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The man who could walk through walls

Marcel Aymé, Le passe-muraille, 1943

“When Dutilleul was taken inside prison, he felt as though fate had
smiled upon him. The thickness of the walls was a veritable treat for
him. ”

“When he left [his mistress’ room], Dutilleul passed through the walls of
the house and felt an unusual rubbing sensation against his hips and
shoulders. He felt as though he were moving through some gel-like
substance that was growing thicker (...) Dutilleul was immobilized
inside the wall. He is there to this very day, imprisoned in the stone.”
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Introduction

Unlike the real world, gauge theories and string vacua with
extended SUSY abound with massless scalar fields / moduli. How
does the spectrum of bound states depend on them ?
More often than not, bound states decay into multi-particle states
across certain codimension-one walls in moduli space: a way to
learn about their elementary constituents !
Using semi-classical methods, one may sometimes determine the
spectrum at weak coupling. Understanding these decays
systematically is important to extrapolate to strong coupling.
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BPS states and BPS index

This can be achieved for BPS states, annihilated by a fraction of
SUSY: their mass is computable exactly and possible decays are
highly constrained.
While the number of BPS states may change erratically, the BPS
index is constant – at least away from the walls. In theories with
N = 2 SUSY,

Ω(γ,u) = −1
2

TrH1(γ,u)(−1)2J3 (2J3)2

where H1(γ,u) is the Hilbert space of one-particle states.
The jump ∆Ω across the wall is determined by certain universal
wall-crossing formulae, first discovered in the math literature.

Joyce Song 2008; Kontsevich Soibelman 2008
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Wall-crossing in gauge theories

E.g., in D = 4,N = 2 SYM with G = SU(2) (Seiberg-Witten) on
the Coulomb branch,

(0,1)

(2n,1)

(2n+2,−1)

u

(2,−1)

(2,0)

All BPS states in the weak coupling region can be viewed as
bound states of the magnetic monopole (0,1) and dyon (2,−1).
Those are absolutely stable, i.e. exist everywhere on the Coulomb
branch.

Seiberg Witten 1994; Bilal Ferrari 1996
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Bound states as multi-centered solutions

In the low energy field theory, all
these bound states are described semi-
classically by multi-centered BPS solitons
(or black holes).

Denef 2000; Denef Moore 2007

Near the wall, the centers become farther apart, and behave like
point particles interacting by Coulomb, Lorentz, (Newton) and
scalar forces.
As I’ll explain in part I, the degeneracy of the bound state (hence
the jump in Ω) is determined by the index of the SUSY quantum
mechanics of these point particles, which is computable by
localization.

Denef 2002; Manschot BP Sen 2010
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Witten index and multi-particle states I

Another protected quantity is the Witten index

$(R, γ, u) = −1
2TrH(u,γ)(−1)2J3(2J3)2 e−2πR H /∈ Z!

Here H(u) is the full Hilbert space of the four-dimensional theory
on R3, including multi-particle states, H is the Hamiltonian.
In center of mass frame, the Hamiltonian has a discrete spectrum
starting at the BPS bound E = |Z (γ,u)|, and a continuum of
(non-BPS) multi-particle states. They can still contribute to the
Witten index, due to a possible spectral asymmetry between
densities of bosonic and fermionic states.

Kaul Rajaraman 1983, Akhoury Comtet 1984, Troost 2010

Since only multi-particle states made of BPS constituents can
contribute to the Witten index, $(R, γ, u) should be a universal
function of the BPS indices Ω(αi ,u).
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Witten index and multi-particle states II

$(R, γ, u) is computed by a path integral on R3 × S1(R) with
periodic boundary conditions, and with an insertion of a 4-fermion
vertex to soak up fermionic zero-modes.
Because the path integral has no phase transition, the Witten
index $(R, γ, u) is expected to be smooth across walls of
marginal stability.

Alexandrov Moore Neitzke BP 2014

$(R, γ, u) is an analogue of the ‘new supersymmetric index’ in
D = 2 massive theories with (2,2) supersymmetry. It is closely
related to the metric on the Coulomb branch in the theory
compactified on S1.

Cecotti Fendley Intriligator Vafa 1992; Gaiotto Moore Neitzke 2008
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Outline

1 Wall-crossing made easy

2 The Coulomb branch formula for the BPS index

3 Wall-crossing made smooth
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Generalities

Supersymmetric gauge theories or supergravity models in 4
dimensions typically include a large number of massless scalars
u ∈M and Abelian gauge fields AΛ

µ.
Bound states are labelled by their electric and magnetic charges
qΛ,pΛ, by their mass M and spin J3.
The charge vector γ = (pΛ,qΛ) takes values in a lattice equipped
with an integer antisymmetric pairing, corresponding to the
angular momentum carried by the electromagnetic field:

〈γ, γ′〉 ≡ qΛ p′Λ − q′Λ pΛ ∈ Z
Dirac 1931; Schwinger 1966; Zwanziger 1968

States with 〈γ, γ′〉 6= 0 are ‘mutually non-local’.
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BPS states and BPS index

In models with N = 2 supersymmetries, the mass of any state is
bounded from below by the BPS bound

M ≥ |Z (γ,u)| , Z (γ,u) = eK/2(qΛX Λ − pΛFΛ)

States saturating the BPS bound are called BPS states. They are
annihilated by half of the supersymmetry, therefore form short
SUSY multiplets.

Witten Olive 1978

Two short multiplets might combine into a long multiplet and
desaturate the BPS bound, but the (refined) index Ω stays
constant under this process:

Ω(γ; y ,u) =
1

1/y − y
TrH1(γ,u)(−1)2J3(2J3)y2(I3+J3)
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Walls of marginal stability

The index Ω(γ; u) may fail to be constant when the single-particle
spectrum mixes with the continuum of multi-particle states, i.e.
when the bound state decays.
The decay of BPS bound states is constrained by the triangular
inequality

M(γ1 + γ2) = |Z (γ1 + γ2)| = |Z (γ1) + Z (γ2)| ≤ M(γ1) + M(γ2)

The decay is energetically possible only when the constituents are
BPS, and central charges are aligned, i.e. on the wall

W (γ1, γ2) = {u / arg[Z (γ1,u)] = arg[Z (γ2,u)]} ⊂ M
Cecotti Vafa 1992; Seiberg Witten 1994
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Primitive wall-crossing from two-centered solutions I

For 〈γ1, γ2〉 6= 0, there exists a two-centered BPS solution of
charge γ = γ1 + γ2:

〈γ1, γ2〉
R

=
2 Im[Z̄ (γ1) Z (γ2)]

|Z (γ1 + γ2)|
Denef 2002

The solution exists only on one side of the wall. As u approaches
the wall, the distance r12 diverges and the bound state decays into
its constituents γ1 and γ2.
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Primitive wall-crossing from two-centered solutions I

Near the wall, the two monopoles can be treated as pointlike
particles with charge Ω(γi) internal degrees of freedom,
interacting via N = 4 supersymmetric quantum mechanics,

H = 1
2m (~p − q~A)2 − q

2m
~B · ~σ ⊗ (12 − σ3) + 1

2m

(
ϑ− q

r

)2

~∇∧~A = ~B = ~r
r3 , q = 1

2〈γ1, γ2〉 , m =
|Zγ1 ||Zγ2 |
|Zγ1 |+|Zγ2 |

, ϑ2

2m = |Zγ1 |+|Zγ2 |−|Zγ1+γ2 |

� � � � �

�

�

�

�
� θ >�

� � � � �

�

�

�

�
� θ <�
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Primitive wall-crossing from two-centered solutions II
H describes two bosonic degrees of freedom with helicity h = 0,
and one helicity h = ±1/2 fermionic doublet with gyromagnetic
ratio g = 4.

D’Hoker Vinet 1985; Denef 2002; Avery Michelson 2007;Lee Yi 2011

H commutes with 4 supercharges,

Q4 =
1√
2m

(
0 −i

(
ϑ− q

r

)
+ ~σ · (~p − q~A)

i
(
ϑ− q

r

)
+ ~σ · (~p − q~A) 0

)

{Qm,Qn} = 2H δmn
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Primitive wall-crossing from two-centered solutions III

When qϑ > 0, H has a BPS ground state with degeneracy 2|q|,
transforming as a multiplet of spin j = 1

2(|〈γ1, γ2〉| − 1) under
rotations (plus a number of non-BPS bound states which cancel
pairwise in the index).

Equivalently, one may first truncate the dynamics to the BPS
phase space, a two-sphere with symplectic form
ω = 1

2〈γ1, γ2〉 sin θ dθdφ. The geometric quantization ofM2
produces the same multiplet of BPS states.

In addition, there is a continuum of non-BPS states starting at
E = ϑ2/(2m), which will become important in part II.
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Primitive wall-crossing from two-centered solutions IV

Primitive wall-crossing formula (Denef Moore 2007)

∆Ω(γ1 + γ2) = ± |〈γ1, γ2〉|︸ ︷︷ ︸ × Ω(γ1)︸ ︷︷ ︸ × Ω(γ2)︸ ︷︷ ︸
angular internal internal

momentum states of 1 states of 2
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Multi-centered solutions

On the same wall, many other bound states will decay: those
represented by multi-centered BPS solutions with charges
αi = Miγ1 + Niγ2, with Mi ≥ 0,Ni ≥ 0 and (Mi ,Ni) 6= 0.
Stationary BPS solutions with n centers at ~r = ~ri exist whenever

Denef’s equations (Denef 2000)

∀i :
∑
j 6=i

αij

|~ri −~rj |
= ci(u)

Here αij ≡ 〈αi , αj〉, ci = 2 Im
[
e−iφZ (αi ,u)

]
, φ = arg[Z (

∑
i αi ,u)].
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BPS phase space

For fixed charges αi and moduli u, the space of solutions modulo
overall translations is a compact symplectic manifoldMn of
dimension 2n − 2, invariant under SO(3):

ω = 1
2

∑
i<j

αij sin θij dθij ∧ dφij , ~J = 1
2

∑
i<j

αij
~rij
|rij |

de Boer El Showk Messamah Van den Bleeken 2008

The solution exists only on one side of the wall. In the vicinity of
the wall, the centers move away from each other, and can again
be treated like point-like particles with

1 Ω(γi ) internal states at each center
2 g({αi}) external states obtained by geometric quantization ofMn
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Geometric quantization and localization

Given a symplectic manifold (M, ω), geometric quantization
produces a graded Hilbert space H, the space of harmonic
spinors for the Dirac operator D coupled to ω. IfM is compact, H
is finite dimensional.
Working assumption: the index g({αi}) = Tr(−1)2J3 of the SUSY
quantum mechanics is the index of the Dirac operator D. More
generally, the refined index g({αi}, y) ≡ Tr(−y)2J3 in the SUSY
quantum mechanics is equal to the equivariant index of D.
SinceMn admits a U(1) action, the equivariant index can be
computed by localization:

Ind(D) = lim
y→1

Ind(D, y) , Ind(D, y) =
∑

fixed pts

Jac(p) y2J3(p)

Atiyah Bott, Berline Vergne
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The Coulomb branch formula

For any n, the fixed points of the action of J3 are collinear
multi-centered configurations along the z-axis:

α1 α3α2

z-axis

∀i ,
∑
j 6=i

αij

|zi − zj |
= ci , J3 =

1
2

∑
i<j

αij sign(zj − zi) .

These fixed points are isolated, and labelled by permutations σ:

Coulomb branch wall-crossing formula

g({αi}, y) = (−1)
∑

i<j αij +n−1

(y−y−1)n−1

∑
σ

s(σ) y
∑

i<j ασ(i)σ(j) , s(σ) = 0,±1

Manschot, BP, Sen 2010
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An example: 3-body decay

E.g. for n = 2,M2 = S2, J3 = α12 cos θ:

g({α1, α2}, y) =
(−1)α12

1/y − y

(
y+α12︸ ︷︷ ︸ − y−α12︸ ︷︷ ︸

North pole South pole

)
y→1−→ ±α12

E.g. for n = 3 with α12 > α23, there are 4 collinear configurations:

g({αi}, y) = (−1)α13+α23+α12

(y−1/y)2 ×[
yα13+α23+α12︸ ︷︷ ︸ − y−α13−α23+α12︸ ︷︷ ︸ − yα13+α23−α12︸ ︷︷ ︸ + y−α13−α23−α12︸ ︷︷ ︸

(123) (312) (213) (321)

]
y→1−→ ±〈α1, α2〉 〈α1 + α2, α3〉
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Non-primitive wall-crossing (naive)

For fixed total charge γ = Mγ1 + Nγ2, the index Ω(γ) includes
contributions from all n-centered solutions with charges
αi = Miγ1 + Niγ2 such that (M,N) =

∑
i(Mi ,Ni). All these

solutions disappear at once across the wall.
Naively, the jump of the index across the wall should be

∆Ω(γ, y) =
∑
n≥2

∑
γ=α1+···+αn

g({αi}, y)
∏n

i=1
Ω(αi , y)

where g({αi}, y) is the index of the SUSY quantum mechanics,
and Ω(αi , y) is the refined index carried by the constituents (the
same on both sides of the wall).
This however ignores the issue of statistics.
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Non-primitive wall-crossing (correct)

Taking Bose-Fermi statistics into account, the formula for ∆Ω(γ) is
cumbersome (e.g. it involves products of Ω(αi) with γ 6=

∑
αi ).

The correct formula is obtained by replacing Ω→ Ω̄ where

Ω̄(γ, y) ≡
∑

d |γ
1
d

y − 1/y
yd − y−d Ω(γ/d , yd )

Joyce Song

and introducing a Boltzmann symmetry factor:

Non-primitive wall-crossing formula

∆Ω̄(γ) =
∑
n≥2

∑
γ=α1+···+αn

g({αi})
|Aut({αi})|

∏n

i=1
Ω̄(αi)

Manschot BP Sen 2010
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An example: 3-body decay

E.g. for γ = γ1 + 2γ2, three types of bound states contribute:

∆Ω(γ) =(−1)γ12 γ12 Ω(γ2) Ω(γ1 + γ2) + 2γ12 Ω(2γ2) Ω(γ1)

+ 1
2γ12 Ω(γ2) (γ12Ω(γ2) + 1) Ω(γ1)

=(−1)γ12 γ12 Ω̄(γ2) Ω̄(γ1 + γ2) + 2γ12 Ω̄(2γ2) Ω̄(γ1)

+ 1
2(γ12)2 Ω̄(γ2) Ω̄(γ2) Ω̄(γ1)
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The Coulomb branch formula I

The wall-crossing formula suggests that it should be possible to
express the BPS index Ω(γ; ci ; y) as a sum of bound states of a
set of elementary (i.e. absolutely stable, or ‘single-centered’)
constituents, carrying fixed internal index ΩS(αi). Naively,

Ω̄(γ; u, y) =
∑

γ=
∑
αi

g({αi}, {ci}; y)

|Aut({αi})|
∏

i

Ω̄S(αi , y)

for a suitable choice of ΩS(αi , y)’s.

Manschot BP Sen 2011

Things are not quite so simple, because for general {αi}, the
Coulomb branch moduli spaceMn may be non-compact due to
scaling solutions, and g({αi}, {ci}; y) is not necessarily a
symmetric Laurent polynomial.
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Scaling solutions I

E.g., take a 3-node quiver with α12 = a, α23 = b, α31 = c
satisfying triangular inequalities 0 < a < b + c, etc. There exist
scaling solutions of Denef’s equations

a
r12
− c

r13
= c1,

b
r23
− a

r12
= c2 ,

c
r31
− b

r23
= c3,

with r12 ∼ a ε, r23 ∼ b ε, r13 ∼ c ε, ~J2 ∼ ε2 as ε→ 0.
For c1, c2 > 0, the only collinear configurations are (123) and
(321), leading to a rational function rather than a Laurent
polynomial,

g({αi}) =
(−1)a+b+c(ya+b−c + y−a−b+c)

(y − 1/y)2
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The Coulomb branch formula I

This can be repaired by replacing ΩS(αi ; y) on the r.h.s. by

Ωtot(α; y) =ΩS(α; y)

+
∑

{βi∈Γ},{mi∈Z}
mi≥1,

∑
i miβi =α

H({βi}; {mi}; y)
∏

i

ΩS(βi ; ymi )

H({βi}; {mi}; y) is determined recursively by the conditions
H is symmetric under y → 1/y ,
H vanishes at y → 0,
the coefficient of

∏
i ΩS(βi ; ymi ) in the expression for Ω(

∑
i miβi ; y)

is a Laurent polynomial in y .

The formula is implemented in mathematica: CoulombHiggs.m
Manschot BP Sen 1302.5498; 1404.7154
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Example I

Returning to previous example, the prescription gives

H({γ1, γ2, γ3};{1,1,1}; y) ={
−2/(y − y−1)2 ,a + b + c even
(y + y−1)/(y − y−1)2 ,a + b + c odd

so that the index of the Abelian 3-node quiver decomposes into

Ω(γ, y , {ci}) =g({γ1, γ2, γ3}, {ci}, y) + H({γ1, γ2, γ3}; {1,1,1}; y)

+ ΩS(γ1 + γ2 + γ3; y) .

The single-centered invariant ΩS(γ1 + γ2 + γ3; y) is independent
of ci and y and grows exponentially with (a,b, c), while the first
term grows polynomially.

Bena Berkooz El Showk de Boer van den Bleeken 2012

B. Pioline (CERN & LPTHE) Wall-crossing, easy and smooth Cambridge, 26/2/2015 31 / 48



Outline

1 Wall-crossing made easy

2 The Coulomb branch formula for the BPS index

3 Wall-crossing made smooth

B. Pioline (CERN & LPTHE) Wall-crossing, easy and smooth Cambridge, 26/2/2015 32 / 48



A new supersymmetric index in D = 4

In this last part, we propose a universal formula for the Witten
indices

$(R, γ, u) = −1
2TrH(u,γ)(−1)2J3(2J3)2 e−2πR H

in terms of the BPS indices Ω(γ,u), which is smooth across the
walls, thanks to an interplay between single-particle and
multi-particle contributions.
It will be convenient to consider the ‘grand canonical index’

I(R,u,C) = I0(R,u) +
∑
γ

σγ $(R, γ, u) e−2πi〈γ,C〉

where I0(R,u) is the perturbative contribution with zero charge,
and σγ is a pesky sign.

Alexandrov Neitzke Moore BP, 2014
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Coulomb branch on R3 × S1 I

On R3,1, the Coulomb branchM4 is a special Kähler manifold
determined by the central charge function Z : Γ→ C.
After compactification on a circle of radius R, and dualizing the
vector fields in D = 3 into scalars C, the low energy dynamics can
be formulated in terms of a non-linear sigma model R3 →M3(R).
The target spaceM3(R) is a torus bundle overM4, equipped
with a hyperkähler metric.
In the large radius limit, the metric is obtained by the ‘rigid c-map’
fromM4, and has translational isometries along the torus fiber. At
finite radius, instanton corrections from D = 4 BPS states winding
around the circle and break the isometries.
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Coulomb branch on R3 × S1 II
The HK metric onM3(R) is best described using twistorial
methods: the twistor space Z = Pt ×M3 carries a natural
complex structure and holomorphic ‘symplectic’ form

ω = it−1ω+ + ω3 + itω− = εab dXa

Xa
∧ dXb

Xb

The metric onM3(R) can be read off from the holomorphic
Darboux coordinates Xγa(t ,u,C).
In the infinite radius limit, a natural set of Darboux coordinates are
exponentiated moment maps for the torus isometries,

Xa = Xγa , X sf
γ = σγ e−πiR(t−1Zγ−t Z̄γ)−2πi〈γ,C〉.
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Coulomb branch on R3 × S1 III

Instanton corrections induce discontinu-
ities across ‘BPS rays’ `γ′ = {t ′ ∈ C× :
Zγ′/t ′ ∈ iR−}, thru ‘KS- symplectomor-
phisms’,

Xγ → Xγ(1−Xγ′)〈γ,γ
′〉Ω(γ′)

The quantum corrected Darboux coordinates are solutions of the
integral equations

Xγ
X sf
γ

= exp

∑
γ′

Ω(γ′,u)

4πi
〈
γ, γ′

〉∫
`γ′

dt ′

t ′
t + t ′

t − t ′
log
(
1−Xγ′(t ′)

) ,
reminiscent of TBA equations in integrable systems.

Gaiotto Moore Neitzke 2008, 2010
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Coulomb branch on R3 × S1 IV

At large radius, a formal solution is obtained by iterating the
system, leading to a ‘multi-instanton sum’

Xγ = X sf
γ exp

∑
T

∏
(i,j)∈T1

〈αi , αj〉
∏
i∈T0

Ω̄(αi) gT


where T runs over trees decorated by charges αi such that
γ =

∑
αi , gT are iterated contour integrals.
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A new supersymmetric index in D = 4

Conjecture: the Witten index in N = 2,D = 4 theories is

I(R,u,C) =
R

16iπ2

∑
γ

Ω(γ)

∫
`γ

dt
t

(
t−1Zγ − t Z̄γ

)
log (1−Xγ(t))

This function first appeared as the contact potential on the
hypermultiplet moduli space in type II string vacua. In the analogy
between the integral equations of GMN and TBA, I(R,u,C) is the
free energy. Similarly, in the TBA approach to null Wilson loops in
AdS, I(R,u,C) is the regularized area.

Alexandrov Saueressig BP Vandoren 08; Alexandrov Roche; Alday Gaiotto Maldacena 09

I(R,u,C) is closely related to the Kähler potential for the HK
metric onM3(R) (upon adding a classical term, plus the Kähler
potential for a canonical hyperholomorphic line bundle)
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Smoothness across the walls

To support this claim, note that for any smooth function Fγ(t ,u,C)
on Γ×Z, linear in γ,

Φ(R,u,C) =
∑
γ

Ω(γ)

∫
`γ

dt
t

Fγ log (1−Xγ) .

is smooth across the walls, as a result of the dilogarithm identities∑
γ

Ω+(γ)Lσγ (X+
γ ) =

∑
γ

Ω−(γ)Lσγ (X−γ )

implied by the KS motivic wall-crossing formula. Here
Lσ(z) = Li2(z) + 1

2 log(g/σ) log(1− z) is a variant of Rogers’
dilogarithm.

Alexandrov Persson BP 2011

The proposed index arises for Fγ ∝ t−1Zγ − t Z̄γ .
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One-particle contributions

In the large radius limit, approximating Xγ by X sf
γ ,

I(R,u,C) =
∑
γ

R
8π2 σγ Ω(γ) |Zγ |K1(2πR|Zγ |) e−2πi〈γ,C〉 + . . .

For γ primitive, this is the expected contribution of a
single-particle, relativistic BPS state of charge γ:

Tre−2πR
√
−∆+M2+iθJ3 =

L
2π

χspin(θ)

4 sin2(θ/2)
2M K1(2πMR)

provided we define the Witten index as follows:

I(R,u,C) = R lim
θ→2π
L→∞

∂2
θ

[
sin2(θ/2)

πL
Tr
(
σ e−2πRH+iθJ3−2πi〈γ,C〉

)]
.
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Multi-particle contributions I

If correct, this predicts the contribution of an arbitrary multi-particle
state. E.g. for two particles,

Iγ,γ′ = − R
64π3 Ω(γ) Ω(γ′) 〈γ, γ′〉 Jγ,γ′

where

Jγ,γ′ =

∫
`γ

dt
t

∫
`′γ

dt ′

t ′
t + t ′

t − t ′
(

t−1Zγ − t Z̄γ
)
X sf
γ (t)X sf

γ′(t
′) ,

In the limit R →∞, ψγ,γ′ → 0, a saddle point approximation gives

Jγ,γ′ ∼ sgn(ψγ,γ′) Erfc

(
|ψγγ′ |

√
πR|Zγ | |Zγ′ |
|Zγ |+|Zγ′ |

)
e−2πR|Zγ+γ′ |−2πi〈γ+γ′,C〉
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Multi-particle contributions II

Using Erf(x) = sgn(x) (1− Erfc(|x |), one checks that Iγ+γ′ + Iγ,γ′
is smooth across the wall:
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In the remainder, we shall check this prediction by studying the
quantum mechanics of a system of two mutually non-local
non-relativistic particles.
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Non-relativistic electron-monopole problem I

Let us return to the N = 4 supersymmetric quantum mechanics of
the non-relativistic electron-monopole problem:

H =
1

2m
(~p − q~A)2 − q

2m
~B · ~σ ⊗ (12 − σ3) +

1
2m

(
ϑ− q

r

)2

~∇∧ ~A = ~B =
~r
r3 , m =

|Zγ ||Zγ′ |
|Zγ |+|Zγ′ |

, ϑ2

2m = |Zγ |+ |Zγ′ | − |Zγ+γ′ |

� � � � �

�

�

�

�
� θ >�
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�

�

�

�
� θ <�
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Non-relativistic electron-monopole problem II
Going to a basis of monopole spherical harmonics, the
Schrödinger equation with energy E = k2/(2m) becomes[

−1
r
∂2

r r +
ν2 − q2 − 1

4
r2 +

(
ϑ− q

r

)2
]

Ψ(r) = k2Ψ ,

where
ν = j +

1
2

+ h , j = |q|+ h + ` , ` ∈ N .

Supersymmetric bound states exist for qϑ > 0, h = −1/2, ` = 0,
and form a multiplet of spin j = |q| − 1

2 , with 2j + 1 = |〈γ1, γ2〉|.
Denef 2002
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Non-relativistic electron-monopole problem III

The S-matrix for partial waves is similar to that of H-atom,

Sν(k) =

Γ

(
1
2 + ν + i qϑ√

k2−ϑ2

)
Γ

(
1
2 + ν − i qϑ√

k2−ϑ2

) = e2iδν(k).

BP 2015

The contribution of the continuum to Tr(−1)F e−2πRH is thus

∑
h=02,± 1

2

(−1)2h
∞∑
`=0

∞∫
k=ϑ

dk ∂k

2πi
log

Γ

(
|q|+ `+ 2h + 1 + i qϑ√

k2−ϑ2

)
Γ

(
|q|+ `+ 2h + 1− i qϑ√

k2−ϑ2

) e−
πRk2

m
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Non-relativistic electron-monopole problem IV

Terms with ` > 0 cancel, leaving the contribution from ` = 0 only:

Tr(−1)F e−2πRH =− |2q|Θ(qϑ)− 2qϑ
π

∞∫
k=|ϑ|

dk
k
√

k2 − ϑ2
e−

πRk2
m

=− 2|q|Θ(qϑ) + |q| sgn(qϑ) Erfc

(
|ϑ|
√
πR
m

)

=− |q| − q Erf

(
ϑ

√
πR
m

)
.
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Conclusion

Wall-crossing phenomena in four-dimensional SUSY gauge
theories and string vacua can be interpreted as the
(dis)appearance of multi-centered solitons.
The wall-crossing formula is universal, and follows from the SUSY
quantum mechanics of point-like particles interacting by Coulomb,
Lorentz, (Newton) and scalar exchange forces.
This suggests that the complete BPS spectrum can be
constructed from bound states of a set of absolutely stable
constituents, with fixed internal degeneracy ΩS(α). What is their
mathematical meaning, e.g. in context of quiver moduli spaces ?
The BPS indices Ω(γ,u) can be combined into a smooth function
I(R,u,C), which should provide a new supersymmetric index for
N = 2,D = 4 theories. Can one check the spectral density for
multi-particle states ? Can one compute I(R,u,C) exactly ?
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Thank you for your attention !
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