Wall-crossing from quantum multi-centered BPS black holes

Boris Pioline

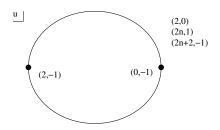
LPTHE, Jussieu

IPHT, Saclay, 23/5/2011

based on work with J. Manschot and A. Sen, arxiv:1011.1258, 1103.0261,1103.1887

Introduction I

- In D = 4, N = 2 supersymmetric field and string theories, the exact spectrum of BPS states can often be determined at weak coupling, and extrapolated to strong coupling.
- E.g., in pure SU(2) Seiberg-Witten theory,



Seiberg Witten; Bilal Ferrari

Introduction II

- In following the BPS spectrum from weak to strong coupling, one must be wary of two issues:
 - short multiplets may pair up into a long multiplet,
 - single-particle states may decay into multi-particle states.
- The first issue can be avoided by considering a suitable index $\Omega(\gamma,t)$, designed such that contributions from long multiplets cancel. $\Omega(\gamma,t)$ is then a piecewise constant function of the charge vector γ and couplings/moduli t.
- To deal with the second issue, one must understand how $\Omega(\gamma,t)$ changes across a wall of marginal stability W, where a single-particle state with charge γ can decay into a multi-particle state with charges $\{\alpha_i\}$, such that $\gamma = \sum_i \alpha_i$.

Introduction III

- Initial progress came from physics, by noting that single-particle states (in a certain limit) can be represented by multi-centered solitonic solutions. Those exist only on one side of the wall and decay into the continuum of multi-particle states on the other side.
- The simplest decay $\gamma \to \gamma_1 + \gamma_2$, where γ_1 , γ_2 are primitive charge vectors, involves only two-centered configurations, whose index is easily computed:

$$\Delta\Omega(\gamma \to \gamma_1 + \gamma_2) = (-1)^{\gamma_{12}+1} |\gamma_{12}| \Omega^+(\gamma_1) \Omega^+(\gamma_2)$$

Denef Moore

• In the non-primitive case $\gamma = M\gamma_1 + N\gamma_2$ where M, N > 1, many multi-centered configurations in general contribute, and computing their index is non-trivial.

Introduction IV

- A general answer to this problem has come from the mathematical study of the wall-crossing properties of (generalized) Donaldson-Thomas invariants for Calabi-Yau three-folds, believed to be the mathematical translation of the BPS index $\Omega(\gamma)$ in type IIA CY vacua.
- Notably, Kontsevich & Soibelman (KS) and Joyce & Song (JS) gave two different-looking formulae for $\Delta\Omega(\gamma \to M\gamma_1 + N\gamma_2)$.
- The KS formula has already been derived/interpreted in several ways, e.g. by considering instanton corrections to the moduli space metric in 3D after compactification on a circle.

Gaiotto Moore Neitzke; Alexandrov BP Saueressig Vandoren

• Our goal will be to derive new wall-crossing formulae, based on the quantization of multi-centered solitonic configurations.

Outline

- Introduction
- 2 Generalities, and a Boltzmannian view of wall-crossing
- The Kontsevich-Soibelman-Joyce-Song formula
- 4 Non-primitive wall-crossing from localization
- 6 Away from the wall

Outline

- Introduction
- 2 Generalities, and a Boltzmannian view of wall-crossing
- The Kontsevich-Soibelman-Joyce-Song formula
- 4 Non-primitive wall-crossing from localization
- 6 Away from the wall

Preliminaries I

• We consider $\mathcal{N}=2$ supergravity in 4 dimensions (this includes field theories with rigid $\mathcal{N}=2$ as a special case). Let $\Gamma=\Gamma_e\oplus\Gamma_m$ be the lattice of electric and magnetic charges, with antisymmetric (Dirac-Schwinger- Zwanziger) integer pairing

$$\langle \gamma, \gamma' \rangle = \langle (p^{\Lambda}, q_{\Lambda}), (p'^{\Lambda}, q'_{\Lambda}) \rangle \equiv q_{\Lambda} p'^{\Lambda} - q'_{\Lambda} p_{\Lambda} \in \mathbb{Z}$$

- BPS states preserve 4 out of 8 supercharges, and saturate the bound $M \geq |Z(\gamma, t^a)|$ where $Z(\gamma, t^a) = e^{K/2}(q_\Lambda X^\Lambda p^\Lambda F_\Lambda)$ is the central charge/stability data.
- We are interested in the index $\Omega(\gamma; t^a) = \operatorname{Tr}_{\mathcal{H}'_{\gamma}(t^a)}(-1)^{2J_3}$ where $\mathcal{H}'_{\gamma}(t^a)$ is the Hilbert space of one-particle states with charge $\gamma \in \Gamma$ in the vacuum with vector moduli t^a .

Preliminaries II

• The BPS invariants $\Omega(\gamma; t^a)$ are locally constant functions of t^a , but may jump across codimension-one subspaces

$$W(\gamma_1, \gamma_2) = \{t^a / \arg[Z(\gamma_1)] = \arg[Z(\gamma_2)]\}$$

where γ_1 and γ_2 are two primitive (non-zero) vectors such that $\gamma = M\gamma_1 + N\gamma_2$, $M, N \ge 1$. Assume for definiteness that $\gamma_{12} < 0$.

• We choose γ_1, γ_2 such that $\Omega(\gamma; t^a)$ has support only on the positive cone (root basis property)

$$\tilde{\Gamma}: \quad \{ \emph{M}\gamma_1 + \emph{N}\gamma_2, \quad \emph{M}, \emph{N} \geq 0, \quad (\emph{M}, \emph{N}) \neq (0,0) \} \; .$$

• Let c_{\pm} be the chamber in which $\arg(Z_{\gamma_1}) \geqslant \arg(Z_{\gamma_2})$. Our aim is to compute $\Delta\Omega(\gamma) \equiv \Omega^-(\gamma) - \Omega^+(\gamma)$ as a function of $\Omega^+(\gamma)$ (say).

Wall-crossing from semi-classical solutions I

- Assume that $M(\gamma_1), M(\gamma_2) \gg \Lambda, m_P$. Single-particle states which are potentially unstable across W are described by classical configurations with n centers of charge $\alpha_i = M_i \gamma_1 + N_i \gamma_2 \in \tilde{\Gamma}$, satisfying $(M, N) = \sum_i (M_i, N_i)$.
- Such bound states exist only on one side of the wall, and the distances r_{ij} diverge at the wall. Across the wall, the single-particle bound state has decayed into the continuum of multi-particle states. $\Delta\Omega(\gamma)$ is given by the index of such configurations.
- In addition, in either chamber, there may be multi-centered configurations whose charge vectors do not lie in $\tilde{\Gamma}$. However, they remain bound across W and do not contribute to $\Delta\Omega(\gamma)$.

Wall-crossing from semi-classical solutions II

• In $\mathcal{N}=2$ supergravity (and presumably also in $\mathcal{N}=2$ Abelian gauge theories), the locations of the centers are constrained by

$$\sum_{j=1...n,j\neq i}^{n} \frac{\alpha_{ij}}{|\vec{r_i} - \vec{r_j}|} = c_i, \qquad \left\{ \begin{array}{l} c_i = 2 \, \text{Im} \left[e^{-i\phi} Z(\alpha_i, t^a) \right] \\ \phi \equiv \text{arg}[Z(\alpha_1 + \cdots \alpha_n, t^a)] \\ \alpha_{ij} \equiv \langle \alpha_i, \alpha_j \rangle \end{array} \right.$$

If all $\alpha_i \in \tilde{\Gamma}$, the constants c_i are given by $c_i = \Lambda \sum_{i \neq j} \alpha_{ij}$, with $\Lambda \to \infty$ near the wall.

• After factoring out an overall translational mode, the solution space is (generically) a (2n-2)-dimensional symplectic manifold $(\mathcal{M}_n(\alpha_{ij}, c_i), \omega)$, with $\omega = \frac{1}{2} \sum_{i < j} \alpha_{ij} \sin \theta_{ij} \, \mathrm{d}\theta_{ij} \wedge \mathrm{d}\phi_{ij}$.

de Boer El Showk Messamah Van den Bleeken

• Up to issues of statistics, $\Delta\Omega(\gamma)$ is equal to the index of the SUSY quantum mechanics on \mathcal{M}_n , multiplied by the index $\Omega(\gamma_i)$ of the internal d.o.f. carried by each center.

Denef

Wall-crossing from semi-classical solutions III

• For primitive decay $\gamma \to \gamma_1 + \gamma_2$, the quantization of the phase space $(\mathcal{M}_2, \omega) = (S^2, \frac{1}{2}\gamma_{12}\sin\theta\,\mathrm{d}\theta\mathrm{d}\phi)$ reproduces the primitive WCF

$$\Delta\Omega(\gamma \to \gamma_1 + \gamma_2) = (-1)^{\gamma_{12}+1} |\gamma_{12}| \Omega^+(\gamma_1) \Omega^+(\gamma_2) ,$$

where $(-1)^{\gamma_{12}+1} |\gamma_{12}|$ is the index of the angular momentum multiplet of spin $j=\frac{1}{2}(\gamma_{12}-1)$.

• This generalizes to semi-primitive wall-crossing $\gamma \to \gamma_1 + N\gamma_2$: unstable configurations consist of a halo of n_s particles of charge $s\gamma_2$, with total charge $\sum sn_s\gamma_2 = n\gamma_2$, orbiting around a core of charge $\gamma_1 + (N-n)\gamma_2$. The phase space is $\mathcal{M}_n = \prod_s (\mathcal{M}_2)^{n_s}/S_{n_s}$.

Wall-crossing from semi-classical solutions IV

• Taking into account the Bose/Fermi statistics of the n_s identical particles, one arrives at a Mac-Mahon type partition function,

$$\frac{\sum_{N\geq 0} \Omega^-(1,N)\, q^N}{\sum_{N\geq 0} \Omega^+(1,N)\, q^N} = \prod_{k>0} \left(1-(-1)^{k\gamma_{12}} q^k\right)^{k\, |\gamma_{12}|\, \Omega^+(k\gamma_2)} \; .$$

Denef Moore

• E.g. for $\gamma \mapsto \gamma_1 + 2\gamma_2$,

$$\begin{split} \Delta\Omega(1,2) = & (-1)^{\gamma_{12}}\gamma_{12}\Omega^{+}(0,1)\,\Omega^{+}(1,1) + 2\gamma_{12}\,\Omega^{+}(0,2)\,\Omega^{+}(1,0) \\ & + \frac{1}{2}\gamma_{12}\,\Omega^{+}(0,1)\,\big(\gamma_{12}\Omega^{+}(0,1) + 1\big)\Omega^{+}(1,0) \;. \end{split}$$

In particular, the term $\frac{1}{2}d(d+1)$ with $d=\gamma_{12}\Omega^+(0,1)$, reflects the projection on (anti)symmetric wave functions.

Wall-crossing from semi-classical solutions V

 It is instructive to rewrite the semi-primitive WCF using the rational BPS invariants, related to the usual integer invariants via

$$ar{\Omega}(\gamma) \equiv \sum_{m{d}|\gamma} \Omega(\gamma/m{d})/m{d}^2 \; , \qquad \Omega(\gamma) = \sum_{m{d}|\gamma} \mu(m{d}) \, ar{\Omega}(\gamma/m{d})/m{d}^2$$

where $\mu(d)$ is the Möbius function.

• Using the identity $\prod_{d=1}^{\infty} (1-q^d)^{\mu(d)/d} = e^{-q}$, or working backwards, one arrives at

$$\frac{\sum_{N\geq 0} \bar{\Omega}^{-}(1,N) q^{N}}{\sum_{N\geq 0} \bar{\Omega}^{+}(1,N) q^{N}} = \exp\left[\sum_{s=1}^{\infty} q^{s}(-1)^{\langle \gamma_{1},s\gamma_{2}\rangle} \langle \gamma_{1},s\gamma_{2}\rangle \bar{\Omega}^{+}(s\gamma_{2})\right].$$

• The same result follows by treating particles in the halo as distinguishable (satisfying Boltzmann statistics), and attaching an effective index $\bar{\Omega}(s\gamma_2)$!

Wall-crossing from semi-classical solutions VI

• One advantage is that $\Delta\bar{\Omega}(\gamma)$ takes a simpler form, and makes charge conservation manifest. E.g for $\gamma\mapsto\gamma_1+2\gamma_2$,

$$\begin{split} \Delta \bar{\Omega}(1,2) = & (-1)^{\gamma_{12}} \gamma_{12} \bar{\Omega}^+(0,1) \, \bar{\Omega}^+(1,1) + 2 \gamma_{12} \, \bar{\Omega}^+(0,2) \, \bar{\Omega}^+(1,0) \\ & + \frac{1}{2} \gamma_{12} \, \bar{\Omega}^+(0,1)^2 \, \bar{\Omega}^+(1,0) \; . \end{split}$$

• The rational DT invariants $\bar{\Omega}(\gamma)$ appear in the JS formula, in constructions of modular invariant black hole partition functions, and in instanton corrections to hypermultiplet moduli spaces.

Joyce Song; Manschot; Alexandrov BP Saueressig Vandoren

The main conjecture I

In general, we expect that the jump to be given by a finite sum

$$\Delta \bar{\Omega}(\gamma) = \sum_{\substack{n \geq 2 \\ \gamma = \alpha_1 + \dots + \alpha_n}} \frac{g(\{\alpha_i\})}{|\operatorname{Aut}(\{\alpha_i\})|} \prod_{i=1}^n \bar{\Omega}^+(\alpha_i) ,$$

over all unordered decompositions of the total charge vector γ into a sum of n vectors $\alpha_i \in \tilde{\Gamma}$. The symmetry factor $|\operatorname{Aut}(\{\alpha_i\})|$ reflects Boltzmannian statistics.

- $g(\{\alpha_i\})$ are universal factors depending only on the charges α_i , which should be given by the index of the supersymmetric quantum mechanics on \mathcal{M}_n .
- The KS and JS formulae give a mathematical prediction for these coefficients $g(\{\alpha_i\})$, which we shall compare with the index.

Outline

- Introduction
- 2 Generalities, and a Boltzmannian view of wall-crossing
- The Kontsevich-Soibelman-Joyce-Song formula
- 4 Non-primitive wall-crossing from localization
- 6 Away from the wall

The Kontsevich-Soibelman formula I

• Consider the Lie algebra $\mathcal A$ spanned by abstract generators $\{e_\gamma, \gamma \in \Gamma\}$, satisfying the commutation rule

$$[e_{\gamma_1}, e_{\gamma_2}] = (-1)^{\langle \gamma_1, \gamma_2 \rangle} \langle \gamma_1, \gamma_2 \rangle e_{\gamma_1 + \gamma_2}$$
.

• For a given charge vector γ and value of the VM moduli t^a , consider the operator $U_{\gamma}(t^a)$ in the Lie group $\exp(A)$

$$U_{\gamma}(t^a) \equiv \exp\left(\Omega(\gamma; t^a) \sum_{d=1}^{\infty} \frac{e_{d\gamma}}{d^2}\right)$$

• The operators e_{γ} / U_{γ} can be realized as Hamiltonian vector fields / symplectomorphisms of a twisted torus.

Gaiotto Moore Neitzke

The Kontsevich-Soibelman formula II

The KS wall-crossing formula states that the product

$$A_{\gamma_1,\gamma_2} = \prod_{\substack{\gamma = M\gamma_1 + N\gamma_2, \\ M \ge 0, N \ge 0}} U_{\gamma} ,$$

ordered so that $\arg(Z_{\gamma})$ decreases from left to right, stays constant across the wall. As t^a crosses W, $\Omega(\gamma;t^a)$ jumps and the order of the factors is reversed, but the operator A_{γ_1,γ_2} stays constant. Equivalently,

$$\prod_{\substack{M\geq 0, N\geq 0,\\ M/N\downarrow}} U_{M\gamma_1+N\gamma_2}^+ = \prod_{\substack{M\geq 0, N\geq 0,\\ M/N\uparrow}} U_{M\gamma_1+N\gamma_2}^-\,,$$

The Kontsevich-Soibelman formula III

ullet The algebra ${\cal A}$ is infinite dimensional but filtered. The KS formula may be projected to any finite-dimensional algebra

$$\mathcal{A}_{M,N} = \mathcal{A}/\{\sum_{m>M \text{ or } n>N} \mathbb{R} \cdot e_{m\gamma_1+n\gamma_2}\} \ .$$

This projection is sufficient to infer $\Delta\Omega(m\gamma_1+n\gamma_2)$ for any $m\leq M, n\leq N$, e.g. using the Baker-Campbell-Hausdorff formula.

• For example, the primitive WCF follows in $A_{1,1}$ from

$$\begin{split} &\exp(\bar{\Omega}^+(\gamma_1)e_{\gamma_1})\,\exp(\bar{\Omega}^+(\gamma_1+\gamma_2)e_{\gamma_1+\gamma_2})\,\exp(\bar{\Omega}^+(\gamma_2)e_{\gamma_2})\\ &=\exp(\bar{\Omega}^-(\gamma_2)e_{\gamma_2})\,\exp(\bar{\Omega}^-(\gamma_1+\gamma_2)e_{\gamma_1+\gamma_2})\,\exp(\bar{\Omega}^-(\gamma_1)e_{\gamma_1}) \end{split}$$

and the order 2 truncation of the BCH formula

$$e^X e^Y = e^{X+Y+\frac{1}{2}[X,Y]}$$
.

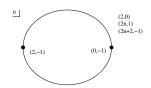
The Kontsevich-Soibelman formula IV

• In some simple cases, one may work in the full algebra \mathcal{A} , and use the "pentagonal identity"

$$U_{\gamma_2} U_{\gamma_1} = U_{\gamma_1} U_{\gamma_1 + \gamma_2} U_{\gamma_2}, \qquad \gamma_{12} = -1$$

 Using this identity repeatedly, one can e.g. establish the wall-crossing identity in pure Seiberg-Witten SU(2) theory,

$$U_{2,-1} \cdot U_{0,1} = U_{0,1} \cdot U_{2,1} \cdot U_{4,1} \dots U_{2,0}^{(-2)} \dots U_{3,-1} \cdot U_{2,-1} U_{1,-1}$$



Denef Moore: Dimofte Gukov Soibelman

The Kontsevich-Soibelman formula V

• Noting that the operators $U_{k\gamma}$ for different $k \ge 1$ commute, one may combine them into a single factor

$$V_{\gamma} \equiv \prod_{k=1}^{\infty} U_{k\gamma} = \exp\left(\sum_{\ell=1}^{\infty} \frac{ar{\Omega}(\ell\gamma)}{e_{\ell\gamma}} e_{\ell\gamma}
ight), \qquad ar{\Omega}(\gamma) = \sum_{d|\gamma} \Omega(\gamma/d)/d^2.$$

and rewrite the KS formula as a product over primitive charge vectors only,

$$\prod_{\substack{M\geq 0, N\geq 0,\\ \gcd(M,N)=1, M/N\downarrow}} V_{M\gamma_1+N\gamma_2}^+ = \prod_{\substack{M\geq 0, N\geq 0,\\ \gcd(M,N)=1, M/N\uparrow}} V_{M\gamma_1+N\gamma_2}^-\,,$$

The Kontsevich-Soibelman formula VI

- Using the BCH formula, one easily derives the semi-primitive wcf formula, and generalizations to $\gamma \rightarrow 2\gamma_1 + N\gamma_2, \dots$
- The fact that the algebra is graded by the charge lattice and the expression of V_{γ} guarantees that the jumps in the rational invariant will be of the form

$$\Delta \bar{\Omega}(\gamma) = \sum_{n \geq 2} \sum_{\substack{\{\alpha_1, \dots \alpha_n\} \in \tilde{\Gamma} \\ \gamma = \alpha_1 + \dots + \alpha_n}} \frac{g(\{\alpha_i\})}{|\operatorname{Aut}(\{\alpha_i\})|} \prod_{i=1}^n \bar{\Omega}^+(\alpha_i) ,$$

with some universal coefficients $g(\{\alpha_i\})$.

• The Joyce-Song wall-crossing formula expresses $g(\{\alpha_i\})$ as a complicated sum over trees, permutations, etc.

Generic decay I

- When α_i have generic phases, $g(\{\alpha_i\})$ can be computed by projecting the KS formula to the subalgebra spanned by $e_{\sum \alpha_j}$ where $\{\alpha_i\}$ runs over all subsets of $\{\alpha_i\}$.
- E.g., for n = 3, assuming that the phase of the charges are ordered according to

$$\alpha_1, \ \alpha_1 + \alpha_2, \ \alpha_1 + \alpha_3, \ \alpha_1 + \alpha_2 + \alpha_3, \ \alpha_2, \ \alpha_2 + \alpha_3, \ \alpha_3,$$

we find

$$g(\{\alpha_1, \alpha_2, \alpha_3\}) = (-1)^{\alpha_{12} + \alpha_{23} + \alpha_{13}} \alpha_{12} (\alpha_{13} + \alpha_{23})$$

As we shall see later, this fits the macroscopic index of 3-centered configurations!

The motivic Kontsevich-Soibelman formula I

• KS have proposed a quantum deformation of their formula, which governs wall-crossing properties of motivic DT invariants $\Omega_{\rm ref}(\gamma;y,t)$. Physically, these correspond to the "refined index"

$$\Omega_{\mathrm{ref}}(\gamma,y) = \mathrm{Tr}_{\mathcal{H}(\gamma)}'(-y)^{2J_3} \equiv \sum_{n \in \mathbb{Z}} (-y)^n \, \Omega_{\mathrm{ref},n}(\gamma) \,,$$

where J_3 is the angular momentum in 3 dimensions along the z axis. As $y \to 1$, $\Omega_{ref}(\gamma; y, t) \to \Omega(\gamma; t)$.

Dimofte Gukov; D G Soibelman

• Caution: this index (rather, a variant of it using a combination of angular momentum and $SU(2)_R$ quantum numbers) is protected in $\mathcal{N}=2$, D=4 field theories, but not in supergravity/string theory, where $SU(2)_R$ is generically broken.

Gaiotto Moore Neitzke

The motivic Kontsevich-Soibelman formula II

• To state the formula, consider the Lie algebra $\mathcal{A}(y)$ spanned by generators $\{\tilde{e}_{\gamma}, \gamma \in \Gamma\}$, satisfying the commutation rule

$$[\tilde{\mathbf{e}}_{\gamma_1}, \tilde{\mathbf{e}}_{\gamma_2}] = \kappa(\langle \gamma_1, \gamma_2 \rangle) \, \tilde{\mathbf{e}}_{\gamma_1 + \gamma_2} \;, \qquad \kappa(x) = \frac{(-y)^x - (-y)^{-x}}{y - 1/y} \;.$$

• To any primitive charge vector γ , attach the operator

$$\hat{V}_{\gamma} = \prod_{k \geq 1} \hat{U}_{k\gamma} = \exp \left[\sum_{\ell=1}^{\infty} \bar{\Omega}_{\mathrm{ref}}(\ell \gamma, y) \, \tilde{e}_{\ell \gamma} \right]$$

where $\bar{\Omega}_{\rm ref}(\gamma,y)$ are the "rational motivic invariants", defined by

$$\bar{\Omega}_{\rm ref}^+(\gamma, y) \equiv \sum_{d|\gamma} \frac{(y - y^{-1})}{d(y^d - y^{-d})} \Omega_{\rm ref}^+(\gamma/d, y^d).$$

The motivic Kontsevich-Soibelman formula III

The motivic version of the KS wall-crossing formula states that

$$\prod_{\substack{M\geq 0, N\geq 0>0,\\ \gcd(M,N)=1, M/N\downarrow}} \hat{V}^+_{M\gamma_1+N\gamma_2} = \prod_{\substack{M\geq 0, N\geq 0>0,\\ \gcd(M,N)=1, M/N\uparrow}} \hat{V}^-_{M\gamma_1+N\gamma_2}\,,$$

• $\Delta\bar{\Omega}_{\rm ref}(\gamma,y)$ can be computed using the same techniques as before, e.g. the primitive wcf read

$$\Delta\Omega_{\text{ref}}(\gamma_1 + \gamma_2, y) = \frac{(-y)^{\langle \gamma_1, \gamma_2 \rangle} - (-y)^{-\langle \gamma_1, \gamma_2 \rangle}}{y - 1/y} \Omega_{\text{ref}}(\gamma_1, y) \Omega_{\text{ref}}(\gamma_2, y)$$

• The general formula for $\Delta\bar{\Omega}_{\rm ref}$ involves universal factors $g(\{\alpha_i\},y)$, which reduce to $g(\{\alpha_i\})$ in the limit $y\to 1$. We expect that they are given by ${\rm Tr}'(-y)^{2J_3}$ in the corresponding SUSY quantum mechanics.

Outline

- Introduction
- 2 Generalities, and a Boltzmannian view of wall-crossing
- The Kontsevich-Soibelman-Joyce-Song formula
- 4 Non-primitive wall-crossing from localization
- 6 Away from the wall

Quantum mechanics of multi-centered solutions I

• The moduli space \mathcal{M}_n of BPS configurations with n centers in $\mathcal{N}=2$ SUGRA is described by solutions to Denef's equations

$$\sum_{\substack{j=1,\dots n, i\neq j}}^{n} \frac{\alpha_{ij}}{|\vec{r}_i - \vec{r}_j|} = c_i, \qquad \left\{ \begin{array}{l} c_i = 2 \, \text{Im} \left[e^{-i\phi} Z(\alpha_i) \right] \\ \phi = \text{arg}[Z(\alpha_1 + \cdots + \alpha_n)] \end{array} \right..$$

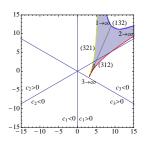
• \mathcal{M}_n is a symplectic manifold of dimension 2n-2, and carries an Hamiltonian action of SU(2):

$$\omega = rac{1}{2} \sum_{i < j} lpha_{ij} \, \sin heta_{ij} \, \mathrm{d} heta \wedge \mathrm{d} \phi_{ij} \; , \qquad ec{J} = rac{1}{2} \sum_{i < j} lpha_{ij} \, rac{ec{r}_{ij}}{|r_{ij}|}$$

de Boer El Showk Messamah Van den Bleeken

Quantum mechanics of multi-centered solutions II

- When the α_i 's lie in the positive cone $\tilde{\Gamma}$ (more generally, whenever $\operatorname{sign}(\alpha_{ij})$ defines an ordering of the α_i , \mathcal{M}_n is compact, and the fixed points of J_3 are isolated.
- E.g for 3 centers with $\alpha_{12} > 0$, $\alpha_{23} > 0$, $\alpha_{13} > 0$, the domain of the plane $c_1 + c_2 + c_3 = 0$ allowed by Denef's equations is:



For fixed c_i , the range of r_{ij} is read off by intersecting the shaded area with a radial line which joins c_i to the origin. Here, 3-centered solutions only exist in the region $c_1 > 0$, $c_3 < 0$, and have r_{ij} bounded from below and from above. Fixed points of J_3 correspond to collinear solutions, and lie on the boundary of this domain.

Quantum mechanics of multi-centered solutions III

• The symplectic form $\omega/2\pi \in H^2(\mathcal{M}_n,\mathbb{Z})$ is the curvature of a complex line bundle \mathcal{L} over \mathcal{M}_n , with connection

$$\lambda = rac{1}{2} \sum_{i < j} lpha_{ij} \left(1 - \cos heta_{ij}
ight) \mathrm{d} \phi_{ij} \;, \quad \mathrm{d} \lambda = \omega \;.$$

- Assuming that \mathcal{M}_n is spin, let $S = S_+ \oplus S_-$ be the spin bundle. Let $D = D_+ \oplus D_-$ be the Dirac operator for the metric obtained by restricting the flat metric on \mathbb{R}^{3n-3} to \mathcal{M}_n , with $D_\pm : S_\pm \mapsto S_\mp$. The action of SO(3) on \mathcal{M}_n lifts to an action of SU(2) on S_\pm .
- We assume that BPS states correspond to harmonic spinors, i.e. sections of $S \otimes \mathcal{L}$ annihilated by the Dirac operator D.

Quantum mechanics of multi-centered solutions IV

The 'refined index' is then given by

$$g_{\text{ref}}(\{\alpha_i\}; y) = \text{Tr}_{\text{Ker}D_+}(-y)^{2J_3} + \text{Tr}_{\text{Ker}D_-}(-y)^{2J_3}$$
.

• We further assume that $Ker D_- = 0$, so that the refined index $g_{ref}(\{\alpha_i\}; y)$ reduces to the equivariant index

$$g_{\text{ref}}(\{\alpha_i\}; y) = \text{Tr}_{\text{Ker}D_+}(-y)^{2J_3} - \text{Tr}_{\text{Ker}D_-}(-y)^{2J_3}$$
.

• The vanishing of $KerD_-$ can be shown to hold in special cases where \mathcal{M}_n is Kähler. In gauge theories, the protected spin character presumably reduces to the equivariant index without further assumption.

Quantum mechanics of multi-centered solutions V

 The refined/equivariant index can be computed by the Atiyah-Bott Lefschetz fixed point formula:

$$g_{\text{ref}}(\{\alpha_i\}, y) = \sum_{\text{fixed pts}} \frac{y^{2J_3}}{\det((-y)^L - (-y)^{-L})}$$

where L is the matrix of the action of J_3 on the holomorphic tangent space around the fixed point.

• In the large charge limit, $\mathcal{L} \to k\mathcal{L}$ with $k \to \infty$, this reduces to the Duistermaat-Heckmann formula for the equivariant volume,

$$\frac{\int_{\mathcal{M}_n} \omega^{n-1} y^{2J_3}}{(2\pi)^{n-1} (n-1)!} = \sum_{\text{fixed pts}} \frac{y^{2J_3}}{\det(L \log(-y))}$$

Quantum mechanics of multi-centered solutions VI

• The fixed points of the action of J_3 are collinear multi-centered configurations along the z-axis, such that

$$\sum_{j=1\dots n, j\neq i}^n \frac{\alpha_{ij}}{|z_i-z_j|} = c_i\,,\quad J_3 = \frac{1}{2}\sum_{i< j}\alpha_{ij}\operatorname{sign}(z_j-z_i)\,.$$

Equivalently, fixed points are critical points of the 'superpotential'

$$W(\lambda, \{z_i\}) = -\sum_{i < j} \operatorname{sign}[z_j - z_i] \alpha_{ij} \ln |z_j - z_i| - \sum_i (c_i - \frac{\lambda}{n}) z_i$$

These are isolated, and classified by permutations describing the order of z_i along the axis.

Quantum mechanics of multi-centered solutions VII

This leads to the Coulomb branch formula

$$g_{\text{ref}}(\{\alpha_i\}, y) = \frac{(-1)^{\sum_{i < j} \alpha_{ij} + n - 1}}{(y - y^{-1})^{n - 1}} \sum_{p: \partial_I W(p) = 0} s(p) y^{\sum_{i < j} \alpha_{ij} \operatorname{sign}(z_j - z_i)}$$

where $s(p) = -\operatorname{sign}(\det W_{IJ})$

• For $n \le 5$, we find perfect agreement with JS/KS!

$$g_{\text{ref}}(\alpha_1, \alpha_2; y) = (-1)^{\alpha_{12}} \frac{\sinh(\nu \alpha_{12})}{\sinh \nu} \qquad (y = e^{\nu})$$

$$g_{\text{ref}}(\alpha_1, \alpha_2, \alpha_3; y) = (-1)^{\alpha_{13} + \alpha_{23} + \alpha_{12}} \frac{\sinh(\nu(\alpha_{13} + \alpha_{23})) \sinh(\nu\alpha_{12})}{\sinh^2 \nu}$$

Higgs branch picture I

- An alternative formula can be given using the Higgs branch description of the multi-centered configuration, namely the quiver with n nodes $\{1 \dots n\}$ of dimension 1 and α_{ij} arrows from i to j.
- Since α_i lie on a 2-dimensional sublattice $\tilde{\Gamma}$, the quiver has no oriented closed loop. Reineke's formula gives

$$g_{\text{ref}} = \frac{(-y)^{-\sum_{i < j} \alpha_{ij}}}{(y - 1/y)^{n-1}} \sum_{\text{partitions}} (-1)^{s-1} y^{2\sum_{a \le b} \sum_{j < i} \alpha_{ji} \, m_i^{(a)} \, m_j^{(b)}},$$

where \sum runs over all ordered partitions of $\gamma = \alpha_1 + \cdots + \alpha_n$ into s vectors $\beta^{(a)}$ (1 $\leq a \leq s$, 1 $\leq s \leq n$) such that

1
$$\beta^{(a)} = \sum_{i} m_{i}^{(a)} \alpha_{i}$$
 with $m_{i}^{(a)} \in \{0, 1\}, \sum_{a} \beta^{(a)} = \gamma$

Higgs branch picture II

- The Higgs branch formula agrees with KS/JS/Coulomb for n = 2, 3, 4, 5!
- The formula gives a prescription for what permutations are allowed in the Coulomb problem, and for their Morse index.
- It is perhaps not surprising that the Higgs branch formula agrees with KS/JS, since quiver categories are an example of Abelian categories. Unlike the JS formula, the Higgs branch formula works at $y \neq 1$.

Outline

- Introduction
- 2 Generalities, and a Boltzmannian view of wall-crossing
- The Kontsevich-Soibelman-Joyce-Song formula
- 4 Non-primitive wall-crossing from localization
- 6 Away from the wall

Away from the wall I

• Having understood the jump $\Delta\Omega(\gamma;y)$ in terms of the index of multi-centered solutions, one would like to compute the BPS index $\Omega(\gamma;y,t^a)$ on either side of the wall, from the index $\Omega_S(\alpha_i)$ of single-centered black holes. Since spherically symmetric SUSY black holes cannot decay and carry zero angular momentum, $\Omega_S(\alpha_i)$ must be independent of t^a and y.

Manchot BP Sen II

Naively, one may expect

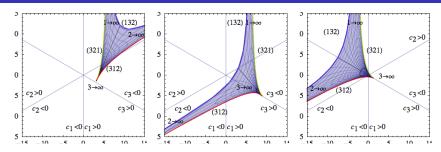
$$\bar{\Omega}(\gamma; y, t^a) = \sum_{n \geq 2} \sum_{\substack{\{\alpha_1, \dots \alpha_n\} \in \Gamma \\ \gamma = \alpha_1 + \dots + \alpha_n}} \frac{g(\{\alpha_i\}; y, c_i)}{|\operatorname{Aut}(\{\alpha_i\})|} \prod_{i=1}^n \bar{\Omega}_{\mathcal{S}}(\alpha_i) ,$$

where $g(\{\alpha_i\}; y, c_i)$ is the refined index of the SUSY quantum mechanics on $\mathcal{M}_n(\alpha_i, c_i)$. This is similar to the formula for $\Delta\bar{\Omega}(\gamma)$, but with some important differences.

Away from the wall II

- Unlike the formula for $\Delta\bar{\Omega}(\gamma)$, the charges α_i of the constituents are no longer restricted to a two-dimensional subspace of the charge lattice, and there are a priori an infinite number of possible splittings $\gamma = \sum \alpha_i$. It is plausible that requiring that the multi-centered solution be regular may leave only a finite number of splittings. In addition, for a given splitting, the regularity constraint may rule out certain components of $\mathcal{M}_n(\alpha_i, c_i)$.
- The space $\mathcal{M}_n(\alpha_i, c_i)$ is in general no longer compact. E.g, in the 3-body case with $\alpha_{12} > 0, \alpha_{23} > 0, \alpha_{13} < 0$, the allowed values of c_i (and therefore r_{ij}) are plotted below:

Away from the wall III



- In particular, there can be scaling regions in \mathcal{M}_n , when some or all of the n centers approach each other at arbitrary small distances. Classically, these scaling solutions carry zero angular momentum and are invariant under SO(3).
- Some of the distances r_{ij} can also diverge on walls of marginal stability, but the formula for $\Omega(\gamma, t^a)$ is by construction consistent with wall-crossing.

Away from the wall IV

- In the presence of scaling solutions, it appears that \mathcal{M}_n admits a compactification $\overline{\mathcal{M}}_n$ with finite volume. However, this introduces new (non-collinear) fixed points of the action of J_3 which are no longer isolated, leading to additional contributions to the equivariant index.
- Rather than trying to compute these new contributions directly, we propose to determine them by requiring 1) that the resulting $\Omega(\gamma; y, t^a)$ is a finite Laurent polynomial in y and 2) that they carry the minimal angular momentum J_3 compatible with condition 1). This minimal modification hypothesis fixes $\Omega(\gamma; y, t^a)$ uniquely.
- We have checked that the minimal modification hypothesis works for an infinite class of 'dipole halo' configurations, where \mathcal{M}_n is a toric manifold and can be quantized directly.

Conclusion I

- Multi-centered solitonic configurations provide a simple picture to derive and understand wall-crossing formulae for the BPS (refined) index.
- We have not proven the equivalence between the Coulomb branch, Higgs branch, JS and KS wall-crossing formula, but there is overwhelming evidence that they all agree.
- Our derivation was made in the context of $\mathcal{N}=2$ supergravity, it would be interesting to develop our understanding of multi-centered dyonic solutions in $\mathcal{N}=2$ gauge theories.

Lee Yi

• In principle, our formulae can be used to extract the degeneracies $\Omega_{\mathcal{S}}(\gamma)$ of single-centered black holes from the moduli-dependent BPS index $\Omega(\gamma)$. The former is the one that should be compared with Sen's quantum entropy function.

THANK YOU!

