X_)[X+/X_]_ij/2M-(J m2) ij
9722

e Any state in Minkowski space can be represented as a state in the tensor product of the
Hilbert spaces of the left and right Rindler patches.
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Closed string zero-modes

e Let us reanalyze the classical solutions for the closed string zero modes

+ I 4 4 I 4 + o~
X (r,0) =e™° :|:2—oaO e I 5, %0 e, ap,a; €R
% %
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e Let us reanalyze the classical solutions for the closed string zero modes

n I 4L 4 I 4 L 4
X*(r,0) =" | £—age™" F 55,30 e, ay,a; €R
14 1%

e The Milne time, or Rindler radius, is independent of o

2~v4+~xn— .+ ~— 2uT — ~+ —2vuT + -
v X' X =aqajqye + ayape — a5y — Oy QO

We may thus follow the motion of a single point o = o and obtain the rest of the
worldsheet by smearing under the action of the boost.
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n I 4L 4 I 4 L 4
X (r,0) =e™° :|:2—040 e I 5, %0 e, ap,a; €R
1% 1%

e The Milne time, or Rindler radius, is independent of o
R +~— 2 — 4 -2 + -
A~ X" X :agaoew—l—aoaoe W—ozoozo—ozoozo

We may thus follow the motion of a single point o = o and obtain the rest of the
worldsheet by smearing under the action of the boost.

e Up to a shift of = and o, the physical state conditions require
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_ _ ~t+ _ ox— = 2 ~2 :
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Closed string zero-modes

e Let us reanalyze the classical solutions for the closed string zero modes

+ I 4 4 I 4 + o~
X (r,0)=e™"7 | £—aye™" F 5, %0 e, ap,a; €R
% %

e The Milne time, or Rindler radius, is independent of o
R +~— 2 — 4 -2 + =t
A~ X" X :ozooaoew—l—ozoaoe W—ozoozo—ozoozo

We may thus follow the motion of a single point o = o and obtain the rest of the
worldsheet by smearing under the action of the boost.

e Up to a shift of = and o, the physical state conditions require

+_ - M
V2

_ _ ~t+ _ ox— = 2 ~2 :

alE

e The behavior at early/late proper time now depends on eé: For ee = 1, the string
begins/ends in the Milne regions. For ee = —1, the string begins/ends in the Rindler
regions.
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Short and long strings

Choosing 5 = 0 for simplicity, we have two very different types of solutions:

Xi(a, T) =

sinh(vt)e™’, T = —sinh(vr), 0 =vo
v

V2

IS a short string winding around the Milne circle from T = —oco t0 T' = +o0.
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Short and long strings

Choosing 5 = 0 for simplicity, we have two very different types of solutions:

X*(o,7) = sinh(v7)e™’, T = —sinh(v7), 6 =vo
v

v/2

IS a short string winding around the Milne circle from T = —oco t0 T' = +o0.

e = —1, € = —1 isjust the time reversal of this process.
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Short and long strings

Choosing 5 = 0 for simplicity, we have two very different types of solutions:

e c—=1,e =1:

M
X* o, T) = sinh(vr eiw, T = —sinh(v7r), 60 =vo
(0,7) = —=sinh(v7) — sinh(v7)
IS a short string winding around the Milne circle from T = —oco t0 T' = +o0.
e = —1, € = —1 isjust the time reversal of this process.

e c—=1,e = —1:

cosh(vr)e™’, r=—cosh(vr), n=vo
v

M
X5 (o, 7) = +
(o, T) 5

is a long string stretched in the right Rindler patch, from r = co to r = M /v and back to

r = 00, o IS now the proper time direction in the induced metric.
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Short and long strings

Choosing 5 = 0 for simplicity, we have two very different types of solutions:

X* o, T) = sinh(vr eiw, T = —sinh(v7r), 60 =vo
(0,7) = —=sinh(v7) — sinh(v7)
IS a short string winding around the Milne circle from T = —oco t0 T' = +o0.
e = —1, € = —1 isjust the time reversal of this process.
e c—=1,e = —1:

cosh(vr)e™’, r=—cosh(vr), n=vo
v

M
X5 (o, 7) = +
(o, T) 5

is a long string stretched in the right Rindler patch, from r = co to r = M /v and back to

r = 00, o IS now the proper time direction in the induced metric.

e = —1, € = 1 is the analogue in the left Rindler patch.
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From open to closed strings

e Instead of following the motion of a point at fixed o, one may consider instead a point at
fixed o 4+ 7: this is precisely the trajectory of the open string zero-mode. The rest of the
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From open to closed strings

e Instead of following the motion of a point at fixed o, one may consider instead a point at
fixed o 4+ 7: this is precisely the trajectory of the open string zero-mode. The rest of the
worldsheet follows by smearing under the action of the boost:

31
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Spontaneous production of winding strings

e In the charged particle problem, tunneling under the barrier corresponds to induced pair
production. It can be described semi-classically by evolving in imaginary proper time, or
equivalently in a magnetic field.
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Spontaneous production of winding strings

e In the charged particle problem, tunneling under the barrier corresponds to induced pair
production. It can be described semi-classically by evolving in imaginary proper time, or
equivalently in a magnetic field.

e Spontaneous pair production on the other hand involves no incoming state. It can be
described semi-classically by cutting open an Euclidean periodic trajectory at the turning
point, and evolving in real time henceforth.

e Similarly, in the closed string problem, tunneling under the barrier corresponds to induced
pair production of winding strings.

e Spontaneous pair production of winding strings can be described by cutting open a
periodic trajectory, either in imaginary proper time, or in the Euclidean rotation orbifold:
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A word on Quantization in the Rindler patch

e For long strings in conformal gauge, the worldsheet coordinate 7 is spacelike wrt to the
induced metric. For short strings, the induced metric undergoes a signature flip as it
wanders in the Rindler patch.
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A word on Quantization in the Rindler patch

e For long strings in conformal gauge, the worldsheet coordinate 7 is spacelike wrt to the
induced metric. For short strings, the induced metric undergoes a signature flip as it

wanders in the Rindler patch.

e If so we should quantize the string with respect to the “time” coordinate o rather than .

The Rindler energy is given by the canonical generator associated to boosts,

— 0

W= — /OO dr (X+8UX_ - X‘&,X*) — /OO dr r28,n

— 0

It has nothing to do with 7, rather it is proportional to the winding w.
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induced metric. For short strings, the induced metric undergoes a signature flip as it
wanders in the Rindler patch.

e If so we should quantize the string with respect to the “time” coordinate o rather than .
The Rindler energy is given by the canonical generator associated to boosts,

W= — /OO dr (X+8UX_ - X‘&,X*) — /OO dr r28,n

— 0 — 0

It has nothing to do with 7, rather it is proportional to the winding w.

e The total Rindler energy of a long string is infinite, due to its extension towards » — oo.
The energy density by unit of radial distance

4v*r?sgn (v)

w(r) =

(M2 4+ B2 — 42r2)2 — apg20p2

diverges at the turning point, nonetheless it is integrable.
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A word on Quantization in the Rindler patch

e For long strings in conformal gauge, the worldsheet coordinate 7 is spacelike wrt to the
induced metric. For short strings, the induced metric undergoes a signature flip as it
wanders in the Rindler patch.

e If so we should quantize the string with respect to the “time” coordinate o rather than .
The Rindler energy is given by the canonical generator associated to boosts,

W= — /OO dr (X+8UX_ - X‘&,X*) — /OO dr r28,n

— 0 — 0

It has nothing to do with 7, rather it is proportional to the winding w.

e The total Rindler energy of a long string is infinite, due to its extension towards » — oo.
The energy density by unit of radial distance

4v*r?sgn (v)

w(r) =

(M2 4+ B2 — 42r2)2 — apg20p2

diverges at the turning point, nonetheless it is integrable.

e The spectrum is thus unbounded from below (and above). However, the periodicity of time
may render this issue moot.
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Effective gravity analysis

e Once produced, winding strings have an energy proportional to the radius, akin to a
two-dimensional positive cosmological constant: it seems plausible that the resulting
transient inflation may smooth out the singularity.
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e Once produced, winding strings have an energy proportional to the radius, akin to a
two-dimensional positive cosmological constant: it seems plausible that the resulting

transient inflation may smooth out the singularity.
e Consider a general Kasner ansatz ds® = —dt” + Y, a?(t)dz? , T" = diag(—p, p:)
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Effective gravity analysis

e Once produced, winding strings have an energy proportional to the radius, akin to a
two-dimensional positive cosmological constant: it seems plausible that the resulting
transient inflation may smooth out the singularity.

e Consider a general Kasner ansatz ds® = —dt” + Y, a?(t)dz? , T" = diag(—p, p:)
e Einstein’s equations can be written in terms of H; = d,/a; as

d d
1
H{=—-H;|) H, ; - i
1 p J +p+D—1 P j:1p
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Effective gravity analysis

e Once produced, winding strings have an energy proportional to the radius, akin to a
two-dimensional positive cosmological constant: it seems plausible that the resulting
transient inflation may smooth out the singularity.

e Consider a general Kasner ansatz ds® = —dt” + Y, a?(t)dz? , T" = diag(—p, p:)
e Einstein’s equations can be written in terms of H; = d,/a; as

d d
1
H{=—-H;|) H, i - i
1 p J +p+D—1 P j:1p

e A bounce in dimension i requires H; > 0 at the point where H; = 0, i.e.

(D—2)pi+p>) p
JF

The most efficient solution is a gas of scalar momentum states, with p = p: provides
enough pressure for the bounce.
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Effective gravity analysis (cont.)

e However, consider fundamental strings wrapped around dimension z,
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Effective gravity analysis (cont.)

e However, consider fundamental strings wrapped around dimension z,

e Modelling the dilaton as the radius of the f th direction, the strings become membranes
wrapped around (4, §):

T
pP=v Pi=Pt=—F, pjzi =0, V= H aj
37 (4,4)

The bounce is allowed when D < 4.
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Effective gravity analysis (cont.)

e However, consider fundamental strings wrapped around dimension z,

e Modelling the dilaton as the radius of the f th direction, the strings become membranes
wrapped around (4, §):

T
pP=v Pi=Pt=—F, pjzi =0, V= H aj
37 (4,4)

The bounce is allowed when D < 4.

e This result may seem to go opposite to the fact that winding states prevent infinite
expansion. This is not so, non-isotropy is an important ingredient.

Brandenberger Vafa; Tseytlin Vafa
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Effective gravity analysis (cont.)

However, consider fundamental strings wrapped around dimension 1,

Modelling the dilaton as the radius of the # th direction, the strings become membranes
wrapped around (4, §):

. pi=pi=-p, pix=0, V=1]] a
A (i)

T
T
The bounce is allowed when D < 4.

This result may seem to go opposite to the fact that winding states prevent infinite
expansion. This is not so, non-isotropy is an important ingredient.

Brandenberger Vafa; Tseytlin Vafa

We assumed a constant number of wound strings: one should incorporate the
dependence of the production rate on the Hubble parameters.
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Effective gravity analysis (cont.)

e Einstein’s equations imply that the quantity © = (% — 1) / (

H,

H-

(3

3 .
— 4—D) IS constant.
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Effective gravity analysis (cont.)

e Einstein’s equations imply that the quantity © = (% — 1) / (HJ, — 4;3D

e Plugging back into the equation for H; and setting H,; = 0 at the bounce, one finds

_(D—2)(D—4)(2M+D—3)H?, pZ%(D_z)(qurD_g)Hj

H, =
2(D — 1) j

) IS constant.
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Effective gravity analysis (cont.)

e Einstein’s equations imply that the quantity u = (% — 1) / (HJ — =5

) IS constant.

e Plugging back into the equation for H; and setting H,; = 0 at the bounce, one finds
(D-2)(D-4)(2u+D-3) ,

H —1(D 2)(2u + D — 3)H?
2(D — 1) i Py a g

i, =

A bounce for direction 7 in units of the eleven-dimensional frame therefore takes place for
any initial condition suchthat2y + D — 3 > 0and 2 < D < 4.
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Conformal perturbation

e Rather than computing the backreaction from quantum production of (squeezed) winding
strings, one may consider deforming the orbifold CFT with a marginal twist field, i.e.
adding a coherent superposition of winding strings:

SA = / d20' 8X+(§X_ —I— >\—wv—|—w —|— )\+wV_w
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e Rather than computing the backreaction from quantum production of (squeezed) winding
strings, one may consider deforming the orbifold CFT with a marginal twist field, i.e.
adding a coherent superposition of winding strings:

SA = / d20' 8X+(§X_ —I— >\—wv—|—w —|— )\+wV_w

e While this deformation is marginal at leading order, it implies a one-point function for
untwisted fields
<€ikX>>\ ~ Aw}‘—w<w|€ikX| —w) ,
which can be cancelled by deformating S at order A\? by an untwisted field: this is the
untwisted field classically sourced by the winding string Vi,,.
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Conformal perturbation

e Rather than computing the backreaction from quantum production of (squeezed) winding
strings, one may consider deforming the orbifold CFT with a marginal twist field, i.e.
adding a coherent superposition of winding strings:

SA = / d20' 8X+(§X_ —I— >\—wv—|—w —|— )\+wV_w

e While this deformation is marginal at leading order, it implies a one-point function for
untwisted fields
<€ikX>>\ ~ Aw}‘—w<w|€ikX| —w) ,
which can be cancelled by deformating S at order A\? by an untwisted field: this is the
untwisted field classically sourced by the winding string Vi,,.

e In addition, the winding string also sources twisted states whose winding number is a
multiple of w:

<V—2w>x\ ~ >\w)\w<w|v—2w|w> 9
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The size of twisted states

e The scattering amplitude of N untwisted states off one winding string can be computed by
Hamiltonian quantization on the cylinder with twisted boundary conditions.

e As in flat space, the off-shell form factor is formally zero due to infinite zero-point
fluctuations,

(—w|e"™ (2, 2)|w) = exp (—k+k_A) , A = oo
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The size of twisted states

e The scattering amplitude of N untwisted states off one winding string can be computed by
Hamiltonian quantization on the cylinder with twisted boundary conditions.

e As in flat space, the off-shell form factor is formally zero due to infinite zero-point
fluctuations,

(—w|e"™ (2, 2)|w) = exp (—k+k_A) , A = oo

e The characteristic size A may be made finite by a field redefinition of the untwisted vertex,
e.g. normal ordering with respect to the untwisted vacuum:

A(V):ii< ! + ! —z)

- n + v n + v n
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The size of twisted states

e The scattering amplitude of N untwisted states off one winding string can be computed by
Hamiltonian quantization on the cylinder with twisted boundary conditions.

e As in flat space, the off-shell form factor is formally zero due to infinite zero-point
fluctuations,

(—w|e"™ (2, 2)|w) = exp (—k+k_A) , A = oo

e The characteristic size A may be made finite by a field redefinition of the untwisted vertex,
e.g. normal ordering with respect to the untwisted vacuum:

A(V)Zii( ! + ! —z)

- n + v n + v n

e Atlarge v, A(v) ~ 2log v, which indicates that the winding string grows to a size
v/log w, T-dual to the Regge growth a high energy.

Berkooz Durin BP Reichmann
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Classical backreaction

e The untwisted fields sourced by a twisted state with wave function f(a:+, x~ ) are then
given by the zero-mode overlap

(—w|: ™ (2, 2) : |w) = exp (—k+k_A) / dodz =™ | f(a™, 7))
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Classical backreaction

e The untwisted fields sourced by a twisted state with wave function f(a:+, x~ ) are then
given by the zero-mode overlap

(—w|: ™ (2, 2) : |w) = exp (—k+k_A) / dodz =™ | f(a™, 7))

e Three-point functions of three twisted fields cannot be computed in Hamiltonian formalism,
but can be obtained by analytic continuation of the amplitude for p* # 0 strings in the
Nappi-Witten pp-wave:

D’Appollonio, Kiritsis; Cheuni Freidel Saiv'dy
+, + + + — - Vix; + vax
/ dxy dxy [fi(zy) f2(z3)]" exp (x;r - x;r)(aﬁ — xy )E(v1, V2)] VE . 2 >

V1 + Vg
where the size of the non-locality is given by the (real) ratio

o g v(ivg)
=(v1, v2) = —i vivg (i) (ivg) (z) = I'(x)
= 1y 2 ivg ’Y(il/g) 9 F(l - QZ‘)

vvg y(ivy )y (ivg)

Note that the non-locality scale 1/+/Z diverges when v vy (iv1)y (ive) = ivsvy(ivs).
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Conclusions

We discussed closed strings in a toy model of a cosmological singularity. However, some of
the features we uncovered should carry over to more general geometries:

e Winding string production can be understood semi-classically as tunneling under the
barrier in regions with compact time, or scattering over the barrier in cosmological regions.

In general, it can be computed as a tree-level two-point function in an appropriate basis
depending on the choice of vacuum.
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e Long strings and short strings have a non-trivial two-point function: one cannot truncate
the space to the cosmological region only.
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barrier in regions with compact time, or scattering over the barrier in cosmological regions.
In general, it can be computed as a tree-level two-point function in an appropriate basis
depending on the choice of vacuum.

e Long strings and short strings have a non-trivial two-point function: one cannot truncate
the space to the cosmological region only.

e Winding states are generically produced at a cosmological singularity with compact
transverse space. Their effect on the geometry should be analogous to that of a 2D
positive cosmological constant. If sufficiently strong, it may prevent the instabilities towards
gravitational collapse.
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e Winding states are generically produced at a cosmological singularity with compact
transverse space. Their effect on the geometry should be analogous to that of a 2D
positive cosmological constant. If sufficiently strong, it may prevent the instabilities towards
gravitational collapse.

e The production rate for winding strings in a singular geometry diverges when 57 — 0. Can
the resolved geometry be determined self-consistently a la Fischler-Susskind ?
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Conclusions

We discussed closed strings in a toy model of a cosmological singularity. However, some of
the features we uncovered should carry over to more general geometries:

e Winding string production can be understood semi-classically as tunneling under the
barrier in regions with compact time, or scattering over the barrier in cosmological regions.
In general, it can be computed as a tree-level two-point function in an appropriate basis
depending on the choice of vacuum.

e Long strings and short strings have a non-trivial two-point function: one cannot truncate
the space to the cosmological region only.

e Winding states are generically produced at a cosmological singularity with compact
transverse space. Their effect on the geometry should be analogous to that of a 2D
positive cosmological constant. If sufficiently strong, it may prevent the instabilities towards
gravitational collapse.

e The production rate for winding strings in a singular geometry diverges when 57 — 0. Can
the resolved geometry be determined self-consistently a la Fischler-Susskind ?

e Finally, Misner space is very finely tuned wrt to initial conditions. How about string theory
on the (BKL) Mixmaster Misner Universe ?



