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Conformal symmetry and universality

Conformal symmetry plays a crucial role in describing
universal phases in many physics problems:

e At large distances, physics is either trivial or de-
scribed by a non-trivial conformal fixed point of the
renormalization group. This fixed point is stable
under irrelevant perturbations, hence within large
universality classes of theories.

e T hisis particularly powerful in two dimensions, where
the conformal group SO(2,2) extends to the infi-
nite dimensional Virasoro group. Critical exponents
can often be computed by identifying “phenomeno-
logically” the right conformal fixed point. 1Ising,
percolation...

e Gauge theories in 4 dimensions are classically con-
formally, some however remain conformal quantum
mechanically: N = 4 SYM, finite N = 2 theories.
The AdS/CFT correspondance makes the confor-
mal symmetry geometrical.

e Non-trivial conformal fixed points in gauge theories
in other dimensions surprisingly exist: (2,0) theory,
membranes, five-branes...



Conformal symmetry in the UV

If conformal symmetry arises naturally in the infrared, it
may be desirable to a have a fundamental theory con-
formal in the ultraviolet:

e A conformally invariant fundamental theory would
ensure a vanishing cosmological constant, even af-
ter phase transitions.

e The SO(2,10) structure of the 10D superalgebra is
maybe rather an hint at conformal symmetry rather
than at two-times physics...

e A cosmological singularity corresponds to an ultra-
violet regime: in this talk we will show that gravity
becomes a 0+ 1-dimensional conformal system, or
rather an infinite family thereof.



Conformal quantum mechanics

Conformal quantum mechanics has been considered in
other settings:

e Introduced as a toy model of conformal gauge the-
ories

De Alfaro Fubini Furlan

e The near-horizon geometry of charged (Reissner-
Nordstrom) black holes, AdS, x S», exhibits con-
formal invariance, the dynamics of test particles is
invariant under the 1-dimensional conformal group,
SO(2,1).

Claus Derix Kallosh Kumar Townsend Van Proeyen

e By the AdS/CFT correspondence, string theory on
AdS> should be dual to a conformal quantum me-
chanical system in 041 dimensions.

Maldacena, Michelson Strominger
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Conformal quantum mechanics

e Conformal quantum mechanics was first introduced
in 1976 by de Alfaro, Fubini and Furlan (DFF) as
an attempt to understand soft breaking of confor-

mal invariance:
1 (dg\> ¢
- =] —=, >0
2 (dt) q? s

e [ he dynamics are invariant under conformal trans-
formations of the time axis,

at + b q(t)
,  q(t) —
ct + d ct + d
e The Noether charges generating these transforma-
tions at ¢t = 0O read

1 g 1 1
E+=—< 2+q—2> =H, D=—Z(pq+qp), E—=5q2

—

, ad—bc=1

2

e They represent the conformal group SO(2,1) =
SI1(2) in 041 dimensions,

{E4,E_.}=2D, {D,Ei}=+FE.

e Conformal invariance fixes ordering ambiguities.

e A superconformal version of this model can also be
constructed, based on SU(1,1|1) = OSp(2|2).

Fubini Rabinovici; Akulov Pashnev



CQM and coadjoint orbits

e T he coupling constant g is related to the quadratic
Casimir of SO(2,1) = Si(2):
g 3

1
AN=_"(E,E_ +E E,)-—D*=Z_ _—
2( +E_+ +) T

which we can parameterize as A =r(r — 1).

e Since D and E_ do not commute with the Hamilto-
nian, they evolve in time, but following the simple
law,

dg/dt [h, 9] ,

o0 = (5, Fp)wesr.
h = (8 é)eSl(z)

e [ he motion thus takes place on a coadjoint orbit
of SI(2), flowing along the action of the nilpotent
generator h = E4,

G(t) = e"G(0)e ™"

e Classically, the coupling constant is given by the
invariant of the orbit, A ~ det(G).



Mass can preserves conformal invariance !

e The Hamiltonian H = E4 is a parabolic element

of SO(2,1). It has a delta-normalizable continuous
positive spectrum starting at 0, with eigenfunctions

Ye(q) = q1/2J2r—1(va 2F) — q2r_1/2 as E — 0

The spectrum may be ren- o
dered discrete by deform- = |,
ing the Hamiltonian into
H = E4 4+ N2E_ where 1/A
iS a new length scale, which
can however be changed by
acting with D. 0 -

The Hamiltonian is now a compact (elliptic) ele-
ment of SO(2,1), with discrete normalizable spec-
trum, generated by the rising and lowering opera-
tors,

Li=Fy—-FE_+iD, [H,Li]=+L4
acting on the vacuum,
Lpo=0 = olq) =g e 7N/?

We thus have an evenly integer spaced spectrum,
with eigenmodes

wn(x) — (q/\)QT—% e_q2/\2/2L?LT_1(q2/\2)
where L, are Laguerre polynomials.



CQM and RN black holes

e Reissner-Nordstrom black holes have a near-horizon
geometry given by AdS> x So,
ds? —(2M/r)*dt® + (2M /r)?dr? + M2dQ?
A (2M /r)?dt

e The Hamiltonian of a free particle of mass m and
charge ¢ in static gauge is

2

H=2"1r

2f

where f is the function

mg
2r2f’

_|_

1
f= 5 [\/m2 + (r°p + 4L%)/4M> + ¢,
and g the effective coupling constant

g =4M?*(m? — qz)/m -- 4L2/m.
Claus Derix Kallosh Kumar Townsend VVan Proeyen

e T his gives a ‘“relativistic”’ generalization of confor-
mal mechanics, with generators
1 g

F,. = H = — 2 ,
N Y TT,

1
E_-=—-Zfr?, D= Zrp,
U >'P



near-horizon limit of relativistic CQM

Upon taking the limit M — oo with M?(m —q) fixed,
f — m, hence one recovers the DFF conformal
quantum mechanics,

p3_|_g

H = :
2m = 2r2

with
g =8M?(m —q) + 4L+ 1)/m.

A superconformal version of this model can also be

found by considering a superparticle on the near-
horizon geometry.

Claus Derix Kallosh Kumar Townsend Van Proeyen

de Azcarraga Izquierdo Perez Bueno Townsend

This can be generalized to the motion of N charged
BPS black holes in the moduli space approximation.
In a near-horizon-like limit |z — 2/| < [,, the mod-
uli space turns out to have an homothetic closed
Killing vector, hence the quantum mechanics is con-
formal. The spectrum of H + K is now discrete,
where

Michelson Strominger
Britto Michelson Strominger Volovich
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From parabolic to elliptic, how justified

e Instead of working with asymptotic time 0; with
has a degenerate Killing horizon, one may choose

instead a global time, e.g. (u 4+ v) in coordinates
where the AdS? metric is ds? = dudv/sin?(u — v):

N
S
N

boundary

. motion generated by h+k

boundary

motion
generated by
h

u*=u- u™=u-+1

e [ he Hamiltonian wrt to the new Killing vector is
just the combination introduced by DFF,

2 2
P 1 r
o, O, =F F. . =—"L4 — 4+ —
w+ 8, = E4 + 5 Taa s
yielding a discrete spectrum of normalizable states.

Claus Derix Kallosh Kumar Townsend Van Proeyen; Klalllosh



2. Spacelike singularity and CQM

e As one approaches a cosmological (spacelike) sin-
gularity, the dynamics of points separated by more
than a cosmological horizon ~ ¢I' decouple. As
T — 0, this reduces to a set of decoupled 0+41-
dimensional (quantum) mechanical systems at each
point on the spacelike slice !

Belinskii Khalatnikov Lifschitz;, Misner

e In this limit, a minisuperspace ansatz is legitimate,
ds® = —a?dt? + g (t)dx'da’

with analogous ansatz for gauge fields. Evaluat-
ing Einstein’s action on this configuration, we ob-
tain the motion of a fictitious particle on the mod-
uli space of (spatially constant) metrics and gauge
fields.

e ‘Integrating out” off-diagonal dof yields potential
terms, which become reflection walls towards the
singularity: this leads to an hyperbolic billiard in the
Weyl chamber of a Kac-Moody algebra. Motion
consists of Kasner flights separated by bounces.
The apparition of chaos is related to hyperbolicity
of the algebra.

Damour Henneaux + de Buyl Schomblond Julia Nicolai . . .
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2-11-gravity at a spacelike singularity

e For simplicity, we consider 241 dimensional Ein-
stein gravity, dimensionally reduced to 041 at a
spacelike singularity:

(dz1 + Urdzo)? + Ugdx%]

U>
where e? is the volume and U = U;+iU, € SI(2)/U(1)

the “complex structure” of the spatial slice. We re-
frain from integrating U; out.

ds® = —a2dt® + e¢[

e The Einstein-Hilbert action becomes, after inte-
grating by part,

g = /dt vV—g(R — 2N\)
1 : U2+ U2
— dt | —e? [ —d2 4+ 211 72 ) _ 24e?A
/ [2046 ( o° + U22 ae
This action is invariant by under general time repa-
rameterization, keeping adt fixed.
e T he variation wrt o« imposes the Hamiltonian con-
straint (in @ = 1 gauge)
U2+ U2
e

1 :
Hwpw = §€¢ <¢2
5

—4/\) 0]
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Moving on the cone

Changing variables to V = e?, n = ae?, we get

1 : U? + Uz
Sz/dt - _V2+V2L22 — 2nA
2n U3
The dynamics is therefore given by the motion of

a free particle of mass m2 = 4A on the Lorentzian
cone with metric

dU12 + dU22

Us
Note this is flat R%! in polar coordinates. For A < 0O
the particle is tachyonic.

ds® = —dV? + V?

The volume V appears with a negative signature:
it can be chosen as a reference time, against which

to measure other phenomena.
DeWitt

The motion is now easily integrated: in the gauge
n = V2, the motion of U decouples from V, hence
U follows geodesics in the upper half plane.

The charge pi; associated to the isometry U; —
Ui+c is conserved. The motion of Uy effectively re-
ceives an harmonic potential psUs: for p; # O, this
prevents Us from reaching H+oo: trajectories are half
circles centered on the boundary of the upper half
plane.

14



Conformal Quantum Cosmology

Now put V = p2 Going to momentum variables

p=—4pp/n, p1=p"U1/(nU3), p2=p"Us/(nU3),
we get the Hamiltonian

2 A
H=L[ 2 2 15
p 8 2p°
The Hamiltonian constraint 5H/677 = 0 reads

Hwpw = 1p -I-%—l/\p
2 p?
This is nothing but the Hamiltonian of conformal
mechanics, upon identifying g = 4A, where A is
the angular momentum on Si(2)/U(1). The sign
of g depends on boundary conditions on the upper
half plane (square integrable modes have A < 0)

The quadratic potential is provided by the cosmo-
logical constant. For A < 0, we get an operator
with discrete normalizable states.

Even so, we are looking for a zero energy state,
which will not be normalizable.

For A < O, we are looking for a state which is invari-
ant under the compact generator £+ E_: the wave
function of the Universe is therefore the spherical
vector of the representation.

15



DFF vs WDW

Despite formal identity between the two problems, there
are some important differences:

e The WDW equation picks out zero-energy states
only. So boundedness from below of H is no longer
a requirement. Indeed, the sign of g depends on
boundary conditions on S (square integrable wave
functions have g < 0), and the sign of m? depends
on A (discrete spectrum for A < 0)

e Usual quantum mechanics analysis requires wave
functions to be square integrable. Here p should
be thought as a time variable, square integrability
along p should not be imposed. Instead perhaps,
use a Klein-Gordon type norm on spacelike slices
(and “third” quantize the system in order to get rid
of negative norm states)

Those are problems in any quantum cosmology investi-
gation, so we proceed anyway.

16



Reduction of n + 1-dim gravity

Let us know consider the reduction of n 4+ 1-dim
Einstein gravity: The metric ansatz is

_n(t)

V(t)
where V is the spatial volume and det(g) = 1.
The Einstein-Hilbert action reduces to

/ dt{i 2(n-1)
2n

n
Here UM coordinatize the negative curvature sym-
metric space S = Sl(n)/SO(n) describing all spa-
tially constant unit volume metrics g.

One recognizes the Lagrangian for a free particle
propagating on the Lorentzian cone

_2(n —1)

n

ds2 = dt? + V2/"(t) gi;(t) da’da?

72 4y UMGMNUN] _ 2/\77}

do? = Al 25 W P G et ™

Change vars to p = 1/8(n — 1)V/n and go to canon-
ical coordinates. The Hamiltonian now reads
nll, 4(n-—1) n/\ 5
H=—|— - "N -
1% 2P E np? 4(n — 1)'0
The eom for n is again the DFF Hamiltonian, at
zero energy, with ¢ = 8(n — 1)A/n related to the
Laplacian on S.

The conformal symmetry is a direct consequence of
the conical structure of moduli space.

17



Dimensional reduction of supergravity

In addition to the graviton, supergravity also con-
tains scalar and gauge fields. Upon dimensional
reduction, we still obtain the geodesic motion of a
free particle on a Lorentzian cone with negatively
curved sections G/K. E.g: gravity+dilaton+4B yields
a cone over SO(n,n)/SO(n) x SO(n).

The positive roots in G correspond to off-diagonal
metric and gauge fields; they can be eliminated by
using the associated conserved Noether charges,
producing a potential for the Cartan degrees of
freedom, aka dilatonic scalars: as in the 241 case,
these yield reflection walls keeping R < R> < ... in
a fundamental chamber.

In addition, there are potential terms originating
from spatial gradients of the metric; these could
be incorporated using a “dual”’ description of the
graviton (e.g: in 11 — 3 reduction, g,; are 8 vectors
fields dual to 8 scalars, hence yield a scalar field in
(8,1) Young tableau).

Obers BP Rabinovici;Boulanger et al

Duality implies an infinite set of such domain walls,
corresponding to a roots of an hyperbolic Kac-Moody
algebra E1g9. Upon introducing these new degrees of
freedom, one would expect to still have a conformal
symmetry.

Damour Henneaux Julia Nicolai
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CQM and coadjoint orbits, in detail

We have already mentioned that DFF conformal
mechanics correspond to free motion on a coadjoint
orbit of Si(2). In more detail: let us consider the
coadjoint orbit of a generic hyperbolic element of
sl(2):

Q) = {g_ljg , g € SZ(Q)} ) J = (A —)x)

The orbit €2 can be viewed as 2 = Stab\G where
Stab = {g,g 1Jg = J} is the stabilizer of J. A gauge
slice can be chosen as

=) )

G = SI(2) acts from the right on €2, hence on (3, ~).
A coadjoint orbit has a canonical invariant symplec-

tic form, the Kirillov-Kostant symplectic form,
w=4df , 6=Tr(Jdgg ) = —2\Bdy

The right action of h € G preserves w, hence can
be represented by its moment map Ej; such that
1w = dFE),. h then acts by Poisson bracket with Ej,
on functions of (3,~). Here:

Ey =2Xy, D=2X(1428y) E_ = =-2)\3(1+07)

19



Coadjoint orbits and unireps

e This can be recast in the conformal quantum me-
chanics form through a canonical transformation,

1 A
E+:3/2> D = 2py , E_:Zp2+2—y2

e Note that this construction is purely classical: the
non-trivial part is to quantize the coadjoint orbit.
This can be done by induced representation meth-
ods.

e One could have started from a nilpotent element of
S1(2) instead:

=) o= (" ) ()

6=tds, E,L=t, D=28t, E_=p%
Redefining t = y? and 8 = p/(2y) we get
1

Ey=y*, D=py, E—=Zp2

This is the usual harmonic oscillator. Its quantiza-
tion gives the metaplectic representation of Si(2).

e Kirillov's philosophy: there is a 1-1 correspondence
between unireps and coadjoint orbits.

20



CAM from nilpotent orbits

Quantization of coadjoint orbit of any group con-
taining SI(2) will yield a conformal quantum me-
chanical model: simply need to find the right vari-
ables such that D = pq etc.

E.g, for Si(n), the coadjoint orbit of an element
with n — 2 coinciding eigenvalues, after symplectic
reduction, yields the Conformal Calogero Model,

H=3 P+ oy

1<J

Barucci Regge; Freedman Mende, Gibbons Townsend

Generic coadjoint orbits have (even) dimension n =
dimG — RankG. Non-generic ones have a bigger sta-
bilizer, hence correspond to a phase space of smaller
dimension. They also have fewer parameters.

The coadjoint orbit of minimal dimension is the or-
bit of any root (for Si(n): only one 2 x 2 Jordan
block). Its quantization leads to the minimal repre-
sentation of G, analogous to the metaplectic rep-
resentation of Si(2).

Motivated by a conjecture about the BPS quantum
supermembrane, we turn to the quantization of the
minimal nilpotent orbit of ADE groups.

21



The minimal nilpotent orbit of ADE groups

e \We consider the coadjoint orbit of the lowest root,
E_,. Under D, = [E,, E_,], the algebra of G de-
composes into the 5-grading

G=G28G_19Go®G1 G
where Gipo = {FE+1,} are one-dimensional.

e The stabilizer of E_, consists of G_> ® G_1 & G,
where L is the component of Gg orthogonal to D,,.
The coadjoint orbit can then be parameterized by

Stab\G — {Dw} SY Gl D Ew

e (71 is an Heisenberg algebra,
[Ep, E)] = E, iff +7=w
e A Lagrangian subspace can be chosen as {Ej,, Eg }

where (g is the the next-to-affine-root, and 5; the
positive roots such that (8o, 8;) = 1.

e We represent the 3; and ~; as conjugate positions
and momenta:

Esg =ypi, Ey =z ,E,=y

e (Generators in Gg preserve the symplectic form of
(G1, hence act by canonical transformations on po-
sitions and momenta. G_1 and G_» are non-trivial.

22



Nilpotent Conformal Quantum Mechanics

e The action of G_1 and G_> can be found using
two Weyl generators, (i) Fourier transform on all
positions z;, (ii) the Weyl reflection wrt g,

_ I3(=)
W¢(ya$0a$i) — e 0 'QD(_CUO,y,xi)
where I3 is the cubic invariant of the positions under
the linearly realized H;. The Weyl group relation
(AS)2 = (SA)3 holds thanks to the invariance of
the non-Gaussian character exp(il3(x;)/xo) under
Fourier transform.

Kazhdan Savin

e In order to bring the generator F, = y to standard
form, we make a further canonical transformation,

y_p—2 z; = P8 p—ip—iq-w- p =228
27 2 27 pp pQZla 7 p

e T he generators of the conf. subalgebra now read

2

where A is, up to an additive constant, the quadratic
Casimir of G5 it is the only quartic invariant of the

coordinates and momenta {q;, 7} under GbL.

15 1/, 4A
Ew:—p ) Dw=2ppp—|—1, E_, = — P —|——2
2 P

e T he spherical vector, ie the wave function invariant
under all compact generators E, + E_,, has been
computed for any G by solving the corresponding
PDE'’s.

Kazhdan BP V\%ﬂo’dron



D4 minimal orbit

For D4, the 5-grading reads

Ds D Sl(2) x Sl(2) x Sl(2)
adi = [(1,1,1)+(3,1,1) + perm]o @ (2,2,2)1 & 1

The coordinates and momenta transform as a (2,2, 2),

and satisfy the Heisenberg algebra
[quoz,quﬁ] — eabEABE()zﬁ

The actions of each Si(2) factor in H are repre-
sented by the angular momentum-like operators

TH=oty e eap ¢4 g7, [TH, Y] = ePr

The quadratic Casimirs of all three Si(2)’'s are iden-
tical and equal to the unique quartic invariant I, of
the (2,2,2) representation.

Quantization: choose Q4® = ¢'4® as positions. Q4
is a vector Q! of SO(2,2), parameterized in polar
coordinates by
_50(2,2)
- S0(2,1)
The quadratic Casimir is the angular momentum
squared on Hs, i.e. the Laplacian on Si(2).

Q€ Ha = 50(2,1) , k>2=Qn.,Q’
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D4 minimal orbit and g-cosmology

We thus obtain

ADgoy , 15
2 +2,0

p2
H=Ew—|-E—w=5+

The Laplacian can be further reduced to the Lapla-
cian on SI(2)/U(1) by focussing on modes invariant
under the maximal compact K C G.

This is the conformal mechanical model coming
from dimensional reduction of 2 4+ 1 dimensional
gravity near a spacelike singularity, except for a de-
coupled degree of freedom k.

The spherical vector in this representation reads

3/26—5 1
o= 5= \[ot 4 Pr(QQ) + 1
The coordinate k2 = det(Q4%) appears here as a

degeneracy label.
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4. COOM and the quantum membrane

e It has been proposed that the 4-graviton amplitude
at R* order in M-theory compactified on 7%, known
exactly on the basis of SUSY and U-duality, be ob-
tainable from a one-loop computation in the BPS
supermembrane theory:

f4—/ Z(v,G,C,...)
R+xSI(3,2)\SI(3)/SO(3)

e 7 is the partition function of the membrane zero-
modes, mapping T3 — T¢It should be invari-
ant under both U-duality E4(Z) and modular group

[ 7).
Si(3, Z) BP Nicolai Plefka Waldron

e T he simplest non-trivial case is for d = 3, which al-
lows for membrane instantons. U-duality and mod-
ular can be embedded into a larger group,

Es D SI1(3)3 D SI(3)moa X RT x [S1(2) x SI(3)],

e In order to obtain an automorphic form of G, the
partition function should be written as

2() =Y um)R(g) - fitm) , um) =" T[ folm)
mezn pprime

where R is a representation of G on functions ¢(m)

of n variables, f(m) is the spherical vector of this

representation *** over the real field, and f, over
the p-adic field.
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The minimal rep of Eg

e [ he minimal orbit of Eg has dimension 22. The
5-grading reads

Es DO Si(6) x SI(2)
adi = 1®208[3+35]92091

e A Lagrangian subspace of 1 can be chosen by
breaking Si(6) down to SI(3) x Si(3): The mini-
mal representation therefore acts on

10=141+4(3,3) = 4,20, Zua

e From the membrane point of view, Z,, can be
thought as the 3 x 3 matrix of winding numbers,
however (y,zg) are two new quantum numbers: dis-
crete fluxes 7

e [ he spherical vector has a Born-Infeld like form,

L oo (_ J/det(ZZF + |2[%13) R det(Z))

- |2I28: 212 ylz[?

JE,

e Full verification of the conjecture still in progress.

BP Waldron, to appear soon
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Summary

Conformal symmetry arises in many different prob-
lems where a universal regime is reached: non-
trivial infrared dynamics of gauge theories, near
horizon limit of black holes, and here: gravity near
a spacelike singularity.

The appearance of conformal symmetry here is per-
haps not surprising, since we are expanding around a
solution with power-like behavior, g,. (¢, z) = t*g5, (x):
at least scaling symmetry is guaranteed.

From a mathematical viewpoint, conformal quan-
tum mechanics can be understood as free motion
on a coadjoint orbit of SI(2). It can be generalized
to any group G containing an Si(2). This allows
for a general quantization of these models.

Nilpotent orbits are particularly interesting, since
they have the smallest phase space and parameter
space: the minimal orbit has no parameter at all.

We have identified the minimal orbit of D4 with the
dimensional reduction of 241 gravity. How about
other ADE groups 7 ADE groups 7
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Hyperbolic quantum chaos 7

e Our cosmological model has avoided the complica-
tions of the general hyperbolic Kac-Moody groups:
can one reformulate the dimensional reduction of
M-theory to O+1 dimensions as the free motion on
a (nilpotent) coadjoint orbit of an Hyperbolic Kac-
Moody group 7

e Is there any remnant of U-duality at a cosmologi-
cal singularity ? Can the automorphic theta series
constructed by quantization of coadjoint orbits over
the real and p-adic describe, say, the wave function
of the universe 7

e [ he construction relied on the invariance of the
cubic character exp(il3(x;)/xo) under Fourier trans-
form: a class of non-Gaussian yet free cubic models.
Can models be found with oo degrees of freedom 7
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Poetry: gravity and fluid mechanics

e The dynamics of gravity at a spacelike singularity
has a strong flavor of fully developped turbulency
in fluid mechanics. Indeed, one may think of each
of the fictitious particles as fluid elements moving
on the moduli space, with the spatial position play-
ing the role of the particle label in a Lagrangian
description.

e Recall that Euler's perfect fluid equations can be
thought of as a geodesic motion on the coadjoint
orbit of volume preserving diffeomorphisms. Is there
a Similar picture for gravity 7

Arnold

e T he chaotic behavior is reminiscent of the energy
cascade in turbulency. The conformal symmetry
that we argued for should correspond to Kolmogorov's
“Inertial range”. Can quantum fluctuations and par-
ticle production provide a dissipation cut-off 7
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