Wall-crossing from quantum multi-centered BPS black holes

Boris Pioline
LPTHE, Jussieu
UPMC

DAMTP, Cambridge, 27/4/2011
based on work with J. Manschot and A. Sen, arxiv:1011.1258, 1103.0261,1103.1887

Introduction I

- In $D=4, N=2$ supersymmetric field and string theories, the exact spectrum of BPS states can often be determined at weak coupling, and extrapolated to strong coupling.
- E.g., in pure $S U(2)$ Seiberg-Witten theory,

Seiberg Witten; Bilal Ferrari

Introduction II

- In following the BPS spectrum from weak to strong coupling, one must be wary of two issues:
- short multiplets may pair up into a long multiplet,
- single-particle states may decay into multi-particle states.
- The first issue can be avoided by considering a suitable index $\Omega(\gamma, t)$, designed such that contributions from long multiplets cancel. $\Omega(\gamma, t)$ is then a piecewise constant function of the charge vector γ and couplings/moduli t.
- To deal with the second issue, one must understand how $\Omega(\gamma, t)$ changes across a wall of marginal stability W, where a single-particle state with charge γ can decay into a multi-particle state with charges $\left\{\alpha_{i}\right\}$, such that $\gamma=\sum_{i} \alpha_{i}$.

Introduction III

- Initial progress came from physics, by noting that single-particle states (in a certain limit) can be represented by multi-centered solitonic solutions. Those exist only on one side of the wall and decay into the continuum of multi-particle states on the other side.
- The simplest decay $\gamma \rightarrow \gamma_{1}+\gamma_{2}$, where γ_{1}, γ_{2} are primitive charge vectors, involves only two-centered configurations, whose index is easily computed:

$$
\Delta \Omega\left(\gamma \rightarrow \gamma_{1}+\gamma_{2}\right)=(-1)^{\gamma_{12}+1}\left|\gamma_{12}\right| \Omega^{+}\left(\gamma_{1}\right) \Omega^{+}\left(\gamma_{2}\right)
$$

Denef Moore

- In the non-primitive case $\gamma=M \gamma_{1}+N \gamma_{2}$ where $M, N>1$, many multi-centered configurations in general contribute, and computing their index is non-trivial.

Introduction IV

- A general answer to this problem has come from the mathematical study of the wall-crossing properties of (generalized)
Donaldson-Thomas invariants for Calabi-Yau three-folds, believed to be the mathematical translation of the BPS index $\Omega(\gamma)$ in type IIA CY vacua.
- Notably, Kontsevich \& Soibelman (KS) and Joyce \& Song (JS) gave two different-looking formulae for $\Delta \Omega\left(\gamma \rightarrow M \gamma_{1}+N \gamma_{2}\right)$.
- The KS formula has already been derived/interpreted in several ways, e.g. by considering instanton corrections to the moduli space metric in 3D after compactification on a circle.

Gaiotto Moore Neitzke; Alexandrov BP Saueressig Vandoren

- Our goal will be to derive new wall-crossing formulae, based on the quantization of multi-centered solitonic configurations.

Outline

(1) Introduction
(2) Generalities, and a Boltzmannian view of wall-crossing
(3) The Kontsevich-Soibelman-Joyce-Song formula
(4) Non-primitive wall-crossing from localization
(5) Away from the wall

Outline

(1) Introduction
(2) Generalities, and a Boltzmannian view of wall-crossing
(3) The Kontsevich-Soibelman-Joyce-Song formula

4 Non-primitive wall-crossing from localization
(5) Away from the wall

Preliminaries I

- We consider $\mathcal{N}=2$ supergravity in 4 dimensions (this includes field theories with rigid $\mathcal{N}=2$ as a special case). Let $\Gamma=\Gamma_{e} \oplus \Gamma_{m}$ be the lattice of electric and magnetic charges, with antisymmetric (Dirac-Schwinger- Zwanziger) integer pairing

$$
\left\langle\gamma, \gamma^{\prime}\right\rangle=\left\langle\left(p^{\wedge}, q_{\Lambda}\right),\left(p^{\prime \wedge}, q_{\Lambda}^{\prime}\right)\right\rangle \equiv q_{\Lambda} p^{\prime \wedge}-q_{\Lambda}^{\prime} p_{\Lambda} \in \mathbb{Z}
$$

- BPS states preserve 4 out of 8 supercharges, and saturate the bound $M \geq\left|Z\left(\gamma, t^{a}\right)\right|$ where $Z\left(\gamma, t^{a}\right)=e^{\mathcal{K} / 2}\left(q_{\Lambda} X^{\wedge}-p^{\wedge} F_{\Lambda}\right)$ is the central charge/stability data.
- We are interested in the index $\Omega\left(\gamma ; t^{a}\right)=\operatorname{Tr}_{\mathcal{H}_{\gamma}^{\prime}\left(t^{a}\right)}(-1)^{2 J_{3}}$ where $\mathcal{H}_{\gamma}^{\prime}\left(t^{a}\right)$ is the Hilbert space of one-particle states with charge $\gamma \in \Gamma$ in the vacuum with vector moduli t^{a}.

Preliminaries II

- The BPS invariants $\Omega\left(\gamma ; t^{a}\right)$ are locally constant functions of t^{a}, but may jump across codimension-one subspaces

$$
W\left(\gamma_{1}, \gamma_{2}\right)=\left\{t^{a} / \arg \left[Z\left(\gamma_{1}\right)\right]=\arg \left[Z\left(\gamma_{2}\right)\right]\right\}
$$

where γ_{1} and γ_{2} are two primitive (non-zero) vectors such that $\gamma=M \gamma_{1}+N \gamma_{2}, M, N \geq 1$. Assume for definiteness that $\gamma_{12}<0$.

- We choose γ_{1}, γ_{2} such that $\Omega\left(\gamma ; t^{a}\right)$ has support only on the positive cone (root basis property)

$$
\tilde{\Gamma}: \quad\left\{M \gamma_{1}+N \gamma_{2}, \quad M, N \geq 0, \quad(M, N) \neq(0,0)\right\}
$$

- Let $c_{ \pm}$be the chamber in which $\arg \left(Z_{\gamma_{1}}\right) \gtrless \arg \left(Z_{\gamma_{2}}\right)$. Our aim is to compute $\Delta \Omega(\gamma) \equiv \Omega^{-}(\gamma)-\Omega^{+}(\gamma)$ as a function of $\Omega^{+}(\gamma)$ (say).

Wall-crossing from semi-classical solutions I

- Assume that $M\left(\gamma_{1}\right), M\left(\gamma_{2}\right)$ are much greater than the dynamical scale (Λ or m_{P}). In this limit, those single-particle states which are potentially unstable across W) can be described by classical configurations with n centers of charge $\alpha_{i}=M_{i} \gamma_{1}+N_{i} \gamma_{2} \in \tilde{\Gamma}$, satisfying $(M, N)=\sum_{i}\left(M_{i}, N_{i}\right)$.

- In addition, in either chamber, there may be multi-centered configurations whose charge vectors do not lie in $\tilde{\Gamma}$. However, they remain bound across W and do not contribute to $\Delta \Omega(\gamma)$.

Wall-crossing from semi-classical solutions II

- In $\mathcal{N}=2$ supergravity (and presumably also in $\mathcal{N}=2$ Abelian gauge theories), the locations of the centers are constrained by Denef's equations

$$
\sum_{j=1 \ldots n, j \neq i}^{n} \frac{\alpha_{i j}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}=c_{i}, \quad\left\{\begin{array}{l}
c_{i}=2 \operatorname{lm}\left[e^{-i \phi} Z\left(\alpha_{i}, t^{a}\right)\right] \\
\phi \equiv \arg \left[Z\left(\alpha_{1}+\cdots \alpha_{n}, t^{a}\right)\right] \\
\alpha_{i j} \equiv\left\langle\alpha_{i}, \alpha_{j}\right\rangle
\end{array}\right.
$$

- After factoring out an overall translational mode, the solution space is (generically) a ($2 n-2$)-dimensional symplectic manifold $\left(\mathcal{M}_{n}\left(\alpha_{i j}, c_{i}\right), \omega\right)$, with $\omega=\frac{1}{2} \sum_{i<j} \alpha_{i j} \sin \theta_{i j} \mathrm{~d} \theta_{i j} \wedge \mathrm{~d} \phi_{i j}$.
de Boer El Showk Messamah Van den Bleeken
- If all $\alpha_{i} \in \tilde{\Gamma}$, the constants c_{i} are given by $c_{i}=\Lambda \sum_{i \neq j} \alpha_{i j}$, with $\Lambda \rightarrow \infty$ near the wall.

Wall-crossing from semi-classical solutions III

- Multi-centered solutions with charges in $\tilde{\Gamma}$ exist only in chamber c_{-}(if $\gamma_{12}<0$). E.g. two-centered solutions can only exist when

$$
r_{12}=\frac{1}{2} \frac{\left\langle\alpha_{1}, \alpha_{2}\right\rangle\left|Z\left(\alpha_{1}\right)+Z\left(\alpha_{2}\right)\right|}{\operatorname{Im}\left[Z\left(\alpha_{1}\right) \bar{Z}\left(\alpha_{2}\right)\right]}>0
$$

- At the wall, the distances $r_{i j}$ diverge : the single-particle bound state decays into the continuum of multi-particle states.
- $\Delta \Omega(\gamma)$ is equal to the index of the SUSY quantum mechanics of n point-like particles, each carrying its own set of degrees of freedom with index $\Omega\left(\gamma_{i}\right)$, subject to Denef's equations.

Wall-crossing from semi-classical solutions IV

- For primitive decay $\gamma \rightarrow \gamma_{1}+\gamma_{2}$, the quantization of the phase space $\left(\mathcal{M}_{2}, \omega\right)=\left(S^{2}, \frac{1}{2} \gamma_{12} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi\right)$ reproduces the primitive WCF

$$
\Delta \Omega\left(\gamma \rightarrow \gamma_{1}+\gamma_{2}\right)=(-1)^{\gamma_{12}+1}\left|\gamma_{12}\right| \Omega^{+}\left(\gamma_{1}\right) \Omega^{+}\left(\gamma_{2}\right),
$$

where $(-1)^{\gamma_{12}+1}\left|\gamma_{12}\right|$ is the index of the angular momentum multiplet of $\operatorname{spin} j=\frac{1}{2}\left(\gamma_{12}-1\right)$.

- This generalizes to semi-primitive wall-crossing $\gamma \rightarrow \gamma_{1}+\boldsymbol{N} \gamma_{2}$: the potentially unstable configurations consist of a halo of n_{s} particles of charge $s \gamma_{2}$, with total charge $\sum s n_{s} \gamma_{2}=n \gamma_{2}$, orbiting around a core of charge $\gamma_{1}+(N-n) \gamma_{2}$.

Wall-crossing from semi-classical solutions V

- Taking into account the Bose/Fermi statistics of the n_{s} identical particles, one arrives at a Mac-Mahon type partition function,

$$
\frac{\sum_{N \geq 0} \Omega^{-}(1, N) q^{N}}{\sum_{N \geq 0} \Omega^{+}(1, N) q^{N}}=\prod_{k>0}\left(1-(-1)^{k \gamma_{12}} q^{k}\right)^{k\left|\gamma_{12}\right| \Omega^{+}\left(k \gamma_{2}\right)}
$$

- E.g. for $\gamma \mapsto \gamma_{1}+2 \gamma_{2}$,

$$
\begin{aligned}
\Delta \Omega(1,2)= & (-1)^{\gamma_{12}} \gamma_{12} \Omega^{+}(0,1) \Omega^{+}(1,1)+2 \gamma_{12} \Omega^{+}(0,2) \Omega^{+}(1,0) \\
& +\frac{1}{2} \gamma_{12} \Omega^{+}(0,1)\left(\gamma_{12} \Omega^{+}(0,1)+1\right) \Omega^{+}(1,0)
\end{aligned}
$$

In particular, the term $\frac{1}{2} d(d+1)$ with $d=\gamma_{12} \Omega^{+}(0,1)$, reflects the projection on (anti)symmetric wave functions.

Wall-crossing from semi-classical solutions VI

- It is instructive to rewrite the semi-primitive WCF using the rational BPS invariants, related to the usual integer invariants via

$$
\bar{\Omega}(\gamma) \equiv \sum_{d \mid \gamma} \Omega(\gamma / d) / d^{2}, \quad \Omega(\gamma)=\sum_{d \mid \gamma} \mu(d) \bar{\Omega}(\gamma / d) / d^{2}
$$

where $\mu(d)$ is the Möbius function.

- Using the identity $\prod_{d=1}^{\infty}\left(1-q^{d}\right)^{\mu(d) / d}=e^{-q}$, or working backwards, one arrives at

$$
\frac{\sum_{N \geq 0} \bar{\Omega}^{-}(1, N) q^{N}}{\sum_{N \geq 0} \bar{\Omega}^{+}(1, N) q^{N}}=\exp \left[\sum_{s=1}^{\infty} q^{s}(-1)^{\left\langle\gamma_{1}, s \gamma_{2}\right\rangle}\left\langle\gamma_{1}, s \gamma_{2}\right\rangle \bar{\Omega}^{+}\left(s \gamma_{2}\right)\right] .
$$

- Physically, this follows by treating the particles in the halo as distinguishable, each carrying an effective index $\bar{\Omega}\left(s \gamma_{2}\right)$, and applying Boltzmann statistics !

Wall-crossing from semi-classical solutions VII

- One advantage is that $\Delta \bar{\Omega}(\gamma)$ takes a simpler form, and makes charge conservation manifest. E.g for $\gamma \mapsto \gamma_{1}+2 \gamma_{2}$,

$$
\begin{aligned}
\Delta \bar{\Omega}(1,2)= & (-1)^{\gamma_{12}} \gamma_{12} \bar{\Omega}^{+}(0,1) \bar{\Omega}^{+}(1,1)+2 \gamma_{12} \bar{\Omega}^{+}(0,2) \bar{\Omega}^{+}(1,0) \\
& +\frac{1}{2} \gamma_{12} \bar{\Omega}^{+}(0,1)^{2} \bar{\Omega}^{+}(1,0)
\end{aligned}
$$

- The rational DT invariants $\bar{\Omega}(\gamma)$ appear in the JS formula, in constructions of modular invariant black hole partition functions, and in instanton corrections to hypermultiplet moduli spaces.

Joyce Song; Manschot; Alexandrov BP Saueressig Vandoren

The main conjecture I

- In general, we expect that the jump to be given by a finite sum

$$
\Delta \bar{\Omega}(\gamma)=\sum_{n \geq 2} \sum_{\substack{\left\{\alpha_{1}, \ldots \alpha_{n}\right\} \in \tilde{\Gamma} \\ \gamma=\alpha_{1}+\cdots+\alpha_{n}}} \frac{g\left(\left\{\alpha_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|} \prod_{i=1}^{n} \bar{\Omega}^{+}\left(\alpha_{i}\right),
$$

over all unordered decompositions of the total charge vector γ into a sum of n vectors $\alpha_{i} \in \tilde{\Gamma}$. The symmetry factor $\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|$ reflects Boltzmannian statistics.

- The coefficients $g\left(\left\{\alpha_{i}\right\}\right)$ are universal factors depending only on the charges α_{i}, and which should be given by the index of the supersymmetric quantum mechanics of n distinguishable particles in \mathbb{R}^{3}, subject to Denef's equations.
- The KS and JS formulae give a mathematical prediction for these coefficients $g\left(\left\{\alpha_{i}\right\}\right)$, which we shall compare with the index of the SUSY quantum mechanics.

Outline

(1) Introduction
(2) Generalities, and a Boltzmannian view of wall-crossing
(3) The Kontsevich-Soibelman-Joyce-Song formula

4 Non-primitive wall-crossing from localization
(5) Away from the wall

The Kontsevich-Soibelman formula I

- Consider the Lie algebra \mathcal{A} spanned by abstract generators $\left\{e_{\gamma}, \gamma \in \Gamma\right\}$, satisfying the commutation rule

$$
\left[e_{\gamma_{1}}, e_{\gamma_{2}}\right]=(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}\left\langle\gamma_{1}, \gamma_{2}\right\rangle e_{\gamma_{1}+\gamma_{2}} .
$$

- For a given charge vector γ and value of the VM moduli t^{2}, consider the operator $U_{\gamma}\left(t^{a}\right)$ in the Lie group $\exp (\mathcal{A})$

$$
U_{\gamma}\left(t^{a}\right) \equiv \exp \left(\Omega\left(\gamma ; t^{a}\right) \sum_{d=1}^{\infty} \frac{e_{d \gamma}}{d^{2}}\right)
$$

- The operators e_{γ} / U_{γ} can be realized as Hamiltonian vector fields / symplectomorphisms of a twisted torus.

Gaiotto Moore Neitzke

The Kontsevich-Soibelman formula II

- The KS wall-crossing formula states that the product

$$
A_{\gamma_{1}, \gamma_{2}}=\prod_{\substack{\gamma=M \gamma_{1}+N_{2}, M \geq 0, N \geq 0}} U_{\gamma},
$$

ordered so that $\arg \left(Z_{\gamma}\right)$ decreases from left to right, stays constant across the wall. As t^{a} crosses $W, \Omega\left(\gamma ; t^{a}\right)$ jumps and the order of the factors is reversed, but the operator $A_{\gamma_{1}, \gamma_{2}}$ stays constant. Equivalently,

$$
\prod_{\substack{M \geq 0, N \geq 0, M / N \downarrow}} U_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0, M / N \uparrow}} U_{M \gamma_{1}+N \gamma_{2}}^{-},
$$

The Kontsevich-Soibelman formula III

- The algebra \mathcal{A} is infinite dimensional but filtered. The KS formula may be projected to any finite-dimensional algebra

$$
\mathcal{A}_{M, N}=\mathcal{A} /\left\{\sum_{m>M \text { or } n>N} \mathbb{R} \cdot e_{m \gamma_{1}+m \gamma_{2}}\right\} .
$$

This projection is sufficient to infer $\Delta \Omega\left(m \gamma_{1}+n \gamma_{2}\right)$ for any $m \leq M, n \leq N$, e.g. using the Baker-Campbell-Hausdorff formula.

- For example, the primitive WCF follows in $\mathcal{A}_{1,1}$ from

$$
\begin{aligned}
& \exp \left(\bar{\Omega}^{+}\left(\gamma_{1}\right) e_{\gamma_{1}}\right) \exp \left(\bar{\Omega}^{+}\left(\gamma_{1}+\gamma_{2}\right) e_{\gamma_{1}+\gamma_{2}}\right) \exp \left(\bar{\Omega}^{+}\left(\gamma_{2}\right) e_{\gamma_{2}}\right) \\
= & \exp \left(\bar{\Omega}^{-}\left(\gamma_{2}\right) e_{\gamma_{2}}\right) \exp \left(\bar{\Omega}^{-}\left(\gamma_{1}+\gamma_{2}\right) e_{\gamma_{1}+\gamma_{2}}\right) \exp \left(\bar{\Omega}^{-}\left(\gamma_{1}\right) e_{\gamma_{1}}\right)
\end{aligned}
$$

and the order 2 truncation of the BCH formula

$$
e^{X} e^{Y}=e^{X+Y+\frac{1}{2}[X, Y]} .
$$

The Kontsevich-Soibelman formula IV

- In some simple cases, one may work in the full algebra \mathcal{A}, and use the "pentagonal identity"

$$
U_{\gamma_{2}} U_{\gamma_{1}}=U_{\gamma_{1}} U_{\gamma_{1}+\gamma_{2}} U_{\gamma_{2}}, \quad \gamma_{12}=-1
$$

- Using this identity repeatedly, one can e.g. establish the wall-crossing identity in pure Seiberg-Witten $S U(2)$ theory,

$$
U_{2,-1} \cdot U_{0,1}=U_{0,1} \cdot U_{2,1} \cdot U_{4,1} \ldots U_{2,0}^{(-2)} \ldots U_{3,-1} \cdot U_{2,-1} U_{1,-1}
$$

Denef Moore; Dimofte Gukov Soibelman

The Kontsevich-Soibelman formula V

- Noting that the operators $U_{k \gamma}$ for different $k \geq 1$ commute, one may combine them into a single factor

$$
V_{\gamma} \equiv \prod_{k=1}^{\infty} U_{k \gamma}=\exp \left(\sum_{\ell=1}^{\infty} \bar{\Omega}(\ell \gamma) e_{\ell \gamma}\right), \quad \bar{\Omega}(\gamma)=\sum_{d \mid \gamma} \Omega(\gamma / d) / d^{2} .
$$

and rewrite the KS formula as a product over primitive charge vectors only,

$$
\prod_{\substack{M \geq 0, N \geq 0, \operatorname{gcd}(M, N)=1, M / N \downarrow}} V_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0, \operatorname{gcd}(M, N)=1, M / N \uparrow}} V_{M \gamma_{1}+N \gamma_{2}}^{-},
$$

The Kontsevich-Soibelman formula VI

- Using the BCH formula, one easily derives the semi-primitive wcf formula, and generalizations to $\gamma \rightarrow 2 \gamma_{1}+N \gamma_{2}, \ldots$
- The fact that the algebra is graded by the charge lattice and the expression of V_{γ} guarantees that the jumps in the rational invariant will be of the form

$$
\Delta \bar{\Omega}(\gamma)=\sum_{n \geq 2} \sum_{\substack{\left\{\alpha_{1}, \ldots \alpha_{n}\right\} \in \tilde{\Gamma} \\ \gamma=\alpha_{1}+\cdots+\alpha_{n}}} \frac{g\left(\left\{\alpha_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|} \prod_{i=1}^{n} \bar{\Omega}^{+}\left(\alpha_{i}\right)
$$

with some universal coefficients $g\left(\left\{\alpha_{i}\right\}\right)$.

Generic decay I

- When α_{i} have generic phases, $g\left(\left\{\alpha_{i}\right\}\right)$ can be computed by projecting the KS formula to the subalgebra spanned by $e_{\sum \alpha_{j}}$ where $\left\{\alpha_{j}\right\}$ runs over all subsets of $\left\{\alpha_{i}\right\}$.
- E.g., for $n=3$, assuming that the phase of the charges are ordered according to

$$
\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{3}
$$

we find

$$
g\left(\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}\right)=(-1)^{\alpha_{12}+\alpha_{23}+\alpha_{13}} \alpha_{12}\left(\alpha_{13}+\alpha_{23}\right)
$$

As we shall see later, this fits the macroscopic index of 3-centered configurations!

The motivic Kontsevich-Soibelman formula I

- KS have proposed a quantum deformation of their formula, which governs wall-crossing properties of motivic DT invariants $\Omega_{\text {ref }}(\gamma ; y, t)$. Physically, these correspond to the "refined index"

$$
\Omega_{\mathrm{ref}}(\gamma, y)=\operatorname{Tr}_{\mathcal{H}(\gamma)}^{\prime}(-y)^{2 J_{3}} \equiv \sum_{n \in \mathbb{Z}}(-y)^{n} \Omega_{\mathrm{ref}, n}(\gamma),
$$

where J_{3} is the angular momentum in 3 dimensions along the z axis. As $y \rightarrow 1, \Omega_{\mathrm{ref}}(\gamma ; y, t) \rightarrow \Omega(\gamma ; t)$.

- Caution: this index (rather, a variant of it using a combination of angular momentum and $S U(2)_{R}$ quantum numbers) is protected in $\mathcal{N}=2, D=4$ field theories, but not in supergravity/string theory, where $S U(2)_{R}$ is generically broken.

The motivic Kontsevich-Soibelman formula II

- To state the formula, consider the Lie algebra $\mathcal{A}(y)$ spanned by generators $\left\{\tilde{e}_{\gamma}, \gamma \in \Gamma\right\}$, satisfying the commutation rule

$$
\left[\tilde{e}_{\gamma_{1}}, \tilde{e}_{\gamma_{2}}\right]=\kappa\left(\left\langle\gamma_{1}, \gamma_{2}\right\rangle\right) \tilde{e}_{\gamma_{1}+\gamma_{2}}, \quad \kappa(x)=\frac{(-y)^{x}-(-y)^{-x}}{y-1 / y} .
$$

- To any primitive charge vector γ, attach the operator

$$
\hat{V}_{\gamma}=\prod_{k \geq 1} \hat{U}_{k \gamma}=\exp \left[\sum_{\ell=1}^{\infty} \bar{\Omega}_{\mathrm{ref}}(\ell \gamma, y) \tilde{e}_{\ell \gamma}\right]
$$

where $\bar{\Omega}_{\text {ref }}(\gamma, y)$ are the "rational motivic invariants", defined by

$$
\bar{\Omega}_{\mathrm{ref}}^{+}(\gamma, y) \equiv \sum_{d \mid \gamma} \frac{\left(y-y^{-1}\right)}{d\left(y^{d}-y^{-d}\right)} \Omega_{\mathrm{ref}}^{+}\left(\gamma / d, y^{d}\right)
$$

The motivic Kontsevich-Soibelman formula III

- The motivic version of the KS wall-crossing formula states that

$$
\prod_{\substack{M \geq 0, N \geq 0>0, \operatorname{gcd}(\bar{M}, N)=1, M / N \downarrow}} \hat{V}_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0>0, \operatorname{gcd}(\bar{M}, N)=1, M / N \uparrow}} \hat{V}_{M \gamma_{1}+N \gamma_{2}}^{-},
$$

- $\Delta \bar{\Omega}_{\text {ref }}(\gamma, y)$ can be computed using the same techniques as before, e.g. the primitive wcf read

$$
\Delta \Omega_{\mathrm{ref}}\left(\gamma_{1}+\gamma_{2}, y\right)=\frac{(-y)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}-(-y)^{-\left\langle\gamma_{1}, \gamma_{2}\right\rangle}}{y-1 / y} \Omega_{\mathrm{ref}}\left(\gamma_{1}, y\right) \Omega_{\mathrm{ref}}\left(\gamma_{2}, y\right)
$$

- The general formula for $\Delta \bar{\Omega}_{\text {ref }}$ involves universal factors $g\left(\left\{\alpha_{i}\right\}, y\right)$, which reduce to $g\left(\left\{\alpha_{i}\right\}\right)$ in the limit $y \rightarrow 1$. We expect that they are given by $\operatorname{Tr}^{\prime}(-y)^{2 \sqrt{3}_{3}}$ in the corresponding SUSY quantum mechanics.

The Joyce-Song formula I

- In the context of the Abelian category of coherent sheaves on a Calabi-Yau three-fold, Joyce \& Song have shown that the jump of (generalized, rational) DT invariants across the wall is given by

$$
\Delta \bar{\Omega}(\gamma)=\sum_{n \geq 2} \sum_{\substack{\left\{\alpha_{1}, \ldots \alpha_{n}\right\} \in \tilde{\Gamma} \\ \gamma=\alpha_{1}+\cdots+\alpha_{n}}} \frac{g\left(\left\{\alpha_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|} \prod_{i=1}^{n} \bar{\Omega}^{+}\left(\alpha_{i}\right) .
$$

where the coefficient g is given by a complicated sum over permutations, trees, etc.

- While I do not know of a combinatorial proof, it seems that the JS formula (derived for Abelian categories) is equivalent to the classical KS formula (stated for triangulated categories).
- Note that the JS formula is restricted to $y=1$, and involves large denominators and cancellations. We shall find a more economic formula which also works at the motivic level.

Outline

(1) Introduction
(2) Generalities, and a Boltzmannian view of wall-crossing
(3) The Kontsevich-Soibelman-Joyce-Song formula

4 Non-primitive wall-crossing from localization
(5) Away from the wall

Quantum mechanics of multi-centered solutions I

- The moduli space \mathcal{M}_{n} of BPS configurations with n centers in $\mathcal{N}=2$ SUGRA is described by solutions to Denef's equations

$$
\sum_{j=1 \ldots n, j \neq i}^{n} \frac{\alpha_{i j}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}=c_{i}, \quad\left\{\begin{array}{l}
c_{i}=2 \operatorname{lm}\left[e^{-i \phi} Z\left(\alpha_{i}\right)\right] \\
\phi=\arg \left[Z\left(\alpha_{1}+\cdots \alpha_{n}\right)\right]
\end{array}\right.
$$

- \mathcal{M}_{n} is a symplectic manifold of dimension $2 n-2$, and carries an Hamiltonian action of $S U(2)$:

$$
\omega=\frac{1}{2} \sum_{i<j} \alpha_{i j} \sin \theta_{i j} \mathrm{~d} \theta \wedge \mathrm{~d} \phi_{i j}, \quad \vec{\jmath}=\frac{1}{2} \sum_{i<j} \alpha_{i j} \frac{\vec{r}_{i j}}{\left|r_{i j}\right|}
$$

de Boer El Showk Messamah Van den Bleeken

Quantum mechanics of multi-centered solutions II

- When the α_{i} 's lie in the positive cone $\tilde{\Gamma}$ (more generally, whenever $\operatorname{sign}\left(\alpha_{i j}\right)$ defines an ordering of the $\alpha_{i}, \mathcal{M}_{n}$ is compact, and the fixed points of J_{3} are isolated.
- E.g for 3 centers with $\alpha_{12}>0, \alpha_{23}>0, \alpha_{13}>0$, the domain of the plane $c_{1}+c_{2}+c_{3}=0$ allowed by Denef's equations is:

For fixed c_{i}, the range of $r_{i j}$ is read off by intersecting the shaded area with a radial line which joins c_{i} to the origin. Thus, 3centered solutions only exist in the region $c_{1}>0, c_{3}<0$, and have $r_{i j}$ bounded from below and from above. Fixed points of J_{3} correspond to collinear solutions, and lie on the boundary of this domain.

Quantum mechanics of multi-centered solutions III

- The symplectic form $\omega / 2 \pi \in H^{2}\left(\mathcal{M}_{n}, \mathbb{Z}\right)$ is the curvature of a complex line bundle \mathcal{L} over \mathcal{M}_{n}, with connection

$$
\lambda=\frac{1}{2} \sum_{i<j} \alpha_{i j}\left(1-\cos \theta_{i j}\right) \mathrm{d} \phi_{i j}, \quad \mathrm{~d} \lambda=\omega
$$

- Assuming that \mathcal{M}_{n} is spin, let $S=S_{+} \oplus S_{-}$be the spin bundle. Let $D=D_{+} \oplus D_{-}$be the Dirac operator for the metric obtained by restricting the flat metric on $\mathbb{R}^{3 n-3}$ to \mathcal{M}_{n}, with $D_{ \pm}: S_{ \pm} \mapsto S_{\mp}$. The action of $S O(3)$ on \mathcal{M}_{n} lifts to an action of $S U(2)$ on $S_{ \pm}$.
- We assume that BPS states correspond to harmonic spinors, i.e. sections of $S \otimes \mathcal{L}$ annihilated by the Dirac operator D.

Quantum mechanics of multi-centered solutions IV

- The 'refined index' is then given by

$$
g_{\mathrm{ref}}\left(\left\{\alpha_{i}\right\} ; y\right)=\operatorname{Tr}_{\mathrm{KerD}_{+}}(-y)^{2 ل_{3}}+\operatorname{Tr}_{\text {KerD- }}(-y)^{2 ل_{3}} .
$$

- We further assume that $\operatorname{Ker} D_{-}=0$, so that the refined index $g_{\text {ref }}\left(\left\{\alpha_{i}\right\} ; y\right)$ reduces to the equivariant index

$$
g_{\mathrm{ref}}\left(\left\{\alpha_{i}\right\} ; y\right)=\operatorname{Tr}_{\mathrm{KerD}_{+}}(-y)^{2 ل_{3}}-\operatorname{Tr}_{\mathrm{KerD}_{-}}(-y)^{2 ل_{3}} .
$$

- The vanishing of $\operatorname{Ker} D_{-}$can be shown to hold in special cases where \mathcal{M}_{n} is Kähler. In gauge theories, the protected spin character presumably reduces to the equivariant index without further assumption.

Quantum mechanics of multi-centered solutions V

- The refined/equivariant index can be computed by the Atiyah-Bott Lefschetz fixed point formula:

$$
g_{\mathrm{ref}}\left(\left\{\alpha_{i}\right\}, y\right)=(-1)^{\sum_{i<j} \alpha_{i j}-n+1} \sum_{\text {fixed pts }} \frac{y^{2 J_{3}}}{\operatorname{det}\left(y^{L}-y^{-L}\right)}
$$

where L is the matrix of the action of J_{3} on the holomorphic tangent space around the fixed point.

- In the large charge limit, $\mathcal{L} \rightarrow k \mathcal{L}$ with $k \rightarrow \infty$, this reduces to the Duistermaat-Heckmann formula for the equivariant volume,

$$
\frac{\int_{\mathcal{M}_{n}} \omega^{n-1} y^{2 J_{3}}}{(2 \pi)^{n-1}(n-1)!}=(-1)^{\sum_{i<j} \alpha_{i j}-n+1} \sum_{\text {fixed pts }} \frac{y^{2 J_{3}}}{\operatorname{det}(L \log y)}
$$

Quantum mechanics of multi-centered solutions VI

- The fixed points of the action of J_{3} are collinear multi-centered configurations along the z-axis, such that

$$
\sum_{j=1 \ldots n, j \neq i}^{n} \frac{\alpha_{i j}}{\left|z_{i}-z_{j}\right|}=c_{i}, \quad J_{3}=\frac{1}{2} \sum_{i<j} \alpha_{i j} \operatorname{sign}\left(z_{j}-z_{i}\right)
$$

- Equivalently, fixed points are critical points of the 'superpotential'

$$
W\left(\lambda,\left\{z_{i}\right\}\right)=-\sum_{i<j} \operatorname{sign}\left[z_{j}-z_{i}\right] \alpha_{i j} \ln \left|z_{j}-z_{i}\right|-\sum_{i}\left(c_{i}-\frac{\lambda}{n}\right) z_{i}
$$

These are isolated, and classified by permutations σ describing the order of z_{i} along the axis.

Quantum mechanics of multi-centered solutions VII

- In the vicinity of a fixed point p,
$J_{3}=\frac{1}{2} \sum_{i<j} \alpha_{i j} \operatorname{sign}\left[z_{j}-z_{i}\right]-\frac{1}{4} W_{i j}\left(x_{i} x_{j}+y_{i} y_{j}\right)+\cdots, \omega=\frac{1}{2} W_{i j} \mathrm{~d} x_{i} \wedge \mathrm{~d} y_{j}+\cdots$
where $W_{i j}$ is the Hessian matrix of $W\left(\lambda,\left\{z_{i}\right\}\right)$ wrt z_{1}, \ldots, z_{n}, and $\left(x_{i}, y_{i}\right)$ are coordinates in the plane transverse to the z-axis at the center $i\left(\sum_{i} x_{i}=\sum y_{i}=0\right)$.
- In particular, $U(1)$ acts as $L= \pm\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ in each two-plane, leading to

$$
\operatorname{det}\left(y^{L}-y^{-L}\right)=(y-1 / y)^{n-1} s(p), \quad s(p)=-\operatorname{sign}\left(\operatorname{det} W_{I J}\right)
$$

where $W_{I J}$ is the Hessian of W with respect to $z_{I}=\left(\lambda, z_{i}\right) . s(p)$ is (minus) the Morse index of the critical point p.

Quantum mechanics of multi-centered solutions VIII

- This leads to the Coulomb branch formula

$$
g_{\mathrm{ref}}\left(\left\{\alpha_{i}\right\}, y\right)=\frac{(-1)^{\sum_{i<j} \alpha_{i j}+n-1}}{\left(y-y^{-1}\right)^{n-1}} \sum_{p: \partial_{l} W(p)=0} s(p) y^{\sum_{i<j} \alpha_{i j} \operatorname{sign}\left(z_{j}-z_{i}\right)}
$$

- For $n \leq 5$, we find perfect agreement with JS/KS !

$$
\begin{gathered}
g\left(\alpha_{1}, \alpha_{2} ; y\right)=(-1)^{\alpha_{12}} \frac{\sinh \left(\nu \alpha_{12}\right)}{\sinh \nu} \quad\left(y=e^{\nu}\right) \\
g\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; y\right)=(-1)^{\alpha_{13}+\alpha_{23}+\alpha_{12}} \frac{\sinh \left(\nu\left(\alpha_{13}+\alpha_{23}\right)\right) \sinh \left(\nu \alpha_{12}\right)}{\sinh ^{2} \nu}
\end{gathered}
$$

Higgs branch picture I

- An alternative formula can be given using the Higgs branch description of the multi-centered configuration, namely the quiver with n nodes $\{1 \ldots n\}$ of dimension 1 and $\alpha_{i j}$ arrows from i to j.
- Since α_{i} lie on a 2-dimensional sublattice $\tilde{\Gamma}$, the quiver has no oriented closed loop. Reineke's formula gives
where \sum runs over all ordered partitions of $\gamma=\alpha_{1}+\cdots+\alpha_{n}$ into s vectors $\beta^{(a)}(1 \leq a \leq s, 1 \leq s \leq n)$ such that
(1) $\beta^{(a)}=\sum_{i} m_{i}^{(a)} \alpha_{i}$ with $m_{i}^{(a)} \in\{0,1\}, \sum_{a} \beta^{(a)}=\gamma$
(2) $\left\langle\sum_{a=1}^{b} \beta^{(a)}, \gamma\right\rangle>0 \quad \forall b$ with $1 \leq b \leq s-1$

Higgs branch picture II

- The Higgs branch formula agrees with KS/JS/Coulomb for $n=2,3,4,5$!
- The formula gives a prescription for what permutations are allowed in the Coulomb problem, and for their Morse index.
- It is perhaps not surprising that the Higgs branch formula agrees with KS/JS, since quiver categories are an example of Abelian categories. Unlike the JS formula, the Higgs branch formula works at $y \neq 1$.

Outline

(1) Introduction

(2) Generalities, and a Boltzmannian view of wall-crossing
(3) The Kontsevich-Soibelman-Joyce-Song formula

4 Non-primitive wall-crossing from localization
(5) Away from the wall

Away from the wall I

- Having understood the jump $\Delta \Omega(\gamma ; y)$ in terms of the index of multi-centered solutions, one would like to compute the BPS index $\Omega\left(\gamma ; y, t^{a}\right)$ on either side of the wall, from the index $\Omega_{S}\left(\alpha_{i}\right)$ of single-centered black holes. Since spherically symmetric SUSY black holes cannot decay and carry zero angular momentum, $\Omega_{S}\left(\alpha_{i}\right)$ must be independent of t^{a} and y.

Manchot BP Sen II

- Naively, one may expect

$$
\bar{\Omega}\left(\gamma ; y, t^{a}\right)=\sum_{n \geq 2} \sum_{\substack{\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \in \Gamma \\ \gamma=\alpha_{1}+\cdots+\alpha_{n}}} \frac{g\left(\left\{\alpha_{i}\right\} ; y, c_{i}\right)}{\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|} \prod_{i=1}^{n} \bar{\Omega}_{S}\left(\alpha_{i}\right)
$$

where $g\left(\left\{\alpha_{i}\right\} ; y, c_{i}\right)$ is the refined index of the SUSY quantum mechanics on $\mathcal{M}_{n}\left(\alpha_{i}, c_{i}\right)$. This is similar to the formula for $\Delta \bar{\Omega}(\gamma)$, but with some important differences.

Away from the wall II

- Unlike the formula for $\Delta \bar{\Omega}(\gamma)$, the charges α_{i} of the constituents are no longer restricted to a two-dimensional subspace of the charge lattice, and there are a priori an infinite number of possible splittings $\gamma=\sum \alpha_{i}$. It is plausible that requiring that the multi-centered solution be regular may leave only a finite number of splittings. In addition, for a given splitting, the regularity constraint may rule out certain components of $\mathcal{M}_{n}\left(\alpha_{i}, c_{i}\right)$.
- The space $\mathcal{M}_{n}\left(\alpha_{i}, c_{i}\right)$ is in general no longer compact. E.g, in the 3-body case with $\alpha_{12}>0, \alpha_{23}>0, \alpha_{13}<0$, the allowed values of c_{i} (and therefore $r_{i j}$) are plotted below:

Away from the wall III

- In particular, there can be scaling regions in \mathcal{M}_{n}, when some or all of the n centers approach each other at arbitrary small distances. Classically, these scaling solutions carry zero angular momentum and are invariant under $S O(3)$.
- Some of the distances $r_{i j}$ can also diverge on walls of marginal stability, but the formula for $\Omega\left(\gamma, t^{a}\right)$ is by construction consistent with wall-crossing.

Away from the wall IV

- In the presence of scaling solutions, it appears that \mathcal{M}_{n} admits a compactification $\overline{\mathcal{M}}_{n}$ with finite volume. However, this introduces new (non-collinear) fixed points of the action of J_{3} which are no longer isolated, leading to additional contributions to the equivariant index.
- Rather than trying to compute these new contributions directly, we propose to determine them by requiring 1) that the resulting $\Omega\left(\gamma ; y, t^{2}\right)$ is a finite Laurent polynomial in y and 2) that they carry the minimal angular momentum J_{3} compatible with condition 1). This minimal modification hypothesis fixes $\Omega\left(\gamma ; y, t^{a}\right)$ uniquely.
- We have checked that the minimal modification hypothesis works for an infinite class of 'dipole halo' configurations, where \mathcal{M}_{n} is a toric manifold and can be quantized directly.

Conclusion I

- Multi-centered solitonic configurations provide a simple picture to derive and understand wall-crossing formulae for the BPS (refined) index.
- We have not proven the equivalence between the Coulomb branch, Higgs branch, JS and KS wall-crossing formula, but there is overwhelming evidence that they all agree.
- Our derivation was made in the context of $\mathcal{N}=2$ supergravity, it would be interesting to develop our understanding of multi-centered dyonic solutions in $\mathcal{N}=2$ gauge theories.
- In principle, our formulae can be used to extract the degeneracies $\Omega_{S}(\gamma)$ of single-centered black holes from the moduli-dependent BPS index $\Omega(\gamma)$. The former is the one that should be compared with Sen's quantum entropy function.

THANK YOU!

