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Goal and Motivations

Goal: perform a radial quantization of stationary, spherically
symmetric, BPS solutions of N = 2, D = 4 supergravity;
Main motivation: evaluate (and improve on) OVV’s holographic
interpretation of the OSV conjecture

Ooguri Strominger Vafa; Ooguri Vafa Verlinde

Second motivation: set up a general framework for constructing
automorphic functions generating exact BH degeneracies as their
Fourier coefficients, in the spirit of the DVV formula for N = 4;
Work in collaboration with Günaydin, Neitzke, Waldron and more
recently Rocek, Vandoren;

hep-th/0512296,hep-th/0607227, more to appear soon

Instill supersymmetry and holography into early discussions:
Breitenlohner Gibbons Maison (1988), Cavaglia de Alfaro Filippov (1995), Breitenlohner Hellmann (96)
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Introduction

BPS black holes in type II string theory compactified on CY3 enjoy
simplifying properties:

By the attractor phenomenon, the near-horizon solution, hence
the Bekenstein-Hawking entropy, depends only on the conserved
charges;
Being supersymmetric, they are expected to correspond to exact
ground states of the quantum Hamiltonian at fixed charges, albeit
with an arbitrarily large degeneracy;
The string coupling can be made arbitrary small throughout the
geometry, allowing a description as a gas of weakly interacting
open-strings in the presence of D-branes.

Strominger Vafa; Johnson Khuri Myers; Maldacena Strominger Witten
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AdS3,2/CFT2,1

The modern understanding relies on AdS/CFT in the near horizon
geometry AdS3 × S2 × CY ∗

3 . The central charge of the
two-dimensional SCFT on the boundary can be computed
geometrically, and controls the density of highly excited states via
Cardy’s formula.
AdS3 is really the near horizon geometry of a 5D black string: if
[D6] 6= 0 it is not possible to lift the 4D black hole to a black string
in 5D. Moreover, such a lift would be rather artificial as the
M-theory direction can be made arbitrarily small.
Instead, one would hope for a holographic description in terms of
a superconformal quantum mechanics living at the boundary(ies)
of AdS2; no concrete proposal yet.
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AdS2/SCFT1 and channel duality

A possible strategy is to compute the spectrum of the SQM
indirectly by using channel duality, as in open/closed string duality:

Tre−πtHopen = 〈B|e−
π
t Hclosed |B〉

t

τ

τ

σ

Here, Hclosed is the Hamiltonian for string theory in AdS2 in radial
quantization. The real interest is in Hopen.
This is hardly doable in general, but becomes tractable if one
keeps only SUGRA modes in the bulk, and retains only spherically
symmetric, BPS solutions. It is hard in general to control such a
mini-superspace approximation.
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Topological amplitude and black hole wave function I

Recently, OVV suggested that the OSV conjecture

Ω(pI , qI) ∼
∫

dφI |Ψtop(pI + iφI)|2 eφIqI

can be interpreted in this way,

Ω(p, q) ∼ 〈Ψ+
p,q|Ψ−

p,q〉

where
Ψ±

p,q(φ) = e±
1
2 qIφ

I
Ψtop(pI ∓ iφI)

The main goal of this talk will be to perform a rigorous treatment of
radial quantization, and evaluate / improve on OVV’s proposal.
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4 Quantizing the attractor flow
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Stationary solutions and KK∗ reduction I

Stationary solutions in 4D can be parameterized in the form

ds2
4 = −e2U(dt + ω)2 + e−2Uds2

3 , AI
4 = ζ Idt + AI

3

where ds3, U, ω, AI
3, ζ

I and the 4D scalars z i ∈M4 are
independent of time. In contrast to usual KK ansatz, the Killing
vector is time-like.

Such solutions can be described by reducing the D=3+1 action to
three Euclidean dimensions. As usual, one-forms (AI

3, ω) can be
dualized into pseudo-scalars (ζ̃I , a), where a is the twist (or NUT)
potential.
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Stationary solutions and KK∗ reduction II

The result is 3D Euclidean gravity coupled to a non-linear sigma
model on a pseudo-Riemannian space M∗

3,

ds2 = (dU)2 + gij dz idz j + e−4U
(

da + ζ Id ζ̃I − ζ̃Idζ I
)2

−e−2U
[
tIJdζ IdζJ + t IJ

(
d ζ̃I + θIK dζK

) (
d ζ̃J + θJLdζL

)]
where gij is the metric on M4, and NIJ := θIJ − itIJ are the
complexified gauge kinetic terms.
M∗

3 has a 2nV + 3-dimensional Heisenberg algebra of isometries

pI = ∂ζ̃ I + ζI ∂a , qI = ∂ζ I − ζI ∂a , k = ∂k[
pI , qJ

]
= 2k δI

J
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Spherically symmetric BH and geodesics I

Now, restrict to spherically symmetric solutions, with spatial slices

ds2
3 = N2(ρ)dρ2 + r2(ρ)dΩ2

2

The sigma-model action becomes, up to a total derivative

S =

∫
dρ

[
N
2

+
1

2N

(
ṙ2 − r2gabφ̇aφ̇b

)]
where gab is the metric on M∗

3: this describes the
(unparameterized) geodesic motion of a fiducial particle with unit
mass on the cone R+ ×M∗

3.
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The Wheeler-DeWitt constraint I

The equation of motion of N imposes the Hamiltonian
constraint,or Wheeler-DeWitt equation

HWDW = (pr )
2 − 1

r2 gabpapb − 1 ≡ 0

The gauge choice N = r2 allows to separate the problem into
radial motion along r , and affine geodesic motion on M∗

3:

gabpapb = C2 , (pr )
2 − C2

r2 − 1 ≡ 0 ⇒ r =
C

sinh Cρ
,

C = 2THSBH is the extremality parameter: extremal (in particular
BPS) black holes correspond to light-like geodesics.
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Isometries and conserved charges

The conserved charges associated to the Heisenberg isometries
correspond to the electric and magnetic charges (qI , pI) and the
NUT charge k .
If k 6= 0, the off-diagonal term in the 4D metric

ds2
4 = −e2U(dt + k cos θdφ)2 + e−2U [dr2 + r2(dθ2 + sin2 θdφ2)]

implies the existence of closed time-like curves around φ direction,
near θ = 0. Bona fide 4D black holes arise in the “classical limit”
k → 0. Keeping k 6= 0 will allow us to greatly extend the symmetry.
The conserved charge associated to the extra isometry
∂U + ζ I∂ζ I + ζ̃I∂ζI + 2∂a is the ADM mass; it does not commute
with p, q, k .
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Conserved charges and black hole potential

Setting k = 0 for simplicity, one arrives at the Hamiltonian,

H =
1
2

[
p2

U + pig ijpj − e2UVBH

]
≡ C2

where VBH is the “black hole potential”,

VBH(z i , pI , qI) =
1
2
(qI −NIJpJ)t IK (qK − N̄KLpL) +

1
2

pI tIJpJ

The potential V = −e2UVBH is unbounded from below.
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Quantizing geodesic motion I

The classical phase space is the cotangent bundle T ∗(M∗
3),

specifying the initial position and velocity.
Quantization proceeds by replacing functions on phase space by
operators acting on wave functions in L2(M∗

3), subject to

∆3Ψ(U, z i , z̄ ī , ζ I , ζ̃I , a) = C2Ψ

where ∆3 is the Laplace-Beltrami operator on M∗
3.

One may diagonalize the electric, magnetic and NUT charges by
setting

Ψ(U, z i , z̄ ī , ζ I , ζ̃I , a) = Ψp,q(U, z i , z̄ ī) ei(qIζ
I+pI ζ̃I)

[
−∂2

U −∆4 − e2UVBH − C2
]
Ψp,q(U, z) = 0
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Quantizing geodesic motion II

The black hole wave function Ψp,q(U, z) describes quantum
fluctuations of the 4D moduli as one reaches the horizon at
U → −∞.

Restoring the variable r , one could also describe the quantum
fluctuations of the horizon area r2e−2U .

The natural inner product is the Klein-Gordon inner product at
fixed U, famously NOT positive definite. A standard remedy in
quantum cosmology is “third quantization”, possibly relevant for
multi-centered solutions.
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Attractor flow in N = 2 supergravity

Consider N = 2 SUGRA coupled to nV abelian vector multiplets
[hypers go along for the ride]: the vector multiplet scalars z i take
values in a special Kähler manifold M4.
After reduction to 3 dimensions, the vector multiplet scalars take
value in a quaternionic-Kähler space M3, known as the c −map
of the special Kähler space M4.

Ferrara Sabharwal; de Wit Van Proyen Vanderseypen

The black hole potential splits into two pieces,

VBH(p, q; z i , z̄ i) = |Z |2 + ∂i |Z | g i j̄ ∂̄j |Z |

where Z is the central charge Z = eK/2(qIX I − pIFI).
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Conserved charges and black hole potential I

Supersymmetric solutions are obtained by cancelling each term in
the kinetic energy against the corresponding term in the potential,
leading to the attractor flow equations:

dU
dρ

= −eU |Z | , dz i

dρ
= −2eUgi j̄ ∂̄j |Z |

The 4D moduli are attracted towards the horizon to the value z∗p,q
minimizing |Z | at fixed values of the charges:

ReX I = pI , ReFI = qI

The attractor point is a local maximum of the potential: BPS
trajectories are extremely fine-tuned !
If |Z∗| 6= 0, this is an AdS2 × S2 throat, with SBH = π|Z∗|2.
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Attractor flow and SUSY geodesic motion I

The above Bogomolny-type argument does not fix the phase in
the second attractor equation, and does not guarantee that the
solution is supersymmetric.
The correct procedure is to reduce the full D = 4 SUGRA
including fermions, and look at BPS solutions of the resulting
SUSY mechanics.
Using the restricted holonomy Sp(2)× Sp(2nV + 2), one may
show that SUSY trajectories occur when the quaternionic vielbein
V Aα (α = 1, 2, A = 1, ..2nV + 2) obtains a null eigenvector:

∃εα / V Aα
µ φ̇µ εα = 0 ⇔ V A[αV β]B = 0
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Improved SUSY mechanics - HKC and twistors I

This SUSY mechanics is rather unusual, insofar as the SUSY
comes from a triplet of non-integrable complex structures.
It is possible to remedy this problem by adding 4 real scalar
degrees of freedom, extending the QK manifold to its Hyperkähler
cone (HKC), or Swann bundle,

R+ × S3 → HKC → QK

The spin connection on S3 is such that the three almost complex
structures become integrable. Geodesics on QK lift to SU(2)
invariant geodesics on HKC.
This construction is very natural in the conformal approach to
N = 2 supergravity.

De Wit Rocek Vandoren
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The twistor space

The relevant information is captured by the twistor space Z , a
two-sphere bundle over QK with a Kähler-Einstein metric. The
sphere coordinate z keeps track of the Killing spinor, z = ε1/ε2.
In the presence of triholomorphic isometries, the geometry of HKC
is controlled by a generalized prepotential G(ηL),

〈K (vL, v̄L, wL + w̄L) + xL(wL + w̄L)〉w+w̄ =

∮
dζ

2πiζ
G(ηL, ζ)

where ηL is the “projective multiplet”

ηL = vL/ζ + xL − v̄Lζ

When HKC is the Swann bundle of the c-map of a SK manifold,

G(ηL, ζ) = F (ηI)/η]

De Wit Rocek Vandoren; Rocek Vafa Vandoren

Boris Pioline ( LPTHE and LPTENS, Paris ) Quantizing BPS Black Holes London, Nov 10, 2006 22 / 30



BPS black holes and holomorphic curves

Upon lifting the geodesic motion to Z , SUSY is preserved iff the
momentum is holomorphic in the canonical complex structure on
Z , at any point along the trajectory: 1st class constraints !
The twistor space Z has complex coordinates ξI , ξ̃I , α adapted to
the Heisenberg symmetries:

ξI = ζ I + i eU+K(X)/2
(

zX̄ I + z−1X I
)

ξ̃I = ζ̃I + i eU+K(X)/2
(

z F̄I + z−1 FI

)
α = a + ζ I ξ̃I − ζ̃Iξ

I

BPS black holes, correspond to holomorphic curves
ξI(ρ), ξ̃I(ρ), α(ρ) at constant ξ̄I , ¯̃ξI , ᾱ: integrable system !.
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The Penrose Transform

Importantly, ξI , ξ̃I , α are holomorphic functions of z: the fiber over
each point is a rational curve in Z .
Starting from a holomorphic function Φ on Z , we can produce a
function Ψ on QK

Ψ(U, z i , z̄ I , ζ I , ζ̃I , a) = e2U
∮

dz
2πiz

Φ
[
ξI(z), ξ̃I(z), α(z)

]
satisfying some generalized harmonicity condition:(

∇A[α∇β]B − RAB
)
Ψ = 0

This is a quaternionic generalization of the usual Penrose
transform between holomorphic functions on CP3 and conformally
harmonic functions on S4.

Salamon; Baston Eastwood
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The BPS Hilbert space I

In terms of geodesic motion on the QK base, the classical BPS
conditions V A[αV β]B = 0 become a set of 2nd order differential
operators which have to annihilate the wave function Ψ:(

∇A[α∇β]B − RAB
)

Ψ = 0

In terms of the twistor space, the BPS condition pL̄ = 0 requires
that Ψ should be a holomorphic function on Z . More precisely,
taking the fermions into account, it should be a section of
H1(Z ,O(−2)).

The equivalence between the two approaches is a consequence
of the Penrose transform discussed previously.
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The BPS Black Hole Wave-Function I

Ignore fermionic subtleties, and go back to the simple-minded
twistor transform

Ψ(U, z i , z̄ I , ζ I , ζ̃I , a) = e2U
∮

dz
2πiz

Φ
[
ξI(z), ξ̃I(z), α(z)

]
Consider a black hole with k = 0: pI and qI can be diagonalized
simultaneously, and completely determine (up to normalization)
the wave function as a coherent state on Z :

Φ = exp
[
i(pI ξ̃I − qIξ

I)
]

= exp
[
i(pI ζ̃I − qIζ

I) + ieU+K (X)/2(zW̄p,q(X̄ ) + z−1Wp,q(X ))
]
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The BPS Black Hole Wave-Function II

The integral over z is of Bessel type, leading to

Ψ = e2U K0

(
2i eU |Zp,q|

)
ei(pI ζ̃I−qIζ

I)

This is peaked around the classical attractor points, with slowly
damped, increasingly faster oscillations away from them.
We could have reached this result 36 mins ago, by naively
quantizing the attractor flow:{

pU = −eU |Z |
pz̄ ī = −2eU ∂̄i |Z |

}
⇒ Ψ ∼ exp

[
2ieU |Z |

]

Contrary perhaps to expectations, the wave flattens out towards
the horizon ! This is because of the large fine-tuning needed to
produce a BPS solution.
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Relation to the topological amplitude ?

Before integrating along the fiber, we found that
Ψp,q ∼ exp[ieU+K/2(zW̄ + z−1W )], in “rough” agreement with
OVV’s answer Ψp,q ∼ exp(W ).
It is unlikely that Ψtop can be identified as a black hole wave
function: it naturally depends on nV + 1 variables, while ΨBH
depends on 2nV + 3 variables.
Instead, the “super-BPS” Hilbert space of tri-holomorphic
functions on HKC is the natural habitat of a one-parameter
generalization of the topological string amplitude...

Gunaydin Neiztke BP
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Outlook

Higher derivative corrections remain to be incorporated: higher
derivative scalar interactions on QK space.
Multi-centered configurations can be described by certain
harmonic maps from R3 to QK : does that correspond to “second
quantization”, i.e. including vertices ?
For N ≥ 4, this suggests that the 3D U-duality group controls the
BH spectrum: can one obtain the exact degeneracies as Fourier
coefs of some “BPS automorphic forms” ? Improve on DVV.
The equivalence between BH attractor flow and geodesic flow on
QK is a reflection of mirror symmetry. Can this be used to
compute instanton corrections on hypermultiplet moduli space ?
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