Wall-crossing from quantum multi-centered BPS black holes

Boris Pioline

LPTHE, Jussieu

Hebrew U, 9/2/2011

based on work with J. Manschot and A. Sen, arxiv:1011.1258 and to appear

< D > < P > < E >

Boris Pioline (LPTHE)

Wall-crossing from BH

Introduction I

- In D = 4, N = 2 supersymmetric field and string theories, the exact spectrum of BPS states can often be determined at weak coupling, and extrapolated to strong coupling.
- E.g., in pure SU(2) Seiberg-Witten theory,

Seiberg Witten; Bilal Ferrari

Introduction II

- In following the BPS spectrum from weak to strong coupling, one must be wary of two issues:
 - short multiplets may pair up into a long multiplet,
 - single-particle states may decay into multi-particle states.
- The first issue can be avoided by considering a suitable index Ω(γ, t), designed such that contributions from long multiplets cancel. Ω(γ, t) is then a piecewise constant function of the charge vector γ and couplings/moduli t.
- To deal with the second issue, one must understand how Ω(γ, t) changes across a wall of marginal stability W, where a single-particle state with charge γ can decay into a multi-particle state with charges {γ_i}, such that γ = ∑_i γ_i, arg Z(γ_i) = arg Z(γ).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction III

 Initial progress came from physics, by noting that single-particle states (in a certain limit) can be represented by multi-centered solitonic solutions. Those exist only on one side of the wall and decay into the continuum of multi-particle states on the other side.

 The simplest "primitive" decay γ → γ₁ + γ₂ involves only two-centered configurations, whose index is easily computed.

Denef Moore

• In the non-primitive case $\gamma = M\gamma_1 + N\gamma_2$ where M, N > 1 (γ_1, γ_2 being two primitive vectors), many multi-centered configurations in general contribute, and computing their index is in general difficult.

B N A B N

Introduction IV

- A general answer to this problem has come from the mathematical study of the wall-crossing properties of (generalized)
 Donaldson-Thomas invariants for Calabi-Yau three-folds, or more generally CY-3 categories.
- These DT invariants are believed to be the mathematical translation of the BPS index Ω(γ) in type IIA CY vacua.
- Notably, Kontsevich & Soibelman (KS) and Joyce & Song (JS) gave two different-looking formulae for $\Delta\Omega(\gamma \rightarrow M\gamma_1 + N\gamma_2)$.
- The KS formula has been derived/interpreted in several ways, e.g. by considering instanton corrections to the moduli space metric in 3D after compactification on a circle.

Gaiotto Moore Neitzke; Alexandrov BP Saueressig Vandoren

< ロ > < 同 > < 回 > < 回 > < 回 > <

Our main results I

• Our goal will be to derive two new wall-crossing formulae, based on the quantization of multi-centered solitonic/black hole configurations.

Denef; de Boer El Showk Messamah Van den Bleeken

 One of the new insights is a physical explanation of the relevance of the rational DT invariants

$$ar{\Omega}(\gamma) \equiv \sum_{{\it d}|\gamma} \Omega(\gamma/{\it d})/{\it d}^2 \; ,$$

which feature prominently in the KS/JS formulae: replacing $\Omega(\gamma) \rightarrow \overline{\Omega}(\gamma)$ effectively reduces the Bose-Fermi statistics of the centers to Boltzmannian statistics !

• Our new "Coulomb branch" and "Higgs branch" wall-crossing formulae appear to agree with KS/JS, but a combinatorial proof remains to be found.

2 A Boltzmannian view of wall-crossing

- 3 The Kontsevich-Soibelman and Joyce-Song formulae
- Physical derivation of non-primitive wall-crossing

1 Introduction

2 A Boltzmannian view of wall-crossing

3 The Kontsevich-Soibelman and Joyce-Song formulae

Physical derivation of non-primitive wall-crossing

< A >

3 N

Preliminaries I

• We consider $\mathcal{N} = 2$ supergravity in 4 dimensions (this includes field theories with rigid $\mathcal{N} = 2$ as a special case). Let $\Gamma = \Gamma_e \oplus \Gamma_m$ be the lattice of electric and magnetic charges, with antisymmetric (Dirac-Schwinger- Zwanziger) integer pairing

$$\langle \gamma, \gamma' \rangle = \langle (p^{\wedge}, q_{\wedge}), \gamma' = (p'^{\wedge}, q'_{\wedge}) \rangle \equiv q_{\wedge} p'^{\wedge} - q'_{\wedge} p_{\wedge} \in \mathbb{Z}$$

- BPS states preserve 4 out of 8 supercharges, and saturate the bound M ≥ |Z(γ, t^a)| where Z(γ, t^a) = e^{K/2}(q_ΛX^Λ − p^ΛF_Λ) is the central charge/stability data.
- We are interested in the index Ω(γ; t^a) = Tr_{H'_γ(t^a)}(-1)^{2J₃} where H'_γ(t^a) is the Hilbert space of stable states with charge γ ∈ Γ.

< ロ > < 同 > < 回 > < 回 > < 回 > <

 The BPS invariants Ω(γ; t^a) are locally constant functions of t^a, but may jump across codimension-one subspaces

 $W(\gamma_1, \gamma_2) = \{t^a / \arg[Z(\gamma_1)] = \arg[Z(\gamma_2)]\}$

where γ_1 and γ_2 are two primitive (non-zero) vectors such that $\gamma = M\gamma_1 + N\gamma_2$, $M, N \ge 1$.

 $\widetilde{\Gamma}: \{M\gamma_1 + N\gamma_2, M, N \ge 0, (M, N) \neq (0, 0)\}.$

Let c_± be the chamber in which arg(Z_{γ1}) ≥ arg(Z_{γ2}). Our aim is to compute ΔΩ(γ) ≡ Ω⁻(γ) − Ω⁺(γ) as a function of Ω⁺(γ) (say).

<ロ> <同> <同> < 同> < 日> < 同> < ○<</p>

Wall-crossing from semi-classical solutions I

Assume that *M*(γ₁), *M*(γ₂) are much greater than the dynamical scale (Λ or *m_P*). In this limit, those single-particle states which are potentially unstable across *W*) can be described by classical configurations with *n* centers of charge *M_i*γ₁ + *N_i*γ₂ ∈ Γ̃, satisfying (*M*, *N*) = ∑_{*i*}(*M_i*, *N_i*).

 In addition, in either chamber, there may be multi-centered configurations whose charge vectors do not lie in Γ. However, they remain bound across W and do not contribute to ΔΩ(γ).

Wall-crossing from semi-classical solutions II

 Assume for definiteness that γ₁₂ < 0. Then multi-centered solutions with charges in Γ exist only in chamber c₋, not c₊. E.g. two-centered solutions can only exist when

$$r_{12} = \frac{1}{2} \frac{\langle \alpha_1, \alpha_2 \rangle \left| Z(\alpha_1) + Z(\alpha_2) \right|}{\operatorname{Im}[Z(\alpha_1)\bar{Z}(\alpha_2)]} > 0 \;.$$
 Dene

- At the wall, *r_{ij}* diverges : the single-particle bound state decays into the continuum of multi-particle states.
- ΔΩ(γ) is equal to the index of the SUSY quantum mechanics of n point-like particles, each carrying its own set of degrees of freedom with index Ω(γ_i), interacting via Newtonian and Coulomb forces.

Wall-crossing from semi-classical solutions III

 For primitive decay γ → γ₁ + γ₂, the quantization of the phase space of two-centered configuration reproduces the primitive WCF

 $\Delta\Omega(\gamma \to \gamma_1 + \gamma_2) = (-1)^{\gamma_{12}+1} |\gamma_{12}| \,\Omega^+(\gamma_1) \,\Omega^+(\gamma_2) \;,$

where $(-1)^{\gamma_{12}+1} |\gamma_{12}|$ is the index of the angular momentum multiplet of spin $j = \frac{1}{2}(\gamma_{12} - 1)$.

This generalizes to semi-primitive wall-crossing γ → γ₁ + Nγ₂: the potentially unstable configurations consist of of a "halo" of m_s particles of charge sγ₂, ∑ sm_s = N, orbiting around a "core" of charge γ₁.

Wall-crossing from semi-classical solutions IV

• This leads to a Mac-Mahon type partition function,

$$\frac{\sum_{N\geq 0} \Omega^{-}(1,N) q^{N}}{\sum_{N\geq 0} \Omega^{+}(1,N) q^{N}} = \prod_{k>0} \left(1 - (-1)^{k\gamma_{12}} q^{k}\right)^{k|\gamma_{12}| \Omega^{+}(k\gamma_{2})}$$

• E.g. for
$$\gamma \mapsto \gamma_1 + 2\gamma_2$$
,

$$\Delta\Omega(1,2) = \Omega^+(1,0) \left[2\gamma_{12} \Omega^+(0,2) + \frac{1}{2}\gamma_{12} \Omega^+(0,1) \left(\gamma_{12} \Omega^+(0,1) + 1\right) \right] + \Omega^+(1,1) \left[(-1)^{\gamma_{12}} \gamma_{12} \Omega^+(0,1) \right] .$$

• The term $\frac{1}{2}d(d+1)$ with $d = \gamma_{12}\Omega^+(0,1)$, reflects the Bose/Fermi statistics of identical particles, i.e. the projection on (anti)symmetric wave functions.

Wall-crossing from semi-classical solutions V

 It is instructive to rewrite the semi-primitive wcf using the rational BPS invariants

$$ar{\Omega}(\gamma) \equiv \sum_{{m d}|\gamma} \Omega(\gamma/{m d})/{m d}^2 \; ,$$

• By the Möbius inversion formula,

$$\Omega(\gamma) = \sum_{d|\gamma} \mu(d) \,\overline{\Omega}(\gamma/d)/d^2$$

where $\mu(d)$ is the Möbius function (i.e. 1 if *d* is a product of an even number of distinct primes, -1 if *d* is a product of an odd number of primes, or 0 otherwise).

• The rational DT invariants $\overline{\Omega}(\gamma)$ appear in the JS formula, in constructions of modular invariant black hole partition functions, and in instanton corrections to hypermultiplet moduli spaces.

Manschot; Alexandrov BP Saueressig Vandoren

< ロ > < 同 > < 三 > < 三 > -

ъ.

Wall-crossing from semi-classical solutions VI

In the (1,2) example,

$$\begin{split} \Delta\bar{\Omega}(1,2) = &\bar{\Omega}^{+}(1,0) \left[2\gamma_{12}\,\bar{\Omega}^{+}(0,2) + \frac{1}{2}\gamma_{12}\,\bar{\Omega}^{+}(0,1)^{2} \right] \\ &+ \bar{\Omega}^{+}(1,1) \left[(-1)^{\gamma_{12}}\gamma_{12}\bar{\Omega}^{+}(0,1) \right] \,\,. \end{split}$$

is simpler, and manifestly consistent with charge conservation.

 More generally, using the identity ∏[∞]_{d=1}(1 − q^d)^{μ(d)/d} = e^{-q}, or working backwards, the semi-primitive wcf can be rewritten as

$$\frac{\sum_{N\geq 0}\bar{\Omega}^{-}(1,N)\,q^{N}}{\sum_{N\geq 0}\bar{\Omega}^{+}(1,N)\,q^{N}} = \exp\left[\sum_{s=1}^{\infty}q^{s}(-1)^{\langle\gamma_{1},s\gamma_{2}\rangle}\langle\gamma_{1},s\gamma_{2}\rangle\bar{\Omega}^{+}(s\gamma_{2})\right]$$

• Physically, this follows by treating the particles in the halo as distinguishable, each carrying an effective index $\overline{\Omega}(s_{\gamma_2})$, and applying Boltzmann statistics !

• In general, we expect that the WCF is given by a sum

 $\Delta \bar{\Omega}(\gamma) = \sum_{n \geq 2} \sum_{\substack{\{\alpha_1, \dots, \alpha_n\} \in \tilde{\Gamma}\\ \gamma = \alpha_1 + \dots + \alpha_n}} \frac{g(\{\alpha_i\})}{|\operatorname{Aut}(\{\alpha_i\})|} \prod_{i=1}^n \bar{\Omega}^+(\alpha_i) ,$

over all unordered decompositions of the total charge vector γ into a sum of *n* vectors $\alpha_i \in \tilde{\Gamma}$. The symmetry factor $|\operatorname{Aut}(\{\alpha_i\})|$ is conventional, but natural in Boltzmannian statistics.

 The KS and JS formulae give a mathematical (implicit/explicit) prediction for the coefficients g({α_i}). After reviewing these formulae, we shall check them against a physical derivation based on black hole halo picture.

1 Introduction

2 A Boltzmannian view of wall-crossing

3 The Kontsevich-Soibelman and Joyce-Song formulae

Physical derivation of non-primitive wall-crossing

3 b 4

< A >

The Kontsevich-Soibelman formula I

 Consider the Lie algebra A spanned by abstract generators {*e*_γ, γ ∈ Γ}, satisfying the commutation rule

$$[\boldsymbol{e}_{\gamma_1}, \boldsymbol{e}_{\gamma_2}] = \kappa(\langle \gamma_1, \gamma_2 \rangle) \, \boldsymbol{e}_{\gamma_1 + \gamma_2} \,, \qquad \kappa(\boldsymbol{x}) = (-1)^{\boldsymbol{x}} \, \boldsymbol{x} \,.$$

For a given charge vector γ and value of the VM moduli t^a, consider the operator U_γ(t^a) in the Lie group exp(A)

$$U_{\gamma}(t^{a}) \equiv \exp\left(\Omega(\gamma; t^{a}) \sum_{d=1}^{\infty} \frac{e_{d\gamma}}{d^{2}}\right)$$

• The operators e_{γ} / U_{γ} can be realized as Hamiltonian vector fields / symplectomorphisms of a twisted torus.

Gaiotto Moore Neitzke

A B M A B M

The Kontsevich-Soibelman formula II

• The KS wall-crossing formula states that the product

$$egin{aligned} & \mathcal{A}_{\gamma_1,\gamma_2} = \prod_{\substack{\gamma = \mathcal{M} \gamma_1 + \mathcal{N} \gamma_2, \ \mathcal{M} > 0, \mathcal{N} > 0}} \mathcal{U}_{\gamma} \ , \end{aligned}$$

ordered so that $\arg(Z_{\gamma})$ decreases from left to right, stays constant across the wall. As t^a crosses W, $\Omega(\gamma; t^a)$ jumps and the order of the factors is reversed, but the operator A_{γ_1,γ_2} stays constant. Equivalently,

$$\prod_{\substack{M\geq 0, N\geq 0,\\ M/N\downarrow}} U^+_{M\gamma_1+N\gamma_2} = \prod_{\substack{M\geq 0, N\geq 0,\\ M/N\uparrow}} U^-_{M\gamma_1+N\gamma_2},$$

The Kontsevich-Soibelman formula III

• The algebra A is infinite dimensional but filtered. The KS formula may be projected to any finite-dimensional algebra

$$\mathcal{A}_{M,N} = \mathcal{A} / \{ \sum_{m > M \text{ or } n > N} \mathbb{R} \cdot \boldsymbol{e}_{m\gamma_1 + n\gamma_2} \} .$$

This projection is sufficient to infer $\Delta\Omega(m\gamma_1 + n\gamma_2)$ for any $m \le M, n \le N$, e.g. using the Baker-Campbell-Hausdorff formula.

• For example, the primitive wcf follows in $A_{1,1}$ from

 $\begin{aligned} &\exp(\bar{\Omega}^+(\gamma_1)\boldsymbol{e}_{\gamma_1})\,\exp(\bar{\Omega}^+(\gamma_1+\gamma_2)\boldsymbol{e}_{\gamma_1+\gamma_2})\,\exp(\bar{\Omega}^+(\gamma_2)\boldsymbol{e}_{\gamma_2})\\ &=\exp(\bar{\Omega}^-(\gamma_2)\boldsymbol{e}_{\gamma_2})\,\exp(\bar{\Omega}^-(\gamma_1+\gamma_2)\boldsymbol{e}_{\gamma_1+\gamma_2})\,\exp(\bar{\Omega}^-(\gamma_1)\boldsymbol{e}_{\gamma_1})\end{aligned}$

and the order 2 truncation of the BCH formula

$$e^X e^Y = e^{X+Y+\frac{1}{2}[X,Y]}$$

The Kontsevich-Soibelman formula IV

 In some simple cases, one may work in the full algebra A, and use the "pentagonal identity"

$$U_{\gamma_2} U_{\gamma_1} = U_{\gamma_1} U_{\gamma_1 + \gamma_2} U_{\gamma_2} , \qquad \gamma_{12} = -1$$

 Using this identity repeatedly, one can e.g. establish the wall-crossing identity in pure Seiberg-Witten SU(2) theory,

$$U_{2,-1} \cdot U_{0,1} = U_{0,1} \cdot U_{2,1} \cdot U_{4,1} \dots U_{2,0}^{(-2)} \dots U_{3,-1} \cdot U_{2,-1} U_{1,-1}$$

Denef Moore; Dimofte Gukov Soibelman

The Kontsevich-Soibelman formula V

 Noting that the operators U_{kγ} for different k ≥ 1 commute, one may combine them into a single factor

$$V_{\gamma} \equiv \prod_{k=1}^{\infty} U_{k\gamma} = \exp\left(\sum_{\ell=1}^{\infty} \overline{\Omega}(\ell\gamma) e_{\ell\gamma}\right), \qquad \overline{\Omega}(\gamma) = \sum_{m|\gamma} m^{-2} \Omega(\gamma/m).$$

and rewrite the KS formula as a product over primitive charge vectors only,

$$\prod_{\substack{M \ge 0, N \ge 0, \\ \gcd(M,N) = 1, M/N \downarrow}} V^+_{M\gamma_1 + N\gamma_2} = \prod_{\substack{M \ge 0, N \ge 0, \\ \gcd(M,N) = 1, M/N \uparrow}} V^-_{M\gamma_1 + N\gamma_2},$$

- Using the BCH formula, one easily derives the semi-primitive wcf formula, and generalizations to γ → 2γ₁ + Nγ₂,....
- The fact that the algebra is graded by the charge lattice and the expression of V_γ guarantees that the jumps in the rational invariant will be of the form

$$\Delta \bar{\Omega}(\gamma) = \sum_{n \ge 2} \sum_{\substack{\{\alpha_1, \dots, \alpha_n\} \in \tilde{\Gamma} \\ \gamma = \alpha_1 + \dots + \alpha_n}} \frac{g(\{\alpha_i\})}{|\operatorname{Aut}(\{\alpha_i\})|} \prod_{i=1}^n \bar{\Omega}^+(\alpha_i) ,$$

with some universal coefficients $g(\{\alpha_i\})$.

Generic decay I

- When α_i have generic phases, g({α_i}) can be computed by projecting the KS formula to the subalgebra spanned by e_{∑α_i} where {α_i} runs over all subsets of {α_i}.
- E.g., for *n* = 3, assuming that the phase of the charges are ordered according to

 $\alpha_1, \ \alpha_1 + \alpha_2, \ \alpha_1 + \alpha_3, \ \alpha_1 + \alpha_2 + \alpha_3, \ \alpha_2, \ \alpha_2 + \alpha_3, \ \alpha_3, \ \alpha_3, \ \alpha_4, \ \alpha_5, \ \alpha_5,$

we find

$$g(\{\alpha_1, \alpha_2, \alpha_3\}) = (-1)^{\alpha_{12} + \alpha_{23} + \alpha_{13}} \alpha_{12} (\alpha_{13} + \alpha_{23})$$

As we shall see later, this fits the macroscopic index of 3-centered configurations !

Boris Pioline (LPTHE)

< ロ > < 同 > < 回 > < 回 > < 回 > <

The motivic Kontsevich-Soibelman formula I

 KS have proposed a quantum deformation of their formula, which governs wall-crossing properties of motivic DT invariants Ω_{ref}(γ; y, t). Physically, these correspond to the "refined index"

$$\Omega_{\mathrm{ref}}(\gamma, \boldsymbol{y}) = \mathrm{Tr}_{\mathcal{H}(\gamma)}^{\prime}(-\boldsymbol{y})^{2J_3} \equiv \sum_{\boldsymbol{n}\in\mathbb{Z}} (-\boldsymbol{y})^{\boldsymbol{n}} \, \Omega_{\mathrm{ref},\boldsymbol{n}}(\gamma) \,,$$

where J_3 is the angular momentum in 3 dimensions along the *z* axis (more accurately, a combination of angular momentum and $SU(2)_R$ quantum numbers). As $y \to 1$, $\Omega_{ref}(\gamma; y, t) \to \Omega(\gamma; t)$.

Dimofte Gukov Soibelman

• Caution: this index is protected in $\mathcal{N} = 2$, D = 4 field theories, but not in supergravity/string theory, where $SU(2)_R$ is generically broken.

イロト イポト イラト イラト

The motivic Kontsevich-Soibelman formula II

 To state the formula, consider the Lie algebra A(y) spanned by generators {ẽ_γ, γ ∈ Γ}, satisfying the commutation rule

$$[\tilde{\boldsymbol{e}}_{\gamma_1},\tilde{\boldsymbol{e}}_{\gamma_2}] = \kappa(\langle \gamma_1,\gamma_2\rangle)\,\tilde{\boldsymbol{e}}_{\gamma_1+\gamma_2}\,,\qquad \kappa(x) = \frac{(-y)^x - (-y)^{-x}}{y - 1/y}\,.$$

• To any primitive charge vector γ , attach the operator

$$\hat{V}_{\gamma} = \prod_{\ell \geq 1} \hat{U}_{\ell\gamma} = \exp\left[\sum_{N=1}^{\infty} \bar{\Omega}_{
m ref}(N\gamma, y) \, \tilde{e}_{N\gamma}
ight]$$

where $\bar{\Omega}_{ref}(N\gamma, y)$ are the "rational motivic invariants", defined by

$$\bar{\Omega}_{\mathrm{ref}}^+(\gamma, \mathbf{y}) \equiv \sum_{m|\gamma} \frac{(\mathbf{y} - \mathbf{y}^{-1})}{m(\mathbf{y}^m - \mathbf{y}^{-m})} \Omega_{\mathrm{ref}}^+(\gamma/m, \mathbf{y}^m) \,.$$

The motivic Kontsevich-Soibelman formula III

• The motivic version of the KS wall-crossing formula states that

$$\prod_{\substack{M \ge 0, N \ge 0 > 0, \\ \gcd(\vec{M}, N) = 1, M/N \downarrow}} \hat{V}^+_{M\gamma_1 + N\gamma_2} = \prod_{\substack{M \ge 0, N \ge 0 > 0, \\ \gcd(\vec{M}, N) = 1, M/N \uparrow}} \hat{V}^-_{M\gamma_1 + N\gamma_2},$$

ΔΩ

 <u>G</u>
 <u>ref</u>(γ, y) can be computed using the same techniques as before, e.g. the primitive wcf read

$$\Delta\Omega_{\rm ref}(\gamma_1+\gamma_2,y)=\frac{(-y)^{\langle\gamma_1,\gamma_2\rangle}-(-y)^{-\langle\gamma_1,\gamma_2\rangle}}{y-1/y}\,\Omega_{\rm ref}(\gamma_1,y)\,\Omega_{\rm ref}(\gamma_2,y)$$

The combinatorial factors g({α_i}, y) reduce to g({α_i}) in the limit y → 1.

The Joyce-Song formula I

 In the context of the Abelian category of coherent sheaves on a Calabi-Yau three-fold, Joyce & Song have shown that the jump of (generalized, rational) DT invariants across the wall is given by

$$\Delta \bar{\Omega}(\gamma) = \sum_{n \ge 2} \sum_{\substack{\{\alpha_1, \dots, \alpha_n\} \in \tilde{\Gamma}\\ \gamma = \alpha_1 + \dots + \alpha_n}} \frac{g(\{\alpha_i\})}{|\operatorname{Aut}(\{\alpha_i\})|} \prod_{i=1}^n \bar{\Omega}^+(\alpha_i) \ .$$

where the coefficient g is given by a complicated sum over permutations, trees, etc.

- While I do not know of a combinatorial proof, it seems that the JS formula (derived for Abelian categories) is equivalent to the classical KS formula (stated for triangulated categories).
- Note that the JS formula is restricted to y = 1, and involves large denominators and cancellations. We shall find a more economic formula which also works at the motivic level.

Boris Pioline (LPTHE)

1 Introduction

2 A Boltzmannian view of wall-crossing

3 The Kontsevich-Soibelman and Joyce-Song formulae

Physical derivation of non-primitive wall-crossing

B b

4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4

Quantum mechanics of multi-centered solutions I

• The moduli space M_n of BPS configurations with *n* centers in N = 2 SUGRA is described by solutions to Denef's equations

$$\sum_{j=1...n,j\neq i}^{n} \frac{\alpha_{ij}}{|\vec{r}_i - \vec{r}_j|} = c_i, \qquad \begin{cases} c_i = 2 \ln \left[e^{-i\phi} Z(\alpha_i) \right] \\ \phi = \arg[Z(\alpha_1 + \cdots + \alpha_n)] \end{cases}$$

M_n is a symplectic manifold of dimension 2*n* – 2, and carries an Hamiltonian action of *SU*(2):

$$\omega = \frac{1}{4} \sum_{i < j} \alpha_{ij} \frac{\mathrm{d}\vec{r}_{ij} \wedge \mathrm{d}\vec{r}_{ij} \cdot \vec{r}_{ij}}{|r_{ij}|^3} , \qquad \vec{J} = \frac{1}{2} \sum_{i < j} \alpha_{ij} \frac{\vec{r}_{ij}}{|r_{ij}|}$$

de Boer El Showk Messamah Van den Bleeken

< ロ > < 同 > < 三 > < 三 >

Quantum mechanics of multi-centered solutions II

- In the case where sign(α_{ij}) defines an ordering of the α_i (i.e. the associated quiver has no closed loop, which is automatic when α_i ∈ Γ̃), M_n is compact and Kähler.
- To quantize the configurational degrees of freedom of *n*-centered solutions, we apply the standard methods of geometric quantization. Since ω/2π ∈ H²(M_n, ℤ), there exists a 'pre-quantum' holomorphic line bundle ℒ such that c₁(ℒ) = ω/2π > 0. The space of states is given by

 $\mathcal{H}=H^0(\mathcal{M}_n,\mathcal{L}\otimes K^{1/2})$

where *K* is the canonical bundle of M_n (the line bundle of holomorphic top forms).

< ロ > < 同 > < 回 > < 回 >

Quantum mechanics of multi-centered solutions III

 The refined/equivariant index can be computed by the Atiyah-Bott Lefschetz fixed point formula:

$$g_{\rm ref}(\{\alpha_i\}, y) = {\rm Tr}(-y)^{2\hat{J}_3} = (-1)^{\sum_{i < j} \alpha_{ij} - n + 1} \sum_{\rm fixed \ pts} \frac{y^{2J_3}}{\det(y^{L/2} - y^{-L/2})}$$

where *L* is the matrix of the action of J_3 on the holomorphic tangent space around the fixed point.

 In the large charge limit, L → kL with k → ∞, this reduces to the Duistermaat-Heckmann formula for the equivariant volume,

$$g_{\text{class}}(\{\alpha_i\}, y) = \int_{\mathcal{M}_n} \omega^{n-1} y^{2J_3} = (-1)^{\sum_{i < j} \alpha_{ij} - n + 1} \sum_{\text{fixedpts}} \frac{y^{2J_3}}{\det(L \log y)}$$

Quantum mechanics of multi-centered solutions IV

• The fixed points of the action of *J*₃ are collinear multi-centered configurations along the *z*-axis, such that

$$\sum_{j=1\dots n, j\neq i}^n \frac{\alpha_{ij}}{|z_i-z_j|} = c_i, \quad J_3 = \frac{1}{2} \sum_{i< j} \alpha_{ij} \operatorname{sign}(z_i-z_j).$$

 These are isolated, and classified by permutations *σ* describing the order of *z_i* along the axis. For fixed *σ*, the solutions are critical points of the potential

$$W(\lambda, \{z_i\}) = -\sum_{i < j} \operatorname{sign}[\sigma^{-1}(j) - \sigma^{-1}(i)] \alpha_{ij} \ln |z_j - z_i| - \sum_i (c_i - \frac{\lambda}{n}) z_i$$

Quantum mechanics of multi-centered solutions V

• In the vicinity of these fixed points,

$$J_3 = \frac{1}{2} \sum_{i < j} \alpha_{\sigma(i)\sigma(j)} - \frac{1}{4} M_{ij}(x_i x_j + y_i y_j) + \cdots, \quad \omega = \frac{1}{2} M_{ij} dx_i \wedge dy_j + \cdots$$

where M_{ij} is the Hessian matrix of $W(\lambda, \{z_i\})$ wrt z_1, \ldots, z_n , and (x_i, y_i) are coordinates in the plane transverse to the *z*-axis at the center $i (\sum_i x_i = \sum y_i = 0)$. Thus $L = s(\sigma)1_{n-1}$ where $s(\sigma) = sign(\det HessW)$ is the Morse index.

• Let S(t) be the set of permutations allowed by Denef's equations. This leads to the Coulomb branch formula

$$g_{\rm ref}(\{\alpha_i\}, \mathbf{y}) = \frac{(-1)^{\sum_{i < j} \alpha_{ij} + n - 1}}{(\mathbf{y} - \mathbf{y}^{-1})^{n-1}} \sum_{\sigma \in \mathcal{S}(t)} \mathbf{s}(\sigma) \, \mathbf{y}^{\sum_{i < j} \alpha_{ij} \operatorname{sign}(\sigma(j) - \sigma(i))} \,.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Quantum mechanics of multi-centered solutions VI

• For $n \le 5$, we find perfect agreement with JS/KS !

$$g(\alpha_1, \alpha_2; \mathbf{y}) = (-1)^{\alpha_{12}} \frac{\sinh(\nu \alpha_{12})}{\sinh \nu}$$

 $g(\alpha_1, \alpha_2, \alpha_3; y) = (-1)^{\alpha_{13} + \alpha_{23} + \alpha_{12}} \frac{\sinh(\nu(\alpha_{13} + \alpha_{23})) \sinh(\nu\alpha_{12})}{\sinh^2 \nu}$

If we relax the condition that sign(α_{ij}) defines an ordering of α_i,
 M_n is in general no longer compact, fixed points are no longer isolated, and Hell breaks loose. These problems are associated with scaling solutions, where a subset of the centers can approach each other at arbitrary small distances.

Manchot BP Sen, in progress

Higgs branch picture I

- An alternative formula can be given using the Higgs branch description of the multi-centered configuration, namely the quiver with *n* nodes {1...*n*} of dimension 1 and α_{ij} arrows from *i* to *j*.
- Since α_i lie on a 2-dimensional sublattice Γ, the quiver has no oriented closed loop. Reineke's formula gives

$$g_{\rm ref} = \frac{(-y)^{-\sum_{i < j} \alpha_{ij}}}{(y - 1/y)^{n-1}} \sum_{\rm partitions} (-1)^{s-1} y^{2\sum_{a \le b} \sum_{j < i} \alpha_{ji}} m_i^{(a)} m_j^{(b)},$$

where \sum runs over all ordered partitions of $\gamma = \alpha_1 + \dots + \alpha_n$ into s vectors $\beta^{(a)}$ ($1 \le a \le s, 1 \le s \le n$) such that 1 $\beta^{(a)} = \sum_i m_i^{(a)} \alpha_i$ with $m_i^{(a)} \in \{0, 1\}, \sum_a \beta^{(a)} = \gamma$ 2 $\langle \sum_{a=1}^b \beta^{(a)}, \gamma \rangle > 0 \quad \forall \quad b \text{ with } 1 \le b \le s - 1$

- *** E * * E ***

- The Higgs branch formula agrees with KS/JS/Coulomb for n = 2, 3, 4, 5 !
- The formula gives a prescription for what permutations are allowed in the Coulomb problem, and for their Morse index.
- It is perhaps not surprising that the Higgs branch formula agrees with KS/JS, since quiver categories are an example of Abelian categories. Unlike the JS formula, the Higgs branch formula works at $y \neq 1$.

- **-** - **-** - **-**

- Multi-centered black hole configurations provide a simple way to derive wall-crossing formulae for DT invariants.
- We have not proven the equivalence between our formulae, JS and KS, but there is overwhelming evidence that they all agree.
- The Coulomb branch formula seems the most economic: no denominators, no cancellations. Sadly, we do not know how to characterize S(t) (yet).
- The derivation of JS/KS relies on Ringel-Hall algebras. What does this mean physically ? is this the long-sought Algebra of BPS states ?

THANK YOU !

Boris Pioline (LPTHE)

Wall-crossing from BH

Hebrew U, 9/2/2011 39 / 39

æ.