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Conformal symmetry and universality
Conformal symmetry plays a crucial role in describing
universal phases in many physics problems:

• At large distances, physics is either trivial or de-
scribed by a non-trivial conformal �xed point of the
renormalization group. This �xed point is stable
under irrelevant perturbations, hence within large
universality classes of theories.

• This is particularly powerful in two dimensions, where
the conformal group SO(2,2) extends to the in�-
nite dimensional Virasoro group. Critical exponents
can often be computed by identifying �phenomeno-
logically� the right conformal �xed point. Ising,
percolation...

• Gauge theories in 4 dimensions are classically con-
formally, some however remain conformal quantum
mechanically: N = 4 SYM, �nite N = 2 theories.
The AdS/CFT correspondance makes the confor-
mal symmetry geometrical.

• Non-trivial conformal �xed points in gauge theories
in other dimensions surprisingly exist: (2,0) theory,
membranes, �ve-branes...
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Conformal symmetry in the UV
If conformal symmetry arises naturally in the infrared, it
may be desirable to a have a fundamental theory con-
formal in the ultraviolet:

• A conformally invariant fundamental theory would
ensure a vanishing cosmological constant, even af-
ter phase transitions.

• The SO(2,10) structure of the 10D superalgebra is
maybe rather an hint at conformal symmetry rather
than at two-times physics...

• A cosmological singularity corresponds to an ultra-
violet regime: in this talk we will show that gravity
becomes a 0+1-dimensional conformal system, or
rather an in�nite family thereof.
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Conformal quantum mechanics
Conformal quantum mechanics has been considered in
other settings:

• Introduced as a toy model of conformal gauge the-
ories

De Alfaro Fubini Furlan

• The near-horizon geometry of charged (Reissner-
Nordström) black holes, AdS2 × S2, exhibits con-
formal invariance, the dynamics of test particles is
invariant under the 1-dimensional conformal group,
SO(2,1).

Claus Derix Kallosh Kumar Townsend Van Proeyen

• By the AdS/CFT correspondence, string theory on
AdS2 should be dual to a conformal quantum me-
chanical system in 0+1 dimensions.

Maldacena; Michelson Strominger
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Conformal quantum mechanics
• Conformal quantum mechanics was �rst introduced
in 1976 by de Alfaro, Fubini and Furlan (DFF) as
an attempt to understand soft breaking of confor-
mal invariance:

L =
1

2

(
dq

dt

)2

− g

q2
, g > 0

• The dynamics are invariant under conformal trans-
formations of the time axis,

t→ at+ b

ct+ d
, q(t)→ q(t)

ct+ d
, ad− bc = 1

• The Noether charges generating these transforma-
tions at t = 0 read

E+ =
1

2

(
p2 +

g

q2

)
= H , D = −1

4
(pq+qp) , E− =

1

2
q2

• They represent the conformal group SO(2,1) =
Sl(2) in 0+1 dimensions,

{E+, E−} = 2D, {D,E±} = ±E±

• Conformal invariance �xes ordering ambiguities.

• A superconformal version of this model can also be
constructed, based on SU(1,1|1) = OSp(2|2).

Fubini Rabinovici; Akulov Pashnev
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CQM and coadjoint orbits

• The coupling constant g is related to the quadratic
Casimir of SO(2,1) = Sl(2):

∆ =
1

2
(E+E− + E−E+)−D2 =

g

4
− 3

16

which we can parameterize as ∆ = r(r − 1).

• Since D and E− do not commute with the Hamilto-
nian, they evolve in time, but following the simple
law,

dg/dt = [h, g] ,

g(t) =

(
D E−
−E+ −D

)
(t) ∈ sl(2)∗ ,

h =

(
0 1
0 0

)
∈ Sl(2)

• The motion thus takes place on a coadjoint orbit
of Sl(2), �owing along the action of the nilpotent
generator h = E+,

G(t) = ethG(0)e−th

• Classically, the coupling constant is given by the
invariant of the orbit, ∆ ∼ det(G).
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Mass can preserves conformal invariance !

• The Hamiltonian H = E+ is a parabolic element
of SO(2,1). It has a delta-normalizable continuous
positive spectrum starting at 0, with eigenfunctions

ψE(q) = q1/2J2r−1(x
√

2E)→ q2r−1/2 as E → 0

• The spectrum may be ren-
dered discrete by deform-
ing the Hamiltonian into
H = E+ + Λ2E− where 1/Λ
is a new length scale, which
can however be changed by
acting with D. x0

potential

• The Hamiltonian is now a compact (elliptic) ele-
ment of SO(2,1), with discrete normalizable spec-
trum, generated by the rising and lowering opera-
tors,

L± = E+ − E− ± iD , [H,L±] = ±L±
acting on the vacuum,

L−ψ0 = 0 ⇒ ψ0(q) = q2r−1

2e−q
2Λ2/2

• We thus have an evenly integer spaced spectrum,
with eigenmodes

ψn(x) = (qΛ)2r−1

2 e−q
2Λ2/2L2r−1

n (q2Λ2)

where Ln are Laguerre polynomials.
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CQM and RN black holes

• Reissner-Nordström black holes have a near-horizon
geometry given by AdS2 × S2,
ds2 = −(2M/r)4dt2 + (2M/r)2dr2 +M2dΩ2 ,

A = (2M/r)2dt

• The Hamiltonian of a free particle of mass m and
charge q in static gauge is

H =
p2
r

2f
+

mg

2r2f
,

where f is the function

f =
1

2

[√
m2 + (r2p2

r + 4L2)/4M2 + q
]
,

and g the e�ective coupling constant
g = 4M2(m2 − q2)/m+ 4L2/m .

Claus Derix Kallosh Kumar Townsend Van Proeyen

• This gives a �relativistic� generalization of confor-
mal mechanics, with generators

E+ = H =
1

2f
p2
r+

g

2r2f
, E− = −1

2
fr2 , D =

1

2
rpr
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near-horizon limit of relativistic CQM

• Upon taking the limit M →∞ with M2(m−q) �xed,
f → m, hence one recovers the DFF conformal
quantum mechanics,

H =
p2
r

2m
+

g

2r2
,

with
g = 8M2(m− q) + 4`(`+ 1)/m .

• A superconformal version of this model can also be
found by considering a superparticle on the near-
horizon geometry.

Claus Derix Kallosh Kumar Townsend Van Proeyen
de Azcarraga Izquierdo Perez Bueno Townsend

• This can be generalized to the motion of N charged
BPS black holes in the moduli space approximation.
In a near-horizon-like limit |x − x′| � lp, the mod-
uli space turns out to have an homothetic closed
Killing vector, hence the quantum mechanics is con-
formal. The spectrum of H + K is now discrete,
where

K =
∑

A<B

Q2
AQB

|xA − xB|2

Michelson Strominger
Britto Michelson Strominger Volovich
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From parabolic to elliptic, now justi�ed
• Instead of working with asymptotic time ∂t with
has a degenerate Killing horizon, one may choose
instead a global time, e.g. (u + v) in coordinates
where the AdS2 metric is ds2 = dudv/sin2(u− v):

motion
generated by

bo
un

da
ry

bo
un

da
ry

horizon

ho
riz

on

h

motion generated by h+k

u -u +=

t +
=

-t
=

u -u += +π

• The Hamiltonian wrt to the new Killing vector is
just the combination introduced by DFF,

∂u + ∂v = E+ + E− =
p2
r

2
+

1

2r2
+
r2

2
yielding a discrete spectrum of normalizable states.
Claus Derix Kallosh Kumar Townsend Van Proeyen; Kallosh11



2. Spacelike singularity and CQM

• As one approaches a cosmological (spacelike) sin-
gularity, the dynamics of points separated by more
than a cosmological horizon ∼ cT decouple. As
T → 0, this reduces to a set of decoupled 0+1-
dimensional (quantum) mechanical systems at each
point on the spacelike slice !

Belinskii Khalatnikov Lifschitz; Misner

• In this limit, a minisuperspace ansatz is legitimate,
ds2 = −α2dt2 + gij(t)dx

idxj

with analogous ansatz for gauge �elds. Evaluat-
ing Einstein's action on this con�guration, we ob-
tain the motion of a �ctitious particle on the mod-
uli space of (spatially constant) metrics and gauge
�elds.

• �Integrating out� o�-diagonal dof yields potential
terms, which become re�ection walls towards the
singularity: this leads to an hyperbolic billiard in the
Weyl chamber of a Kac-Moody algebra. Motion
consists of Kasner �ights separated by bounces.
The apparition of chaos is related to hyperbolicity
of the algebra.

Damour Henneaux + de Buyl Schomblond Julia Nicolai . . .
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2+1-gravity at a spacelike singularity

• For simplicity, we consider 2+1 dimensional Ein-
stein gravity, dimensionally reduced to 0+1 at a
spacelike singularity:

ds2 = −α2dt2 + eφ
[
(dx1 + U1dx2)2 + U2

2dx
2
2

]

U2

where eφ is the volume and U = U1+iU2 ∈ Sl(2)/U(1)
the �complex structure� of the spatial slice. We re-
frain from integrating U1 out.

• The Einstein-Hilbert action becomes, after inte-
grating by part,

S =

∫
dt
√−g(R− 2Λ)

=

∫
dt

[
1

2α
eφ
(
−φ̇2 +

U̇2
1 + U̇2

2

U2
2

)
− 2αeφΛ

]

This action is invariant by under general time repa-
rameterization, keeping αdt �xed.

• The variation wrt α imposes the Hamiltonian con-
straint (in α = 1 gauge)

HWDW :=
1

2
eφ
(
φ̇2 − U̇2

1 + U̇2
2

U2
2

− 4Λ

)
≡ 0
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Moving on the cone

• Changing variables to V = eφ, η = αeφ, we get

S =

∫
dt

[
1

2η

(
−V̇ 2 + V 2U̇

2
1 + U̇2

2

U2
2

)
− 2ηΛ

]

• The dynamics is therefore given by the motion of
a free particle of mass m2 = 4Λ on the Lorentzian
cone with metric

ds2 = −dV 2 + V 2dU
2
1 + dU2

2

U2
2

Note this is �at R2,1 in polar coordinates. For Λ < 0
the particle is tachyonic.

• The volume V appears with a negative signature:
it can be chosen as a reference time, against which
to measure other phenomena.

DeWitt

• The motion is now easily integrated: in the gauge
η = V 2, the motion of U decouples from V , hence
U follows geodesics in the upper half plane.

• The charge p1 associated to the isometry U1 →
U1+c is conserved. The motion of U2 e�ectively re-
ceives an harmonic potential p2

1U
2
2 : for p1 6= 0, this

prevents U2 from reaching +∞: trajectories are half
circles centered on the boundary of the upper half
plane.
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Conformal Quantum Cosmology

• Now put V = ρ2. Going to momentum variables
p = −4ρρ̇/η, p1 = ρ4U̇1/(ηU2

2 ), p2 = ρ4U̇2/(ηU2
2 ),

we get the Hamiltonian

H =
η

ρ2

[
−p

2

8
− ∆

2ρ2
+

1

8
Λρ2

]

• The Hamiltonian constraint δH/δη ≡ 0 reads

HWDW =
1

2
p2 +

2∆

ρ2
− 1

2
Λρ2 ≡ 0

• This is nothing but the Hamiltonian of conformal
mechanics, upon identifying g = 4∆, where ∆ is
the angular momentum on Sl(2)/U(1). The sign
of g depends on boundary conditions on the upper
half plane (square integrable modes have ∆ < 0)

• The quadratic potential is provided by the cosmo-
logical constant. For Λ < 0, we get an operator
with discrete normalizable states.

• Even so, we are looking for a zero energy state,
which will not be normalizable.

• For Λ < 0, we are looking for a state which is invari-
ant under the compact generator E++E−: the wave
function of the Universe is therefore the spherical
vector of the representation.
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DFF vs WDW
Despite formal identity between the two problems, there
are some important di�erences:

• The WDW equation picks out zero-energy states
only. So boundedness from below of H is no longer
a requirement. Indeed, the sign of g depends on
boundary conditions on S (square integrable wave
functions have g < 0), and the sign of m2 depends
on Λ (discrete spectrum for Λ < 0)

• Usual quantum mechanics analysis requires wave
functions to be square integrable. Here ρ should
be thought as a time variable, square integrability
along ρ should not be imposed. Instead perhaps,
use a Klein-Gordon type norm on spacelike slices
(and �third� quantize the system in order to get rid
of negative norm states)

Those are problems in any quantum cosmology investi-
gation, so we proceed anyway.
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Reduction of n+ 1-dim gravity
• Let us know consider the reduction of n + 1-dim
Einstein gravity: The metric ansatz is

ds2 = − η(t)

V (t)
dt2 + V 2/n(t) ĝij(t) dx

idxj ,

where V is the spatial volume and det(ĝ) = 1.
• The Einstein-Hilbert action reduces to∫

dt

{
1

2η

[
−2(n− 1)

n
V̇ 2 + V 2 U̇MGMN U̇

N

]
− 2Λη

}

Here UM coordinatize the negative curvature sym-
metric space S = Sl(n)/SO(n) describing all spa-
tially constant unit volume metrics ĝ.

• One recognizes the Lagrangian for a free particle
propagating on the Lorentzian cone

dσ2 = −2(n− 1)

n
dV 2 + V 2dUMGMNdU

N .

• Change vars to ρ =
√

8(n− 1)V/n and go to canon-
ical coordinates. The Hamiltonian now reads

H =
η

V

[
1

2
p2 +

4(n− 1)

nρ2
∆− nΛ

4(n− 1)
ρ2

]

The eom for η is again the DFF Hamiltonian, at
zero energy, with g = 8(n − 1)∆/n related to the
Laplacian on S.

• The conformal symmetry is a direct consequence of
the conical structure of moduli space.
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Dimensional reduction of supergravity
• In addition to the graviton, supergravity also con-
tains scalar and gauge �elds. Upon dimensional
reduction, we still obtain the geodesic motion of a
free particle on a Lorentzian cone with negatively
curved sections G/K. E.g: gravity+dilaton+B yields
a cone over SO(n, n)/SO(n)× SO(n).

• The positive roots in G correspond to o�-diagonal
metric and gauge �elds; they can be eliminated by
using the associated conserved Noether charges,
producing a potential for the Cartan degrees of
freedom, aka dilatonic scalars: as in the 2+1 case,
these yield re�ection walls keeping R1 ≤ R2 ≤ . . . in
a fundamental chamber.

• In addition, there are potential terms originating
from spatial gradients of the metric; these could
be incorporated using a �dual� description of the
graviton (e.g: in 11→ 3 reduction, gµi are 8 vectors
�elds dual to 8 scalars, hence yield a scalar �eld in
(8,1) Young tableau).

Obers BP Rabinovici;Boulanger et al

• Duality implies an in�nite set of such domain walls,
corresponding to a roots of an hyperbolic Kac-Moody
algebra E10. Upon introducing these new degrees of
freedom, one would expect to still have a conformal
symmetry.

Damour Henneaux Julia Nicolai
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CQM and coadjoint orbits, in detail

• We have already mentioned that DFF conformal
mechanics correspond to free motion on a coadjoint
orbit of Sl(2). In more detail: let us consider the
coadjoint orbit of a generic hyperbolic element of
sl(2):

Ω =
{
g−1Jg , g ∈ Sl(2)

}
, J =

(
λ
−λ
)

• The orbit Ω can be viewed as Ω = Stab\G where
Stab = {g, g−1Jg = J} is the stabilizer of J. A gauge
slice can be chosen as

Ω = {g =

(
1
γ 1

)
·
(

1 β
1

)
}

G = Sl(2) acts from the right on Ω, hence on (β, γ).

• A coadjoint orbit has a canonical invariant symplec-
tic form, the Kirillov-Kostant symplectic form,

ω = dθ , θ = Tr(Jdgg−1) = −2λβdγ

• The right action of h ∈ G preserves ω, hence can
be represented by its moment map Eh such that
ihω = dEh. h then acts by Poisson bracket with Eh
on functions of (β, γ). Here:
E+ = 2λγ , D = 2λ(1+2βγ) E− = −2λβ(1+βγ)
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Coadjoint orbits and unireps

• This can be recast in the conformal quantum me-
chanics form through a canonical transformation,

E+ = y2 , D = 2py , E− =
1

4
p2 +

λ

2y2

• Note that this construction is purely classical: the
non-trivial part is to quantize the coadjoint orbit.
This can be done by induced representation meth-
ods.

• One could have started from a nilpotent element of
Sl(2) instead:

J =

(
0
1 0

)
, g =

(√
t

1/
√
t

)
·
(

1 β
1

)

θ = tdβ , E+ = t , D = 2βt , E− = β2t

Rede�ning t = y2 and β = p/(2y) we get

E+ = y2 , D = py , E− =
1

4
p2

This is the usual harmonic oscillator. Its quantiza-
tion gives the metaplectic representation of Sl(2).

• Kirillov's philosophy: there is a 1-1 correspondence
between unireps and coadjoint orbits.
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CQM from nilpotent orbits

• Quantization of coadjoint orbit of any group con-
taining Sl(2) will yield a conformal quantum me-
chanical model: simply need to �nd the right vari-
ables such that D = pq etc.

• E.g, for Sl(n), the coadjoint orbit of an element
with n − 2 coinciding eigenvalues, after symplectic
reduction, yields the Conformal Calogero Model,

H =
∑

p2
i +

∑

i<j

g

(qi − qj)2

Barucci Regge;Freedman Mende;Gibbons Townsend

• Generic coadjoint orbits have (even) dimension n =
dimG−RankG. Non-generic ones have a bigger sta-
bilizer, hence correspond to a phase space of smaller
dimension. They also have fewer parameters.

• The coadjoint orbit of minimal dimension is the or-
bit of any root (for Sl(n): only one 2 × 2 Jordan
block). Its quantization leads to the minimal repre-
sentation of G, analogous to the metaplectic rep-
resentation of Sl(2).

• Motivated by a conjecture about the BPS quantum
supermembrane, we turn to the quantization of the
minimal nilpotent orbit of ADE groups.
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The minimal nilpotent orbit of ADE groups

• We consider the coadjoint orbit of the lowest root,
E−ω. Under Dω = [Eω, E−ω], the algebra of G de-
composes into the 5-grading

G = G−2 ⊕G−1 ⊕G0 ⊕G1 ⊕G2

where G±2 = {E±ω} are one-dimensional.

• The stabilizer of E−ω consists of G−2 ⊕ G−1 ⊕ G⊥0 ,
where ⊥ is the component of G0 orthogonal to Dω.
The coadjoint orbit can then be parameterized by

Stab\G = {Dω} ⊕G1 ⊕ Eω

• G1 is an Heisenberg algebra,
[Eβ, Eγ] = Eω i� β + γ = ω

• A Lagrangian subspace can be chosen as {Eβ0
, Eβi}

where β0 is the the next-to-a�ne-root, and βi the
positive roots such that 〈β0, βi〉 = 1.

• We represent the βi and γi as conjugate positions
and momenta:

Eβi = ypi, Eγi = xi , Eω = y

• Generators in G0 preserve the symplectic form of
G1, hence act by canonical transformations on po-
sitions and momenta. G−1 and G−2 are non-trivial.
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Nilpotent Conformal Quantum Mechanics
• The action of G−1 and G−2 can be found using
two Weyl generators, (i) Fourier transform on all
positions xi, (ii) the Weyl re�ection wrt β0,

Wψ(y, x0, xi) = e
− I3(xi)

2yx0 ψ(−x0, y, xi)

where I3 is the cubic invariant of the positions under
the linearly realized Hl. The Weyl group relation
(AS)3 = (SA)3 holds thanks to the invariance of
the non-Gaussian character exp(iI3(xi)/x0) under
Fourier transform.

Kazhdan Savin

• In order to bring the generator Eω = y to standard
form, we make a further canonical transformation,

y =
ρ2

2
, xi =

ρqi

2
, p =

1

ρ
pρ − 1

ρ2
qiπi, pi = 2

πi

ρ

• The generators of the conf. subalgebra now read

Eω =
1

2
ρ2 , Dω = 2ρpρ+1 , E−ω =

1

2

(
p2 +

4∆

ρ2

)

where ∆ is, up to an additive constant, the quadratic
Casimir of G⊥0 : it is the only quartic invariant of the
coordinates and momenta {qi, πi} under G⊥0 .

• The spherical vector, ie the wave function invariant
under all compact generators Eα + E−α, has been
computed for any G by solving the corresponding
PDE's.

Kazhdan BP Waldron23



D4 minimal orbit

• For D4, the 5-grading reads
D4 ⊃ Sl(2)× Sl(2)× Sl(2)
adj = [(1,1,1) + (3,1,1) + perm]0 ⊕ (2,2,2)1 ⊕ 12

• The coordinates and momenta transform as a (2,2,2),
and satisfy the Heisenberg algebra

[qaAα, qbBβ] = εabεABεαβ

• The actions of each Sl(2) factor in H are repre-
sented by the angular momentum-like operators

Σµ = σµαβ εab εAB qaAα qbBβ , [Σµ,Σν] = εµνρΣρ

The quadratic Casimirs of all three Sl(2)'s are iden-
tical and equal to the unique quartic invariant I4 of
the (2,2,2) representation.

• Quantization: choose QAα = q1Aα as positions. QAα

is a vector QI of SO(2,2), parameterized in polar
coordinates by

Ω ∈ H3 =
SO(2,2)

SO(2,1)
= SO(2,1) , κ2 = QIηIJQ

J

The quadratic Casimir is the angular momentum
squared on H3, i.e. the Laplacian on Sl(2).
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D4 minimal orbit and q-cosmology

• We thus obtain

H = Eω + E−ω =
p2

2
+

∆Sl(2)

ρ2
+

1

2
ρ2

• The Laplacian can be further reduced to the Lapla-
cian on Sl(2)/U(1) by focussing on modes invariant
under the maximal compact K ⊂ G.

• This is the conformal mechanical model coming
from dimensional reduction of 2 + 1 dimensional
gravity near a spacelike singularity, except for a de-
coupled degree of freedom κ.

• The spherical vector in this representation reads

ψD4
=
ρ3/2e−S

S
, S =

1

2

√
ρ4 + ρ2tr(QtQ) + κ4

The coordinate κ2 = det(QAα) appears here as a
degeneracy label.
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4. CQM and the quantum membrane

• It has been proposed that the 4-graviton amplitude
at R4 order in M-theory compacti�ed on T d, known
exactly on the basis of SUSY and U-duality, be ob-
tainable from a one-loop computation in the BPS
supermembrane theory:

fR4 =

∫

R+×Sl(3,Z)\Sl(3)/SO(3)
Z(γ;G,C, . . . )

• Z is the partition function of the membrane zero-
modes, mapping T 3 → T d. It should be invari-
ant under both U-duality Ed(Z) and modular group
Sl(3, Z). BP Nicolai Plefka Waldron

• The simplest non-trivial case is for d = 3, which al-
lows for membrane instantons. U-duality and mod-
ular can be embedded into a larger group,
E6 ⊃ Sl(3)3 ⊃ Sl(3)mod ×R+ × [Sl(2)× Sl(3)]U

• In order to obtain an automorphic form of G, the
partition function should be written as

Z(g) =
∑

m∈Zn

µ(m)[R(g) · f ](m) , µ(m) =∗∗
∏

pprime
fp(m)

where R is a representation of G on functions φ(m)
of n variables, f(m) is the spherical vector of this
representation *** over the real �eld, and fp over
the p-adic �eld.
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The minimal rep of E6

• The minimal orbit of E6 has dimension 22. The
5-grading reads

E6 ⊃ Sl(6)× Sl(2)
adj = 1⊕ 20⊕ [3 + 35]⊕ 20⊕ 1

• A Lagrangian subspace of G1 can be chosen by
breaking Sl(6) down to Sl(3) × Sl(3): The mini-
mal representation therefore acts on

10 = 1 + 1 + (3,3) = y, x0, Zaα

• From the membrane point of view, Zaα can be
thought as the 3 × 3 matrix of winding numbers,
however (y, x0) are two new quantum numbers: dis-
crete �uxes ?

• The spherical vector has a Born-Infeld like form,

fE6
=

1

|z|2S1
exp

(
−
√

det(ZZt + |z|213)

|z|2 + i
x0 det(Z)

y|z|2

)

• Full veri�cation of the conjecture still in progress.

BP Waldron, to appear soon
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Summary

• Conformal symmetry arises in many di�erent prob-
lems where a universal regime is reached: non-
trivial infrared dynamics of gauge theories, near
horizon limit of black holes, and here: gravity near
a spacelike singularity.

• The appearance of conformal symmetry here is per-
haps not surprising, since we are expanding around a
solution with power-like behavior, gµν(t, x) = tαg0

µν(x):
at least scaling symmetry is guaranteed.

• From a mathematical viewpoint, conformal quan-
tum mechanics can be understood as free motion
on a coadjoint orbit of Sl(2). It can be generalized
to any group G containing an Sl(2). This allows
for a general quantization of these models.

• Nilpotent orbits are particularly interesting, since
they have the smallest phase space and parameter
space: the minimal orbit has no parameter at all.

• We have identi�ed the minimal orbit of D4 with the
dimensional reduction of 2+1 gravity. How about
other ADE groups ? ADE groups ?
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Hyperbolic quantum chaos ?

• Our cosmological model has avoided the complica-
tions of the general hyperbolic Kac-Moody groups:
can one reformulate the dimensional reduction of
M-theory to 0+1 dimensions as the free motion on
a (nilpotent) coadjoint orbit of an Hyperbolic Kac-
Moody group ?

• Is there any remnant of U-duality at a cosmologi-
cal singularity ? Can the automorphic theta series
constructed by quantization of coadjoint orbits over
the real and p-adic describe, say, the wave function
of the universe ?

• The construction relied on the invariance of the
cubic character exp(iI3(xi)/x0) under Fourier trans-
form: a class of non-Gaussian yet free cubic models.
Can models be found with ∞ degrees of freedom ?
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Poetry: gravity and �uid mechanics

• The dynamics of gravity at a spacelike singularity
has a strong �avor of fully developped turbulency
in �uid mechanics. Indeed, one may think of each
of the �ctitious particles as �uid elements moving
on the moduli space, with the spatial position play-
ing the role of the particle label in a Lagrangian
description.

• Recall that Euler's perfect �uid equations can be
thought of as a geodesic motion on the coadjoint
orbit of volume preserving di�eomorphisms. Is there
a similar picture for gravity ?

Arnold

• The chaotic behavior is reminiscent of the energy
cascade in turbulency. The conformal symmetry
that we argued for should correspond to Kolmogorov's
�inertial range�. Can quantum �uctuations and par-
ticle production provide a dissipation cut-o� ?
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