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Exact BPS black hole degeneracies I

Explaining the microscopic origin of Bekenstein-Hawking entropy
of black holes is a pass/fail test for any theory of quantum gravity.
String theory has been very successful for (near) BPS black holes
to LO (leading order), and in some cases to NLO as Q →∞.

Strominger Vafa,. . . ; Cardoso de Wit Mohaupt,. . .

For BPS BH preserving 4 supercharges in D = 4,N = (4|8)
SUGRA in certain duality orbits, it has even been possible to
obtain the microscopic degeneracies at finite Q exactly. Those are
beautifully encoded as Fourier coefficients of certain Siegel
modular forms, related to certain Borcherds-Kac-Moody algebras.

Dijkgraaf, Verlinde, Verlinde; ...
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Exact BPS black hole degeneracies II

For BPS BH preserving 4 supercharges in D = 4,N = 2 SUGRA,
the story is much less understood. The Ooguri-Strominger-Vafa
conjecture Z (p, ζ) = |Ψtop(p + iζ)|2 is suggestive but raises more
questions than answers.

Part of the difficulty lies in the strong dependence of the BPS
spectrum on the value of the moduli at infinity: while the indexed
degeneracies are locally constant, they may jump on lines of
marginal stability (LMS), where the decay Γ→ Γ1 ⊕ Γ2 is allowed.
This is familiar e.g. from D = 4,N = 2 Seiberg-Witten gauge
theories.

Bilal Ferrari
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LMS and wall-crossing formulae I

On the SUGRA side, this jump corresponds to multi-centered
solutions becoming unbound. Wall-crossing formulae give a
powerful constraint on the exact BPS spectrum. In the simplest
case,

∆Ω(Γ, t) = (−1)〈Γ1,Γ2〉 〈Γ1, Γ2〉Ω(Γ1, t) Ω(Γ2, t)

Denef; Denef, Moore; Konsevich Soibelman

LMS exist for N = 4 SUGRA, but their patterns are much simpler
than in N = 2. In particular, the same Siegel modular form
controls the degeneracies in all regions of moduli space, although
the "contour prescription" to extract the Fourier coefficients differ.

Sen; Cheng Verlinde, . . .
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BH partition function and 3D effective action I

In general, one would be interested in the black hole partition
function Z (t ; ζ, ζ̃) =

∑
Ω(p,q; t)ei(qζ+pζ̃) at arbitrary values of the

moduli t at infinity, and with chemical potentials (ζ I , ζ̃I) conjugate
to all charges.
Moreover, it is artificial to focus on one-particle states: while the
one-particle spectrum jumps across a LMS, the many-particle
spectrum is smooth.
There is an even more intrinsic object to consider: reduce the
D = 4 SUGRA theory on an Euclidean circle. The partition
function of the D = 3 theory, or any coupling F in the LEEA, is a
function of the radius β = eU lp, the moduli t at infinity, the Wilson
lines ζ I , ζ̃I of the 4D gauge fields and their duals, and the NUT
scalar σ.
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4D black holes vs 3D instantons I

Any black hole solution in 4D wrapping along the circle yields an
instanton in 3D, with classical action Sp,q = eU |Zp,q|+ i(qζ + pζ̃).
There are also instantons in 3D with non-vanishing NUT charge k
which do not lift to bona fide BH in 4D, but their action goes like
Sk = ikσ + . . . .
Thus, one may read off the 4D BPS degeneracies Ω(p,q; t) by
Fourier decomposing

∫
F (U, t , ζ, ζ̃, σ)dσ wrt (ζ, ζ̃).

The power of this approach is that the 3D theory typically has a
much larger group of symmetries G3 than the 4D duality group G4.
While G4 leaves the BH entropy invariant, G3 mixes states with
different entropy, and provides a spectrum generating symmetry,
hopefully strong enough to fix the degeneracies entirely.

Gunaydin Neitzke BP Waldron
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4D black holes vs 3D instantons II
Incidentally, the continuous group G3(R) has been used as a
solution generating symmetry to construct all spherically
symmetric solutions in D = 4. Indeed, a spherically symmetric BH
in 4D corresponds to a geodesic on the 3D moduli space K3\G3,
hence to a one-parameter subgroup of G3.

Breitenlohner Gibbons Maison; Cvetic Youm

More recently, it was shown that BPS black holes correspond to
BPS geodesics, afforded by the special holonomy ofM3, and
extremal black holes correspond to null geodesics with nilpotent
charge of degree 3.

Gunaydin Neitzke BP Waldron, Neitzke BP Vandoren, Gaiotto Li Padi
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4D black holes vs 3D instantons III

For e.g., in N = 4, G4 = SL(2)× SO(6,nv ), G3 = SO(8,nv + 2).
The ∇2R2 couplings in N = 4 should be G3-invariant and should
count 1/4-BPS BH.

Note that G3 does not contain Sp(2)× SO(6,nv ). There may still
be a correspondence between Siegel modular forms and
SO(8,nv + 2) automorphic forms...

A crucial assumption that the instanton measure equals the BH
degeneracy. Known exceptions to this fact arise for threshold
bound states. If the assumption is true, there is still a potential
danger that the instanton sum will be severely divergent... Let us
set aside these worries for now.
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BHs and instantons in N = 2 SUGRA I

We now restrict to N = 2 supergravity. The BPS-saturated
coupling is the metric on the 3D moduli space, which splits into
the product of two quaternionic-Kähler manifolds

M3 =M(4nV +4)
V ×M(4nH )

H

Since the radius U is inMV , the hypermultiplet moduli spaceMH
is identical to the one in 4 dimensions. In the limit U →∞,MV
reduces to the "c-map" of the 4D VM moduli space,

M(4nV +4)
V = R+

U ×M
(2nv )
V × T 2nv +2

ζ I ,ζ̃I
× S1

σ

Note that S1
σ is non trivially fibered over Tζ I ,ζ̃I

, with c1 ∝ dζ I ∧ d ζ̃I .
Cecotti Ferrara Girardello; Ferrara Sabharwal
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BHs and instantons in N = 2 SUGRA II
MV receives perturbative corrections from KK states on S1, and
instanton corrections from 4D BH (and states with non-zero NUT
charge). In type IIA on CY X , these are D0-D2-D4-D6 branes on
Heven(X ), and KKM on X × S1.

Similarly, in type IIB on the same CY X ,MH in 4D has a c-map
structure at weak coupling (computable using the mirror CY Y ),
but it receives one-loop and instanton corrections, from
D(-1)-D1-D3-D5 branes on Heven(X )× S1, and NS5 on X .

Antoniadis Minasian Theisen Vanhove; Robles-Llana, Saueressig, Vandoren
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BHs and instantons in N = 2 SUGRA III

T-duality along S1 maps IIA to IIB (on the same CY X ), and
exchanges the VM and HM moduli spaces :

MA
V =MB

H , MA
H =MB

V

Thus, the problem of counting 4D BH is equivalent to that of
computing instanton corrections to the 4D hypermultiplet space !

Before attacking this problem, let us review some general
techniques for quaternionic-Kähler spaces...
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Twistor space, Swann bundle I

QK metrics are difficult to describe, since they are usually not
Kähler. HK metrics are Kähler, but the Kähler potential must
satisfy some complicated differential equations. Both of them are
however admit an algebraic (holomorphic) description via twistors.
Recall that a 4d-dimensional manifold is QK if its holonomy is
Sp(d)× Sp(1), and HK if its holonomy is in Sp(d).
Given any QK manifoldM, one may construct C2 ∼ R+ × SU(2)
bundle overM by canceling the Sp(1) part of the connection: S is
a HK manifold with an SU(2) isometric action and homothetic
Killing vector, known as the Swann bundle or HK cone S.

Salamon; Swann; de Wit Rocek Vandoren
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Twistor space, Swann bundle II

Any HK manifold S carries an complex symplectic structure, since
Ω = ω1 + iω2 is holomorphic wrt to J3.
More generally, one may consider the twistor space
ZS = CP1 × S, equipped with the complex symplectic form

Ω[0](ζ) = ω+ − iζ ω3 + ζ2 ω− ,

with ω± = −1
2(ω1 ∓ iω2), holomorphic wrt to the complex structure

J(ζ, ζ̄) =
1− ζζ̄
1 + ζζ̄

J3 +
ζ + ζ̄

1 + ζζ̄
J2 + i

ζ − ζ̄
1 + ζζ̄

J1

Ω[0] is regular at ζ = 0, but has a pole at ζ =∞. Since it is only
defined up to overall factor, one may instead consider

Ω[∞](ζ) ≡ ζ−2 Ω[0](ζ) = ω− − iω3/ζ + ω+/ζ2 ,
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Twistor space, Swann bundle III
Ω is real wrt to the antipodal map ζ 7→ −1/ζ̄,

Ω[∞](ζ) = Ω[0](−1/ζ̄)

More generally, Ω defines a section of Λ2T ∗F (2), or "real global
O(2) section" for short:

Ω[i] = f 2
ij Ω[j] mod dζ , Ω[̄i](ζ) = Ω[i](−1/ζ̄)

where fij are the transition functions of the O(1) bundle on CP1.
Knowing Ω, one may compute the HK metric by expanding around
ζ = 0 (or any other point).

Hitchin Karlhede Lindström Roček
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Twistor space, Swann bundle IV
Locally, one can choose complex Darboux coordinates ν I

[i](ζ) and

µ
[i]
I (ζ) on ZS , regular in patch Ui , such that Ω[i] = dµ[i]

I ∧ dν I
[i].

On the overlap of two patches Ui ∩ Uj , they must be related by a
symplectomorphism,

µ
[i]
I = ∂ν I

[i]
S[ij] , ν I

[j] = ∂
µ

[j]
I

S[ij] , S[ij] = S[ij](ν I
[i], µ

[j]
I , ζ)

(ν[i], µ
[i]) are ambiguous up to a local symplectomorphism, regular

in Ui . Moreover, in Ui ∩ Uj ∩ Uk , S[ij],S[jk ],S[ik ] are subject to
consistency relations: S[ij] defines a class in H1(ZS).

Alexandrov BP Saueressig Vandoren; Lindström Roček
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Twistor space, Swann bundle V

Any triholomorphic isometry of S yields a triplet of moment maps
~µκ = (v , v̄ , x), such that κ · ~ω = d~µκ. This triplet is best viewed as
a real global section of O(2):

η =
v
ζ

+ x − v̄ζ

In the presence of d commuting tri-holomorphic isometries κI , one
may choose ν[i] = f 2

i0ζη
I as our "position" coordinates. S[ij] must

now be of the form

S[ij] = ν I
[i]µ

[j]
I + H [ij](ηI

[i], ζ)

such that, on Ui ∩ Uj ,

µ
[i]
I − µ

[j]
I = ∂ηI H [ij]
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Twistor space, Swann bundle VI
This gluing condition can be solved in general,

µ
[i]
I (ζ) =

i
2
ρI +

∑
j

∮
Cj

dζ ′

2πi ζ ′
ζ + ζ ′

2(ζ ′ − ζ)
∂ηI H [0j](ζ ′),

where κI = ∂ρI generate the tri-holomorphic isometries.
This reproduces the standard Legendre transform construction of
toric HK metrics, with generalized prepotential H(ηI , ζ):

L =

∮
dζ

2πiζ
H(η, ζ) , χ(v I , v̄ I ,wI , w̄I) = 〈L − x I(wI + w̄I)〉x I

Perturbations away from toric metrics are described by
holomorphic functions H [ij]

(1) (ν[i], µ
[j], ζ). Eg: H = η2/ζ + m η log η

produces Taub-NUT, deformed into Atiyah-Hitchin byH(1) = ηeµ.
Alexandrov Saueressig BP Vandoren I
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Twistor space, Swann bundle VII

WhenM is QK, S is HKC. In this case, superconformal invariance
requires S[ij] to be (quasi)homogeneous of degree one in ν I

[i] and
ζ-independent.
Coordinates on ZM are given by projectivizing coordinates on ZS ,
singling out one index [ (c[i] is an anomalous dimension):

ξΛ
[i] = νΛ

[i]/ν
[
[i] , ξ̃

[i]
Λ = µ

[i]
Λ , α[i] = µ

[i]
[ + c[i] log ν[[i]

The complex homogeneous symplectic form on ZS descends to a
complex contact structure on ZM:

Ω = d(ν IdµI) = d(ν[X ) , X ≡ dα + ξΛd ξ̃Λ

while S[ij](ξ, ξ̃, α) now generate contact transformations.
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Twistor space, Swann bundle VIII

The coordinates ξΛ, ξ̃Λ, α as functions of xµ ∈M and z = π̄2ζ+π1

−π̄1ζ+π2

now define the contact twistor lines. They are singular at z = 0
and z =∞, corresponding to the zeros of ν[.
The contact twistor lines encode the QK metric onM via

X = eΦ

(
dz
z

+
p+

z
− ip3 + p−z

)
, dp3 + 2ip+ ∧ p− = ω3

For toric QK manifold, S[ij] = α + ξΛξ̃Λ − H [ij](ξΛ) recovers the
(less) standard Legendre transform construction. Deformations
away from toric QK manifolds are again described by holomorphic
functions H [ij]

(1) (ξ, ξ̃, α).
One could by-pass the Swann space and its twistor space and
work with ZM only. Still, the HK potential on S is a useful object,
as it must be invariant under all isometries.

Alexandrov Saueressig BP Vandoren II
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The perturbative hypermultiplet moduli space I

In the absence of instanton corrections, the symplectic structure
on ZS is governed by

Hpert =
i
2

F (ηΛ)

η[
+ c η[ log η[

where F is the prepotential of the SK base, e.g. in IIB on a CY Y ,

F (X Λ) = −κabc
X aX bX c

6X 0 +
1
2
ζ(3)(X 0)2

(2πi)3 χY

− (X 0)2

(2πi)3

∑
ka>0

nka Li3
(

e2πikaX a/X 0
)
,

and c originates from one-loop correction: c = 1
96πχY .

Roček Vafa Vandoren; Robles Llana Saueressig Vandoren
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Enforcing S-duality and electric-magnetic duality I

The one-loop term and worldsheet instanton corrections break the
SL(2,R) continuous S-duality symmetry of the metric, acting
holomorphically on S as(

ν0

ν[

)
7→
(

a b
c d

)(
ν0

ν[

)
, νa 7→ νa

Symmetry under the discrete S-duality SL(2,Z) can be restored
by summing over images. The tree-level 2ζ(3)χY/g2

s and ζ(2)χY
are unified together with D-instantons in a standard SL(3)
Eisenstein series, while the worldsheet instantons are unified with
Euclidean D- string instantons.

Robles-Llana Roček Saueressig Theis Vandoren; Green Gutperle, Kiritsis BP
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Enforcing S-duality and electric-magnetic duality II

From the point of view of type IIA on the mirror CY X , D(−1) and
D1 correspond to D0 and D2 wrapped on A-cycles in H3(X ,Z):

S = ηIµI + Hpert + η[
∑
qΛ

nqΛ

∑
n

1
n2 e

2πinqΛ
ηΛ

η[

where nqΛ = nqa are the genus 0 Gopakumar-Vafa invariants of X .
Restoring symplectic invariance and mapping back to IIB, one
obtains D(−1)−D1−D3−D5 instanton effects in type IIB. At the
linear (one-instanton) order,

S = ηIµI + Hpert + η[
∑
p,q

npΛ,qΛ
Li2

(
e

2πi(qΛ
ηΛ

η[
−pΛµΛ)

)
+ . . .

Alexandrov BP Saueressig Vandoren III
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Enforcing S-duality and electric-magnetic duality III

Beyond the one-instanton approximation, the structure is much
more complicated. At perturbative level ZM is a twisted torus
bundle (C×)2nv +2

ξΛ,ξ̃Λ
n C×α .

Each instanton induces a contact
transformation Li2[e2πi(qΛξ

Λ−pΛξ̃Λ))]
across the meridian arg z = |Zp,q|
on CP1.

Gaiotto Neitzke Moore; Alexandrov Saueressig BP Vandoren III

This structure is very reminiscent of the KS wall-crossing formula,
as we now review.
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The Kontsevich-Soibelman wall-crossing formula I

Kontsevich and Soibelman show that across a LMS, the infinite
non-commutative products∏

arg(Zp,q)↗

UΩ+(p,q)
p,q =

∏
arg(Zp,q)↘

UΩ−(p,q)
p,q ,

where Ω± are "motivic GW invariants", Up,q are formal group
elements

Up,q = exp

( ∞∑
n=1

1
n2 enpΛ,nqΛ

)
and ep,q satisfy the Lie algebra[

ep,q,ep′,q′
]

= (−1)pΛq′Λ−p′ΛqΛ

(
pΛq′Λ − p′ΛqΛ

)
ep+p′,q+q′ .
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The Kontsevich-Soibelman wall-crossing formula II

Up to the sign, which can be absorbed by a choice of "quadratic
refinement", Up,q can be viewed as a symplectomorphism of the
complex torus (C)×2nV +2:

ep,q = ei(qΛξ
Λ−pΛξ̃Λ) , [∗, ∗] = {∗, ∗}PB

Indeed, in the context of 4D/3D N = 2 gauge theories, the KS
formula with np,q ≡ Ω(p,q) ensures that the full
instanton-corrected metric on the 3D moduli space is well defined
and continuous across the LMS.
Physically, single-instanton contribution on one side of the LMS is
replaced by multi-instanton contributions on the other side.

Gaiotto Neitzke Moore
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Generalization to SUGRA I

Generalizing SYM→ SUGRA is challenging:
If np,q ∼ eSBH (p,q), there are severe convergence issues. If, on the
other hand, np,q has support on polar states, like the standard
Donaldson-Thomas invariants, the series may be convergent, but
the connection to BH counting may be lost.
Moreover, NS5-brane instantons need to be incorporated. One
might hope to get them by SL(2,Z) duality from the D5-instantons.
This is difficult due to the complicated transformation rule of µΛ,(
µ0
µ[

)
7→
(

d −c
−b a

)(
µ0
µ[

)
+
κabcν

aνbνc

6(ν[)2

(
c2/(cν0 + dν[)

−[c2(aν0 + bν[) + 2cν[]/(cν0 + dν[)2

)
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Generalization to SUGRA II

Enforcing a larger duality group, e.g. SL(3,Z) as apparent in the
dual heterotic string on K 3× T 3 , may allow to shortcut this route
and obtain NS5-brane contributions from perturbative corrections.

Halmagyi BP

When the NS5-brane charge k is non-zero, electric and magnetic
translations no longer commute: [pΛ,qΣ] = kδΛ

Σ. One has to resort
to Landau-type wave functions, non-Abelian Fourier coefficients.
From the mathematical point of view, it seems natural to replace
Li2 by the quantum dilogarithm, with ~ ∼ k ...

Eventually, one may hope that the exact hypermultiplet 3D metric,
hence the 4D BH spectrum, will be entirely fixed by modular
invariance under G3(Z)...
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Conclusion and open problems I

Counting 4D black holes by computing instanton corrections in 3D
seems very promising. If so, 3D U-dualities can act as spectrum
generating symmetries for 4D black holes ! For N = 4,8, this
suggests new relations between Siegel modular forms and
automorphic forms of SO(8,nV + 2,Z) and E8(8)(Z).

Gunaydin Neitzke BP Waldron

For N = 2, we are back to the problem of computing the exact
metric on the hypermultiplet moduli space in 4D ! While the exact
metric may be too difficult to compute, it may be possible to
determine the exact complex symplectic (or contact) structure on
the twistor space.
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Conclusion and open problems II

One may also contemplate a generalized topological wave
function computing the higher derivative F̃g-type corrections to the
hypers. It is tempting to speculate that it defines a "triholomorphic"
function on S, giving a one-variable generalization of the standard
topological amplitude.

Antoniadis Gava Narain Taylor; Gunaydin Neitzke BP
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