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Black hole thermodynamics and microscopic counting

• In general relativity, one associates to a macroscopic black hole with mass M , horizon
area A and surface gravity κ an entropy SBH = A/4GN and temperature T = κ/2π

such that the standard laws of thermodynamics are obeyed.
Christodoulou, Bekenstein, Hawking

• String theory is famously known to provide a microscopic description of black hole
microstates, reproducing the Bekenstein-Hawking entropy. This is especially successful for
generic (“4-charge”, no D6-brane) BPS black holes in N=2 4D SUGRA.

Strominger Vafa; Maldacena Strominger; Maldacena Witten Strominger

• This agreement relies on the “thermodynamical” limit where A � GN , or Q � 1, and
classical gravity can be trusted. Can we test this beyond leading order ?

• General AdS/CFT arguments suggest that 4D black holes micro-states may be described
by 0+1 conformal quantum mechanics. Can we find the dual description, and understand
why the horizon area is a good measure of the number of states ?



CALTECH - NOV 11, 2005 2

Recent progress

• By better understanding the 5D M-theoretical origin of 4D black holes, it has been possible
to compute the microscopic degeneracies of 4D black holes to high accuracy.

Gaiotto Strominger Shih Yin

• An interesting relation has been proposed between black hole degeneracies and the
topological string amplitude, which in principle allows for a detailed comparison of
macroscopic Bekenstein-Hawking-Wald entropy and microscopic degeneracies.

Ooguri Strominger Vafa; Cardoso de Wit Mohaupt

• The rationale behind this relation has been traced to channel duality in AdS2 geometry:
rather than computing the black hole spectrum by diagonalizing the (CFT1) Hamiltonian for
time evolution, one may relate it to a wave function overlap in radial quantization. The
topological amplitude is believed to be the “Hartle-Hawking” wave function for radial
evolution.

Ooguri Verlinde Vafa
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Outline of the talk

• Our goal is to try and clarify these ideas, by considering situations with higher symmetry:
N = 8 and N = 4 SUGRA, or “very special” N = 2 SUGRA. The complexity of CY
geometry is jettisoned in favor of representation theory.

• In particular, we’ll show how the 4D/5D lift generalizes to these models including all
charges; we’ll determine the wave functions which control the leading order degeneracies
in these models; and most importantly, we’ll study in depth the radial quantization of BPS
black holes.

• Our main message is that, beyond the expected U-duality symmetry in 4 dimensions,
under which black hole degeneracies ought to be invariant, there is a larger “spectrum
generating” symmetry, namely the 3-dimensional U-duality group, which controls the black
hole wave function, and probably the degeneracies themselves.

• Some important aspects have in fact appeared in some prescient works:
Breitenlohner Gibbons Maison, Breitenlohner Hellmann

Gutperle Spalinski, Gross Wallach, (Kazhdan) BP Waldron

• Warning: most of this is work in progress, and many loose ends remain to be tied up.
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Black hole degeneracies and higher SUSY : N = 4

• In situations with high sypersymmetry N ≥ 4, we may hope to use U-duality invariance to
pin down black hole degeneracies: For N = 4, the U-duality group is

Sl(2, Z)× SO(6, nv, Z)

where nv is the number of N = 4 vector multiplets: nv = 22 for the simplest
IIA/K3× T 2 - Het /T 6 model.

• Electric and magnetic charges transform like a doublet of SO(6, nv) vectors. The
Bekenstein-Hawking entropy is given by

SBH = 2π
p

I4 , I4 = det

„
~p2 ~p · ~q

~p · ~q ~q2

«
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Counting N = 4 dyons

• Dijkgraav Verlinde Verlinde have made a conjecture for the 1/4-BPS black hole
degeneracies in nv = 22 model,

X
pI,qI

Ω(p
I
, qI)e

i(ρ~p2+σ~q2+(2ν−1)~p·~q)
=

1

Φ(ω)
, ω =

„
ρ ν

ν σ

«
∈

Sp(4)

U(4)

where Φ is the unique weight 10 cusp form of Sp(4, Z). The S-duality group Sl(2, Z) is
realized as a subgroup of the “genus 2” modular group Sp(4, Z).

• This conjecture is supported by the recent 4D/5D lift, using the elliptic genus of Hilb(K3).

• Note however that p, q enter only via their inner products: they could exist more subtle
invariants under T-duality.
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Black hole degeneracies and higher SUSY : N = 8

• For N = 8, much less was known until recently. The U-duality group E7 acts linearly on
the 56 electric and magnetic charges, and the Bekenstein-Hawking entropy is

S = 2π
p

I4

Kallosh Kol

where I4 is the E7 quartic invariant:

Q =

0@ D2ij [F1]i [kkm]i

−[F1]i 0 [D6]

−[kkm]i −[D6] 0

1A , P =

0@ D4ij [NS]i [kk]i
−[NS]i 0 [D0]

−[kk]i −[D0] 0

1A ,

I4(P, Q) = −Tr(QPQP ) +
1

4
(TrQP )

2 − 4 [Pf(P ) + Pf(Q)]

= 4p
0
I3(qA)− 4q0I3(p

A
) + 4

∂I3(qA)

∂qA

∂I3(p
A)

∂pA
− (p

0
q0 + p

A
qA)

2

and I3 is the cubic invariant of E6.
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Counting N = 8 dyons

• By studying the elliptic genus of Hilb(T 4), Maldecena Moore Strominger conjectured (and
partially prove) that degeneracies of 5D BPS black holes in type II on T 5 were given by

Ω5D(N, Q1, Q5, `) =
X

s|(NQ1,NQ5,Q1Q5,`);s2|NQ1Q5

s N(s) ĉ

„
NQ1Q5

s2
,
`

s

«

where ĉ(n, l) are the Fourier coefficients of the Jacobi form

−
θ2

1(z, τ)

η6
:=
X

ĉ(n, l)q
n
y

l
, ĉ(n, l) = ĉ(4n− l

2
)

and N(s) is the number of divisors of N, Q1, Q5, s,
NQ1

s ,
NQ5

s ,
Q1Q5

s ,
NQ1Q5

s2

• By using the same 4D-5D lift, one may show that the exact number of micro-states is equal
to

Ω(p
I
, qI) = ĉ(I4)

at least for black holes U-dual to a D0-D4-D6 bound state with p0 = 1, and with all
charges coprime. Again, there probably exist more subtle U-duality invariants than I4.

Shih Strominger Yin; BP
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Black hole degeneracies for N = 2

• For N = 2, the situation is much less understood. For vanishing D6-brane charge,
Maldecena Strominger Witten have shown how black hole degeneracies could be
extracted from the D=1+1 “black string” (0,4) conformal field theory describing an
M5-brane wrapped on a 4-cycle in CY. Using the Cardy formula,

Smicro = 2π
q

(DABCpApBpC + c2ApA/6)q0

• This agrees with the macroscopic Bekenstein-Hawking entropy, upon incorporating the
leading R2 correction.

• Unfortunately, this is a “singular” CFT, with non-compact target space, and it is hard
(although maybe not impossible) to get subleading corrections.

Dabholkar Denef BP Moore

• There is no proper U-duality group here. However, we expect that the monodromy group of
the CY puts severe constraints on the BH degeneracies.



CALTECH - NOV 11, 2005 9

Very special supergravities

• There is an interesting class of N = 2 supergravities where the moduli space is a
symmetric space. Although they still possess 8 SUSY, their extended symmetries facilitate
the analysis greatly, and we shall see that some of them are related to N = 4 and N = 8

theories by analytic continuation.

• Their prepotential is purely cubic

F = N(X)/X
0
= CABCX

A
X

B
X

C
/X

0

where N(X) is the norm of a degree 3 Jordan algebra J . The moduli space is a
symmetric space

M4 =
Conf(J)

Strucc(J)× U(1)

where Strucc(J) is the reduced structure group of J (in its compact form), while Conf(J)

is the conformal group leaving the cubic light-cone N(X) = 0 invariant.
Gunaydin Sierra Townsend
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Very special supergravities

• Depending on the choice of J , this leads to two generic families

SU(n, 1)

SU(n)× U(1)
,

SO(n, 2)

SO(n)× SO(2)
×

Sl(2)

U(1)

and a number of exceptional cases,

Sl(2)

U(1)
,

Sp(6)

SU(3)× U(1)
,

SU(3, 3)

SU(3)× SU(3)× U(1)
,

SO∗(12)

SU(6)× U(1)
,

E7(−25)

E6 × U(1)

corresponding to N = X0Q2, X1Q2, (X
1)3, det(3x3s), det(3x3), Pf(6 ∧ 6), I3(27)

respectively.

• Although these may not exist as consistent string theories, they arise in the untwisted
sector of type II orbifolds, or in heterotic string at tree-level.
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A remark on Legendre invariance

• An important property following from the axiom of Jordan algebras

X
]]

= N(X)X , X
]
A := CABCX

B
X

C

is that F is invariant under Legendre transform in all variables:

〈N(X)/X
0
+ X

0
Y0 + X

A
YA〉XI = −N(Y )/Y

0

Proof: saddle point at

YA = X
]
A/X

0
, Y0 = −N(X)/(X

0
)
2

hence

N(X)X
A

= (X
0
YA)

]
= (X

0
)
2
(Y

A
)
] ⇒ X

A
= −Y

]
A/Y

0

N(Y )YA = (−X
A
Y0)

] ⇒ X
0
= N(Y )/(Y0)

2
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• This will play an important role in the sequel. In particular, this is at the heart of the
construction of the minimal representation of QConf(J), the 3-dimensional group for
these supergravities.
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The OSV Conjecture

• Based on a re-interpretation of earlier results by Cardoso, De Wit and Mohaupt (CDM),
Ooguri, Strominger and Vafa (OSV) have proposed simple relations between
micro-canonical degeneracies Ω(pA, qA) and the topological string amplitude:

X
qA∈Λel

Ω(p
A
, qA)e

−πφAqA ∼ | exp

„
iπ

2
ImF (p

A
+ iφ

A
, 2

8
)

«
|2 (∗)

Ω(p
A
, qA) ∼

Z
dφ

A

˛̨̨̨
exp

„
iπ

2
F (p

A
+ iφ

A
)

«˛̨̨̨2
e

φAqA (∗∗)

• The lhs of (*) can be viewed as a partition function Z(pA, φA) of BPS black holes in a
“mixed” thermodynamical ensemble at fixed magnetic charge pA and fixed electric
potential φA. More precisely, it should be a suitable “supersymmetric index”, robust under
deformations.

• The rhs of (*) encodes the tree-level SUGRA lagrangian together with an infinite series of
“BPS-saturated” gravitational corrections

P∞
h=0 Fh(X

A)R2
+F 2h−2

+ , computed by the
topological string.

Berschadsky Cecotti Ooguri Vafa;Antoniadis Gava Narain Taylor
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• Semi-classically, the integral in (**) (or the sum in *) is dominated by a saddle point (X, X̄)

such that
Re(X

A
) = p

A
, Re(FA) = qA , W

2
= 2

8

These are the (generalized) attractor equations, which determine the values of the scalar
fields at the horizon in terms of the electric and magnetic charges. At the saddle,

SBHW (p
A
, qA) = Legendre

h
F ] , F = πImF (p

A
, φ

A
)
i

in accord with CDM. The Bekenstein-Hawking-Wald entropy is thus understood as the
entropy in the mixed ensemble, and differs from the “true” micro-canonical entropy
log Ω(pA, qA) due to statistical corrections around the saddle point.

• The ∼ sign in (**) allegedly denotes an equality to all orders in an expansion at large
charges (λpA, λqA), λ →∞. A non-perturbative generalization might be obtained upon
completing the perturbative topological amplitude and specifying a contour.

• Since Z(pA, φA) is manifestly periodic under integer imaginary shifts of φA, a more
plausible version of (*) isX

qA∈Λel

Ω(p
A
, qA)e

−πφAqA ∼
X

kA∈Λ∗
el

| exp

„
iπ

2
ImF (p

A
+ iφ

A
+ k

A
)

«
|2

which has a strong smell of theta series.
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Checks on the OSV conjecture

• The proposal has been tested in the case of non-compact CY: O(−m)⊕O(m) → T 2:
BPS states are counted by topologically twisted SYM on N D4-brane wrapped on a
4-cycle O(−m) → T 2, which is equivalent to 2D Yang Mills. At large N , this “factorizes”
into

P
l Ψtop(t + mlgs)Ψtop(t̄−mlgs).

Vafa

• This was generalized for O(−m)⊕O(2g − 2 + m) → Σg, whose topological amplitude
is related to q-deformed 2D Yang-Mills. The agreement with OSV for genus g > 1

however requires modular properties of YMq which are less than obvious.
Aganagic Ooguri Saulina Vafa

• Exact degeneracies are known in a class of “small black holes”, dual to perturbative
heterotic states. The OSV formula works beautifully in all N = 4 models, with some
important subtleties in N = 2 orbifold models.

Dabholkar Denef Moore Pioline

• Using the previous formulae for 1/4-BPS black hole degeneracies in N = 4 and 1/8-BPS
in N = 8, the OSV formula is again warranted, with some “volume factor corrections”.

Shih Yin
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BH entropy in very special SUGRA

• As an application, let us compute the tree-level entropy of a black hole with arbitrary
charges in exceptional SUGRA. The free energy is

F =
π

(p0)2 + (φ0)2

n
p

0
h
φ

A
p

]
A − I3(φ)

i
+ φ

0
h
p

A
φ

]
A − I3(p)

io

• In order to eliminate the quadratic term in φA, change variables to

x
A

= φ
A −

φ0

p0
p

A
, x

0
= [(p

0
)
2
+ (φ

0
)
2
]/p

0

and, so as to eliminate the square root in q0φ
0, introduce an auxiliary variable t,

S = π〈−
I3(x)

x0
+

p]
A + p0qA

p0
x

A −
t

4

 
x0

p0
− 1

!
−

(2I3(p) + p0pIqI)
2

t (p0)2
〉{xI,t}
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BH entropy, 4D and 5D

• Using the Legendre invariance of N(X)/X0, we find

S = π〈4
I3[p

]
A + p0qA]

(p0)2t
−

[2I3(p) + p0pIqI]
2

t (p0)2
−

t

4
〉t

=
π

p0

q
4I3[p

]
A + p0qA]− [2I3(p) + p0pIqI]2

= π
q

4p0I3(q)− 4q0I3(p) + 4qA
] p]

A − (p0q0 + pAqA)2

• By Freudenthal’s triple system construction, the quartic polynomial is recognized as the
quartic invariant under the 4-dimensional U-duality group.

• The intermediate equation also has an interesting expression: it is 1/p0 times the entropy
of a 5-dimensional black hole with electric charge and angular momentum

QA = p
0
qA + CABCp

B
p

C

2JL = (p
0
)
2
q0 + p

0
p

A
qA + 2I3(p)

consistent with the 4D/5D lift, generalized to include all charges.
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N = 8 and N = 4 topological amplitudes

• In particular, this holds in the very special N = 2 supergravity with F = I3(27)/X0, and
leads to a E7(−25) invariant entropy formula. By analytic continuation, the same
computation tells that the E7(7) invariant entropy of 1/8-BPS black holes in N = 8 can be
obtained by pretending that the N = 8 topological amplitude is

ΨN=8 = e
iπ
2 I3(27)/X0

and describes all 56 electric-magnetic charges. I3(27) is now the cubic invariant of the
E6(6) 5-dimensional U-duality group.

• Similarly, the Sl(2)× SO(6, nv) invariant entropy of 1/4-BPS black holes in N = 4 with
nv multiplets can be obtained by analytic continuation from the very special N = 2

supergravity with Sl(2)× SO(2, nv + 4) invariance, i.e. by pretending that the N = 4

topological amplitude is

ΨN=4 = e
iπ
2X1XaQabXb/X0

where Qab is a signature (5, nv − 1) quadratic form. Note that SO(5, nv − 1) is the
5-dimensional U-duality group.
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OSV formula and Wigner distribution

• As explained by Witten in relation with the holomorphic anomaly equations, the topological
amplitude Ψ(X) = eiπ

2F is best viewed as a quantum mechanical wave function, which
transforms by Fourier transform under changes of polarization.

• The OSV relation (**) can be suggestively rewritten, upon setting φA = iχA as

Ω(p, q) ∼
Z

dχ Ψ
∗
(p + χ)Ψ(p− χ)e

iqχ

recognized as the Wigner distribution associated to the state Ψ(p). Even more
suggestively, defining

Ψp,q(χ) = e
iqχ

Ψ(χ− p) := Vp,qΨ(χ)

and assuming Ψ(χ) = Ψ(−χ), it becomes an overlap

Ω(p, q) ∼ 〈Ψp,q|Ψp,q〉
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OSV conjecture and channel duality

• This is reminiscent of open/closed duality on the cylinder,

Tr(−)
F
e
−πtHopen = 〈B|e−

π
t Hclosed|B〉

where B is a closed string boundary state.
• Indeed, the near-horizon geometry AdS2 × S2 has the topology of a cylinder, and Ψp,q

may be viewed as a quantum state for the radial evolution, while Ω(p, q) counts the
number of states for time evolution. The respective Hamiltonians ought to vanish due to
the Wheeler-DeWitt constraints of diffeomorphism invariance.

Ooguri, Vafa, Verlinde

• The topological wave function Ψ is naturally interpreted as a wave function for the attractor
flow which controls the radial evolution of the moduli and geometry. One of the goals in
this talk is to try and make this idea more precise.

• There are indications that degeneracies of multi-centered black holes may be obtained by
second quantization of Ψ, in agreement with exponentially suppressed corrections
originating from the mixing of two Fermi seas in 2D YM

Dijkgraaf Gopakumar Ooguri Vafa

• This may be generalized beyond mini-superspace.
Gukov Saraikin Vafa



CALTECH - NOV 11, 2005 21

The attractor mechanism

• Consider a general ansatz for a static, spherically symmetric BH in type IIA/CY:

ds
2
= −e

2U(r)
dt

2
+ e

−2U(r)
“

dr
2
+ r

2
dΩ

2
2

”
+ ds

2
CY

The shape of the CY is parameterized by Kähler moduli zA(r) (vectors) and complex
structure moduli (hypers). The latter decouple and can be taken to be constant.

• The SUSY variations of gravitino and gauginos imply the “attractor flow equations”

dU/dτ = −e
U |Z|

dz
i
/dτ = −2e

U
g

ij̄
∂j̄|Z|

where τ = 1/r, Z is the central charge,

Z = e
K/2

W , W = q
I
FI − pIX

I
, K = − log

h
i(X̄

I
FI −X

I
F̄I)
i
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and F is the tree-level prepotential,

F (X
A
) = −

1

6
CABC

XAXBXC

X0
+

X
β∈H2(Y,Z)

N0,β e
2πiβAXA/X0

• At τ = +∞, the moduli zi settle to the minimum of |Z|. Integrating the 1st equation leads
to

e
−U ∼ |Z|∗τ = |Z|∗/r

so that the near-horizon geometry is AdS2 × S2, with horizon area A = |Z|∗ ∝
√

I4.
• By fixing the homogeneous gauge so that i(X̄IFI −XIF̄I) = e−2U and W be real, the

equations combine into the “large phase space” attractor equations,

Re

„
d

dτ
X

A

«
= p

A
, Re

„
d

dτ
FA

«
= qA

which can be integrated right away. At the horizon, the moduli are fixed by the
homogeneous attractor equations

Re
“

X
A
”

= p
A

, Re (FA) = qA

Behrnd Lust Sabra, Denef
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The attractor flow, revisited

• To shed light on the attractor flow, return to the basics: stationary solutions in 4D can be
parameterized in the form

ds
2
4 = −e

2U
(dt + ω)

2
+ e

−2U
ds

2
3 , A

I
4 = ζ

I
(t)dt + A

I
3

where U and AI are scalars on the t-independent 3D slice ds3, and (ω, AI
3) are a

one-forms. This amounts to a Kaluza-Klein reduction on a time-like direction.

• In 3D, the one-forms AI and ω can be dualized into pseudo-scalars ζ̃I and the “NUT
potential” A. For a regular compactification on a space-like circle, the 4D Einstein-Maxwell
equations reduces to a non-linear sigma-model with a Riemannian target-space M3,
coupled to 3D gravity.

• Importantly, M3 always has 2n + 1 isometries corresponding to the gauge symmetries of
AI and ω. These satisfy a Heisenberg algebra,

[L∂
ζI

,L∂
ζ̃J

] = 2δ
I
JL∂a

so that ζ, ζ̃, a) enter only through dζI , dζ̃I , da + ζIdζ̃I − ζ̃IdζI .
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KK reduction on time

• For compactification on a time-like direction, the 4D equations still reduce to a non-linear
sigma model on M∗

3 bu M∗
3 now has indefinite signature: it can be obtained from M3 by

Wick rotating (ζI, ζ̃I) → i(ζI, ζ̃I) (but NOT the scalar a dual to ω). If M3 = G/K was a
Riemannian symmetric space, M3 = G/K ′ is still symmetric but K ′ is no longer the
maximal compact subgroup of G.

Breitenlohner Gibbons Maison; Hull Julia

• For generic N = 2 SUGRA, the reduction to 3D on a space-like circle leads to a
non-linear sigma model on a quaternionic-Kahler manifold known as the “s-map” of M4.
The time-like reduction leads to analytic continuation of this model, known as
“para-quaternionic-Kahler manifold”

Ferrara Sabharwal
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Attractor flow in higher (super)symmetry

• For N = 8 SUGRA,

M3 = E8(8)/SO(16) , M
∗
3 = E8(8)/SO

∗
(16)

The 70 moduli in 4D split into 15 vectors and 10 hypers. Only vectors are attracted.
Andrianopoli, D’Auria, Ferrara

• For N = 4,

M3 = SO(8, nv+2)/SO(8)×SO(nv+2) , M
∗
3 = SO(8, nv+2)/SO(6, 2)×SO(2, nv)

Again, only vectors are attracted.

• For very special N = 2 SUGRA, M3 is a symmetric quaternionic-Kahler manifold again
obtained from Jordan algebra technology:

M3 =
QConf(J)

Confc(J)× SU(2)

where QConf(J) is the “quasi-conformal group” leaving the quartic light-cone I4 − y2 = 0

invariant, and Confc(J) is the compact form of Confc(J).
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Q D = 5 D = 4 D = 3 D = 3∗

8 SU(n,1)
SU(n)×U(1)

SU(n+1,2)
SU(n+1)×SU(2)×U(1)

SU(n+1,2)
SU(n,1)×Sl(2)×U(1)

8 R× SO(n−1,1)
SO(n−1)

SO(n,2)
SO(n)×SO(2) ×

Sl(2)
U(1)

SO(n+2,4)
SO(n+2)×SO(4)

SO(n+2,4)
SO(n,2)×SO(2,2)

8 Sl(2)
U(1)

SU(2,1)
SU(2)×U(1)

SU(2,1)
Sl(2)×U(1)

8 ∅ Sl(2)
U(1)

G2(2)
SO(4)

G2(2)
SO(2,2)

8 Sl(3)
SO(3)

Sp(6)
SU(3)×U(1)

F4(4)
USp(6)×SU(2)

F4(4)
Sp(6)×Sl(2)

8 Sl(3,C)
SU(3)

SU(3,3)
SU(3)×SU(3)×U(1)

E6(+2)
SU(6)×SU(2)

E6(+2)
SU(3,3)×Sl(2)

24 SU∗(6)
USp(6)

SO∗(12)
SU(6)×U(1)

E7(−5)
SO(12)×SU(2)

E7(−5)
SO∗(12)×Sl(2)

8
E6(−26)

F4

E7(−25)
E6×U(1)

E8(−24)
E7×SU(2)

E8(−24)
E7(−25)×Sl(2)

10 Sp(2n,4)
Sp(2n)×Sp(4)

12 SU(n,4)
SU(n)×SU(4)

16 R× SO(n−5,5)
SO(n−5)×SO(5)

Sl(2)
U(1) ×

SO(n−4,6)
SO(n−4)×SO(6)

SO(n−2,8)
SO(n−2)×SO(8)

SO(n−2,8)
SO(n−4,2)×SO(2,6)

18
F4(−20)
SO(9)

20 SU(5,1)
SU(5)×U(1)

E6(−14)
SO(10)×SO(2)

32
E6(6)

USp(8)

E7(7)
SU(8)

E8(8)
SO(16)

E8(8)
SO∗(16)
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Attractor flow and geodesic motion

• Now, restrict to spherically symmetric solutions:

ds
2
3 = N

2
(ρ)dρ

2
+ r

2
(ρ)dΩ

2
2

The sigma-model action becomes, up to a total derivative (gij is the metric on M∗
3 ):

S =

Z
dρ

»
N +

1

N

“
ṙ

2 − r
2
gijφ̇

i
φ̇

j
”–

• The Lagrange multiplier N imposes the Wheeler-DeWitt Hamiltonian constraint

H = (pr)
2 −

1

r2
g

ij
pipj = N

2

which can be set to N = 1 by a gauge choice. Solutions are thus massive geodesics on
the cone R+ ×M∗

3 . This separate into geodesic motion on M∗
3 , times radial motion.
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Attractor flow and geodesic motion

• The isometries translate into conserved Noether charges. In particular, the Noether
charges corresponding to the Heisenberg algebra are the electric and magnetic charges,
together with the NUT charge k:

[p
I
, qJ] = 2δ

I
Jk

This is in fact a general feature of flux compactifications.
Moore Freed

• If k 6= 0, regularity at the horizon requires that the time coordinate t is compact. Genuine
asymptotically flat black holes in 4 dimensions are obtained only if k = 0.

• k → 0 is a kind of classical limit. With hindsight, it suggests that the Wigner function will
appear naturally when discussing 4D black holes.
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Geodesic flow on special quaternionic Kahler manifolds

• Supersymmetry implies that the 3D slices have to be flat. Hence r(ρ) = ρ, and the
geodesic motion on M∗

3 has to be massless. In general, there are additional conditions,
depending on the number of supersymmetries to be preserved.

• In particular, we can reproduce the attractor flow equations of BPS black holes in N = 2

SUGRA by studying geodesic flow on the on the (analytically continued) s-map from the
special Kahler manifold M4: (σ = −2U )

ds
2
=

1

2
(dσ)

2
+ gij̄(z, z̄)dz

i
dz

j̄
+

1

2
e

2σ
“

da + ζ
I
dζ̃I − ζ̃Idζ

I
”2

− e
σ
h
(ImN )IJdζ

I
dζ

J
+ (ImN−1

)
IJ
“

dζ̃I + (ReN )IKdζ
K
”“

dζ̃J + (ReN )JLdζ
L
”i

qI = −2e
σ
h
(ImN )IJ∂ζ

J
+ (ReN )IJ(ImN−1

)
JL
“

dζ̃L + (ReN )LMdζ
M
”i

+ 2 kζ̃I

p
I

= −2e
σ
(ImN−1

)
IL
“

dζ̃L + (ReN )LMdζ
M
”
− 2 kζ

I

k = e
2σ
“

da + ζ
I
dζ̃I − ζ̃

I
dζI

”
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Quaternionic viel-bein

• The quaternionic geometry can be exposed by defining a SU(2)× Sp(nv) quaternionic
vielbein, i.e. a 2× nv pseudo-real matrix

V
αΓ

=

0BBB@
u v

eA EA

−v̄ ū

−ĒA ēA

1CCCA =
h
εαβρΓΓ′V

βΓ′
i∗

so that the three Kahler forms and metric are

Ω
i
= εαβ (σ

i
)
β
γρΓΓ′V

αΓ ∧ V
γΓ′

, ds
2
= εαβρΓΓ′V

αΓ ⊗ V
βΓ′

In terms of the conserved charges, the one-forms entering V are

u = −
i

2
e

(K−σ)/2
X

I
h
qI − 2kζ̃I −NIJ(p

J
+ 2kζ

J
)
i

, v =
1

2
dσ +

i

2
e
−σ

k

e
A

= e
A
i dz

i
, E

A
= −

i

2
e
−σ/2

e
Ai

g
ij̄

f̄
I
j̄

h
qI − 2kζ̃I −NIJ(p

J
+ 2kζ

J
)
i
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SUSY Geodesic flow and attractor equations

• The supersymmetry constraints are given by requiring that the SUSY variation

δχ
Γ

= V
αΓ

µ σ
µβ
α εβ = V

αΓ
ε̃α

vanishes. Equivalently, the matrix V has a zero eigenvector, which can be taken to be
(1, λ):

1

2
dσ +

i

2
e
−σ

k = −
i

2
λe

(K−σ)/2
X

I
“

qI − kζ̃I −NIJ(p
J

+ kζ
J
)
”

dz
i

= −
i

2
λe

−σ/2
g

ij̄
f̄

I
j̄

“
qI − kζ̃I −NIJ(p

J
+ kζ

J
)
”
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Generalized attractor equations with NUT charge

• Using standard special geometry formulae this can be rewritten as

1

2
dσ +

i

2
e
−σ

k = −
i

2
λe

−σ/2
Z

dz
i

= −iλ
|Z|
Z

e
−σ/2

g
ij̄

∂j̄|Z|

where
Z = e

K/2
h
(qI − 2kζ̃I)X

I − (p
I
+ 2kζ

I
)FI

i
For k = 0, and choosing λ so that σ be real, this reproduces the standard attractor flow
equation.
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Black holes and D-instantons

• This coincidence was in fact first observed by Gutperle and Spalinski in their study of
D-instanton solutions in N = 2 SUGRA in 5 dimensions: pI and qI are M2-brane
instanton charge, while k is the M5-brane instanton charge. In fact, such instantons are
T-dual to the stationary black holes of interest to us, and this coincidence is a reflection of
mirror symmetry.

• This in fact suggests how to incorporate higher-derivative corrections: by mirror symmetry,
the FhR2F 2h−2 corrections in 4D are mapped to

∞X
h=1

F̃h∂
2
S∂

2
S(∂C)

2h−2

which depend on the hypers only. Their reduction to 3D gives rise to higher derivative
corrections to the particle action.

Antoniadis Gava Narain Taylor
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The universal SU(2, 1) sector

• It is instructive to investigate the “universal sector”, which encodes the scale U , the
graviphoton electric and magnetic charges, and the NUT charge k (this amounts to
truncating all moduli away). The Hamiltonian is

H =
1

8
(pU)

2 −
1

4
e

2U
h
(pζ̃ − kζ)

2
+ (pζ + kζ̃)

2
i

+
1

2
e

4U
k

2

Gauge conditions are U = ζ = ζ̃ = a = 0 at τ = 0.

• The motion in the (ζ̃, ζ) plane is that of a charged particle in a constant magnetic field.
The electric, magnetic charges are the generators of translations; together with the
angular momentum

p = pζ̃ + ζk , q = pζ − ζ̃k , J = ζpζ̃ − ζ̃pζ

they satisfy the usual magnetic algebra

[p, q] = k , [J, p] = q , [J, q] = −p
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• The motion in the U direction is governed effectively by

H =
1

8
(pU)

2
+

1

2
e

4U
k

2 −
1

4
e

2U
h
p

2
+ q

2 − 4kJ
i

• At spatial infinity, pU becomes equal to the ADM mass, and J vanishes; hence the BPS
mass relation

M
2
+ k

2
= p

2
+ q

2

• At the horizon U → −∞, τ →∞, the last term is irrelevant and one recovers
AdS2× S2 geometry (with compact time if k 6= 0) with area

A = p
2
+ q

2
=
q

(p2 + q2)2
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Spectrum generating symmetry

• Since the space is symmetric, there is in fact an whole su(2, 1) matrix Q of conserved
charges,

Q =

0@ −m −(p− iq) 2ik

−(p + iq) 0 p + iq

−2ik p− iq m

1A
with

H = Tr(Q2
) , det(Q) = 0

The last condition can be checked explicitely, and is necessary in order for the motion not
to be over-determined. Note in particular that the ADM mass does NOT commute with
p,q,k:

[m, p] = p , [m, q] = q , [m, k] = 2k .
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SUSY geodesic motion on SU(2,1)

• SUSY is equivalent to H = 0 in this simple case:

H =
1

2

˛̨̨
pU + ike

2U
˛̨̨2
−

1

4
e

2U |p + iq||2

From the Cayley-Hamilton theorem for 3x3 matrices

Q
3 − (TrQ)Q

2 −
1

2

h
TrQ2 − (TrQ)

2
i

Q− det Q = 0

we conclude that Q3 = 0: Q is in the maximal nilpotent coadjoint orbit of SU(2, 1). This
is the classical supersymmetric phase space for the generalized attractor flow in this case !
Its dimension is 6, compared to 8 for the general non SUSY motion. Its symplectic form
may be obtained from the general theory of coadjoint orbits.
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Geodesic motion in N = 8

• For N = 8, the SUSY variation is

δλA = εIΓ
I
AȦP

Ȧ

where εI is a vector of the R-symmetry group in 3 dimensions SO∗(16), P Ȧ is a 128
spinor of SO∗(16) corresponding to the tangent space to E8(8)/SO∗(16), and λA is a
conjugate spinor.

• This can be interpreted as a Dirac equation in 16 dimensions, where εI is the momentum,
hence εI should be light-like. In order to have an εI such that (*) vanishes, P Ȧ should be a
special spinor. For example, 1/2-SUSY trajectories correspond to pure spinors of SO(16),
of dimension 58. This is the dimension of the minimal nilpotent orbit of E8(8).
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Geodesic motion in N = 4

• For N = 4, the SUSY variation is

δλ
a
A = εIΓ

I
AȦV

Ȧ,a

where εI is a vector R-symmetry group SO(6, 2), and V ·A,a (a = 1...nv), corresponding
to the tangent space of SO(8, nv)/SO(6, 2)× SO(2, nv − 2), is a collection of nv

spinors of SO(8). Solutions can be obtained by requiring that V Ȧ,a = λȦva. 1/2 SUSY
trajectories correspond to pure spinors of SO(8), hence the dimension is nv + 5. This is
the dimension of the minimal nilpotent orbit of SO(8, 24).

• The coincidence between the dimensions of the K(C) orbits of elements in the tangent
space P (g = t + p) and the dimensions of the orbits in G(R) is a general consequence
of the Kostant-Sekiguchi correspondence:

P : velocities ↔ Q : Noether charges
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From classical to quantum mechanics

• A standard way to quantize geodesic motion of a particle on M∗
3 is to replace the classical

trajectories by a harmonic functions on M∗
3 :"

−
∂2

∂r2
−

∆

r2

#
Ψ(r, U, z, z̄, ζ

I
, ζ̃I, a) = 0

where ∆ is the Laplace-Beltrami operator on M∗
3 .

• One may attempt to solve this problem by finding a maximal commuting set of
observables. In particular, one may choose to diagonalize all pI and qJ in the subspace
k = 0, or all pI and k. In addition, if M∗

3 is an homogeneous space, there are additional
conserved quantities, including higher order Casimirs of G.

• As a matter of fact, we have to deal with the geodesic motion of a superparticle, since it
comes by reduction from SUGRA in 4D. The wave functions are therefore harmonic
spinors, or equivalently, harmonic differential forms on M∗

3 .
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The BPS Hilbert space

• Our interest is in further restricting to supersymmetric geodesic motion of a superparticle
on M∗

3 . We should therefore impose further conditions, e.g. in N = 2

∃ε/ ε
α ∂

∂XA
α

Ψ = 0

• At fixed (projective) ε, this implies that the function does not depend on half of the
coordinates XA. Ψ should be a holomorphic function with respect to the complex structure
determined by εα. Better to say, Ψ should be a holomorphic function (or an element of the
sheaf cohomology group Hl(T, O(−k)) for some l, k) on the twistor space T over the
quaternionic-Kahler space M3. This can be viewed as a higher dimensional, quaternionic
version of the Penrose - Atiyah Hitchin Singer twistor tranform in 4 dimensions.

• More generally, it may be fruitful to consider the hyperkahler cone HKC over a
quaternionic-Kahler manifold, by including the cone direction r and an extra conjugate
variable together with the twistor directions. The minimal representation of G, relevant for
BPS states with 16 supercharges, should then consist of tri-holomorphic functions on HKC.
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Quantum SUSY motion on a symmetric space

• In the case where M∗
3 is a symmetric space G/H, the Hilbert space H may be

decomposed into unitary representation ρi of G. Furthermore their should exist a map
between vectors of each representation and the unconstrained Hilbert space L2(G/K).

• This can be achieved if the representation admits a (preferably unique) vector fH invariant
under H. Then

Ψ(g) = 〈fH, ρ(g)v〉
is H-invariant for any choice of v. If such a “spherical vector” does not exist, any other
finite-dim irrep of H will do, and give a section of some non-trivial bundle over G/H rather
than a function.

• Supersymmetric geodesic motion should correspond to unitary representations of
unusually small functional dimension. Let us see how to construct those.
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Co-adjoint orbits as phase spaces

• Recall that the Noether charges take values in the dual of the Lie algebra g∗. This is
foliated into orbits of the action of G. Each orbit is a symmetric space

OJ = {g−1
Jg, g ∈ G} = G/Stab(J)

where Stab(J) is the stabilizer of J .
• Each orbit carries a natural G-invariant symplectic form, known as the Kirillov-Kostant

symplectic form:
ω(X, Y ) = Tr([X, Y ]J)

on the tangent space around at J . This is evidently non-degenerate (its kernel is given by
the commutant of J , which is orthogonal to OJ) Globally,

ω = dθ , θ = Tr(g−1
dg J)

where g is a gauge-fixed element in G/Stab.
• Generic orbits correspond to orbits of semi-simple (=diagonalizable) elements, whose

stabilizer is U(1)r, where r is the rank. Their dimension is dim G− rankG (an even
number).
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Nilpotent orbits as small phase spaces

• However, when J has a non-trivial nilpotent part (i.e. non diagonal Jordan form), the
stabilizer is typically larger (and non semi-simple), hence the orbit is smaller. The smallest
orbit is that of a root. More generally, nilpotent orbits are classified by homomorphisms of
Sl(2) into G.

• As an example, the minimal nilpotent orbit of SU(2, 1) has dimension 4. The maximal
nilpotent orbit has dimension 6:

J =

0@1

1

1A , Stab =

0@x0

x1 x0

x2 x1 x0

1A
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The orbit method

• Since the action of G on OJ preserves the symplectic form, its action on functions on OJ

may be expressed in terms of Poisson brackets. The moment maps form an element Q of
the dual of the Lie algebra, in the orbit of J itself.

• The general “orbit method philosophy” indicates that (most of the) unitary representations
of G may be obtained by quantizing the Hamiltonian action of G on such a phase space.

• For example, the representation of G on L2(G/K) at fixed values of the Casimirs
(assuming that G is split and K is its maximal compact subgroup) is associated to the
orbit of a generic semi-simple element:

dim(G/Stab) = dim G− rankG , dim(G/K) = (dim G + rankG)/2

This is the quantum mechanics obtained by quantizing geodesic motion on G/K, at fixed
values of the Casimirs !

• Similarly, nilpotent orbits are associated to “small representations” of G, which describe
the Hilbert space of supersymmetric geodesic motion on G/K !
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Quaternionic discrete series and very special SUGRA

• For very special supergravities, the moduli-space in 3 dimensions M3 = G/(M × SU(2)

is a symmetric quaternionic-Kahler space of dimension 4nv, where G is in its rank 4
“quaternionic” real form.

• Gross and Wallach have constructed unitary representations πk of G by considering the
sheaf cohomology group H1(T, O(−k)) on the twistor space T over the
quaternionic-Kahler space M3. For k ≥ 2nv + 1, this representation is irreducible, lies in
the discrete series and has functional dimension 2nv + 1: this can be viewed as the space
of functions of p, q, k.

• For lower values of k, the representation becomes decomposable. It admits a unitarizable
submodule π′k of smaller functional dimension:

k dim (p, q, k) Interpretation

≥ 2nv + 1 2nv + 1 I4 6= 0 4charges
nv − 1 2nv I4 = 0 3charges

(2nv − 2)/3 (5nv − 2)/3 ∂I4(p, q) = 0 2charges
(nv + 2)/3 nv + 2 ∂∂I4(p, q) = 0 1charges

These are relevant for the 4-, 3-, 2- and 1-charge black holes, respectively.
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Quaternionic discrete series and N=4,8 SUGRA

• By analytic continuation of the G = E8(−24) case to G = E8(8), we expect those to be
relevant to 1/8, 1/8 with zero entropy, 1/4, and 1/2 BPS black holes, respectively.

• The minimal representation has been constructed independently, and its spherical vector
is known. Amazingly (y2 = k),

MADM = p
2
y +

I4(p, q)

y2
+ y

2

is the Hamiltonian of conformal quantum mechanics, and

lim
β→∞

e
βHωfH = e

iI3(χA)/χ0

reproduces the tree-level topological amplitude !
Kazhdan Pioline Waldron, Gunaydin Koepsell Nicolai
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Physical interpretation of the wave function

• As usual in diffeomorphism invariant theories (e.g. quantum cosmology), the wave function
is independent of the “time” variable ρ, and observables need to be defined by correlating
variables.

• It is natural to use eU as the natural radial coordinate, since it goes from 0 at the horizon to
∞ at spatial infinity. One could also use the black hole area A = e2U/r2, although its
classically its range depends on the charges. We expect the wave function to be peaked
towards the attractor values of the moduli and the horizon area as U → −∞.

• The natural inner product is obtained by using the Klein-Gordon inner product (also known
as Wronskian, or U(1) charge) at fixed values of U . E.g, the mean value of the horizon
area should be roughly

A ∼ e
2U
Z

dr

r2
dzdz̄Ψ

∗
p,q

↔
∂U Ψp,q

If the wave function factorizes into θ(r)×Ψ′(U, z, z̄), it may be given by the square norm
of the state (in some normalization), as proposed by OVV.

• Unfortunately, this product is famously known to be not positive definite. A possible way
out is “third quantization”, where the wave function Ψ becomes itself an operator... this
may describe the possible black hole fragmentation near the horizon...
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Back to OSV

• We have started to clarify the meaning of the black hole wave function in radial
quantization. OSV proposed that the degeneracies would be given by

Ω(p, q) = 〈Ψtop|V †
p,q Vp,q|Ψtop〉

According to OVV, this should be a consequence of channel duality in AdS2 and of the fact
that Ψtop is a solution of the Wheeler-DeWitt equation. However, there is as yet compelling
reason to choose Ψtop over any other solution of the WdW equation !

• On the other hand, at least for cases with a non-trivial U-duality group in 3 dimensions,
such as N = 8, N = 4 or very special N = 2 SUGRA, there is a special wave function,
known as the spherical vector fH, invariant under the maximal compact subgroup H. (this
may turn out to be the same as the topological amplitude)
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An automorphic OSV-type formula

• Furthermore, although we have not expanded on this, there also exists a special vector (or
rather, distribution) invariant under the U-duality group fG(Z): this is in fact the product of
all spherical vectors for the associated representations over the p-adic fields (p prime)!

• Given the asymmetry between the horizon and infinity, the following modification of OSV is
rather attractive:

Ω(p, q, k) = 〈fG(Z)|V †
p,q Vp,q|fH〉

Said otherwise, the natural wave function at infinity (resp. at the horizon) is the real (resp.
adelic) spherical vector ! This puts us firmly into the realm of automorphic forms, the
natural habitat of black hole degeneracies. Indeed,

θG(g) = 〈fG(Z)|ρ(g)|fH〉

is the general way of constructing an automorphic form, i.e. a function of G(Z)\G/H !
Kazhdan BP Waldron



CALTECH - NOV 11, 2005 53

Very special black holes and Nahm equations

• We have seen that the black hole radial evolution is equivalent to geodesic motion on (the
HKC over) a quaternionic Kahler manifold. For very special SUGRA, this is a symmetric
space G/M × SU(2).

• Hyperkahler cones crop up in a completely different context, namely as moduli spaces of
the Nahm equations on the semi-infinite line, or equivalently Dirac monopoles, or D1
strings attached to a D3 brane.

Kronheimer; Bachas Hoppe Pioline

• In the monopole context, the geodesic motion on moduli space describe low energy
scattering, in particular *time* evolution. The Nahm equation on the other hand describes
the radial evolution away from the D3-brane.

• Channel duality suggests that we should identify the time evolution for black holes with the
radial evolution for monopoles. Hence one could think of the Nahm equations as a baby
model for the conformal quantum mechanics describing the black hole !

• This is less crazy then it sounds: Recent work suggests that the CQM describing D0-D4
bound states on the quintic is a quiver quantum mechanics, not unlike Nahm !

Gaiotto Guica Huang Simons Strominger Yin
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Open problems

• higher derivative corrections

• rotating black holes in 4D

• multi-centered black holes in 4D

• black holes and black rings in 5D and beyond

• automorphic wave functions, and relations to other counting formulae

• genuine N=2 theories and monodromy groups

• time-dependence and midi-superspace models


