Wall-crossing from Boltzmannian Black Hole Halos

Boris Pioline

LPTHE, Jussieu

AGMP-6, Tjärnö 28/10/2010

based on work with J. Manschot and A. Sen, to appear

Introduction I

- In D = 4, N = 2 supersymmetric field and string theories, the exact spectrum of BPS states can often be determined at weak coupling, and extrapolated to strong coupling.
- E.g., in pure SU(2) Seiberg-Witten theory,

Seiberg Witten; Bilal Ferrari

Introduction II

- In following the BPS spectrum from weak to strong coupling, one must be wary of two issues:
 - short multiplets may pair up into a long multiplet,
 - single-particle states may decay into multi-particle states.
- The first issue can be avoided by considering a suitable index $\Omega(\gamma,t)$, designed such that contributions from long multiplets cancel. $\Omega(\gamma,t)$ is then a piecewise constant function of the charge vector γ and couplings/moduli t.
- To deal with the second issue, one must understand how $\Omega(\gamma,t)$ changes across a wall of marginal stability W, where a single-particle state with charge γ can decay into a multi-particle state with charges $\{\gamma_i\}$, such that $\gamma = \sum_i \gamma_i$, $\arg Z(\gamma_i) = \arg Z(\gamma)$.

Introduction III

 Initial progress came from physics, by noting that single-particle states (in a certain limit) can be represented by multi-centered solitonic solutions. Those exist only on one side of the wall and decay into the continuum of multi-particle states on the other side.

• The simplest "primitive" decay $\gamma \to \gamma_1 + \gamma_2$ involves only two-centered configurations, whose index is easily computed.

Denef Moore

• In the non-primitive case $\gamma = M\gamma_1 + N\gamma_2$ where M, N > 1 (γ_1, γ_2 being two primitive vectors), many multi-centered configurations in general contribute, and computing their index is in general difficult.

Introduction IV

- A general answer to this problem has come from the mathematical study of the wall-crossing properties of (generalized)
 Donaldson-Thomas invariants for Calabi-Yau three-folds, or more generally CY-3 categories.
- These DT invariants are believed to be the mathematical translation of the BPS index $\Omega(\gamma)$ in type IIA CY vacua.
- Notably, Kontsevich & Soibelman (KS) and Joyce & Song (JS) gave two different-looking formulae for $\Delta\Omega(\gamma \to M\gamma_1 + N\gamma_2)$.
- Our goal will be to interpret/derive/generalize these formulae from physical reasoning.

Physical interpretation of the KS/JS formulae I

• The KS formula was first interpreted physically by considering Seiberg-Witten theory on $\mathbb{R}^3 \times S^1$: the resulting moduli space \mathcal{M}_3 is a torus bundle over \mathcal{M}_4 , and is equipped with a hyperkähler metric. Instanton corrections to the metric on \mathcal{M}_3 come from BPS states in D=4.

Seiberg Witten; Donagi

• The twistor space of \mathcal{M}_3 is a complex symplectic manifold. It can be specified by a set of symplectomorphisms U_γ between Darboux coordinate patches. The KS formula guarantees the consistency of this construction, and smoothness of the hyperkähler metric across the walls!

Gaiotto Moore Neitzke; Chen Dorey Petunin

Physical interpretation of the KS/JS formulae II

 The same story works formally in string theory, upon replacing (hyperkähler, symplectic) with (quaternion-Kähler, contact), and ignoring the exponential growth of DT invariants.

Alexandrov BP Saueressig Vandoren; BP Vandoren

 Recently, the (motivic/refined) KS formula was derived physically by using the notion of framed BPS states and supersymmetric galaxies. This reduces the general wall-crossing problem to a sequence of semi-primitive wall-crossings.

Andriyanash Denef Jafferis Moore

Our main results I

 We shall approach the wall-crossing problem by quantizing multi-centered solitonic/black hole configurations.

Denef; de Boer El Showk Messamah Van den Bleeken

 Our main new insight is a physical explanation of the relevance of the rational DT invariants

$$ar{\Omega}(\gamma) \equiv \sum_{m{d}|\gamma} \Omega(\gamma/m{d})/m{d}^2 \; ,$$

which feature prominently in the KS/JS formulae: replacing $\Omega(\gamma) \to \bar{\Omega}(\gamma)$ effectively reduces the Bose-Fermi statistics of the centers to Boltzmannian statistics!

 We shall propose two new wall-crossing "Coulomb branch" and "Higgs branch" formulae, which appear to agree with KS/JS.

Outline

- Introduction
- A Boltzmannian view of wall-crossing
- The Kontsevich-Soibelman formula
- The Joyce-Song formula
- 5 Physical derivation of non-primitive wall-crossing

Outline

- Introduction
- A Boltzmannian view of wall-crossing
- 3 The Kontsevich-Soibelman formula
- 4 The Joyce-Song formula
- 5 Physical derivation of non-primitive wall-crossing

Preliminaries I

• We consider $\mathcal{N}=2$ supergravity in 4 dimensions (this includes field theories with rigid $\mathcal{N}=2$ as a special case). Let $\Gamma=\Gamma_e\oplus\Gamma_m$ be the lattice of electric and magnetic charges, with symplectic pairing

$$\langle \gamma, \gamma' \rangle = \langle (\boldsymbol{p}^{\Lambda}, \boldsymbol{q}_{\Lambda}), \gamma' = (\boldsymbol{p}'^{\Lambda}, \boldsymbol{q}'_{\Lambda}) \rangle \equiv \boldsymbol{q}_{\Lambda} \boldsymbol{p}'^{\Lambda} - \boldsymbol{q}'_{\Lambda} \boldsymbol{p}_{\Lambda} \in \mathbb{Z}$$

- BPS states preserve 4 out of 8 supercharges, and saturate the bound $M \geq |Z(\gamma, t^a)|$ where $Z(\gamma, t^a) = e^{K/2}(q_\Lambda X^\Lambda p^\Lambda F_\Lambda)$ is the central charge/stability data.
- We are interested in the index $\Omega(\gamma; t^a) = \text{Tr}_{\mathcal{H}'_{\gamma}(t^a)}(-1)^{2J_3}$ where $\mathcal{H}'_{\gamma}(t^a)$ is the Hilbert space of stable states with charge $\gamma \in \Gamma$.

Preliminaries II

• The BPS invariants $\Omega(\gamma; t^a)$ are locally constant functions of t^a , but may jump across codimension-one subspaces

$$W(\gamma_1, \gamma_2) = \{t^a / \arg[Z(\gamma_1)] = \arg[Z(\gamma_2)]\}$$

where γ_1 and γ_2 are two primitive (non-zero) vectors such that $\gamma = M\gamma_1 + N\gamma_2$, $M, N \ge 1$.

• We choose γ_1, γ_2 such that $\Omega(\gamma; t^a)$ has support only on the positive cone (root basis property)

$$\tilde{\Gamma}: \quad \{ \emph{M}\gamma_1 + \emph{N}\gamma_2, \quad \emph{M}, \emph{N} \geq 0, \quad (\emph{M}, \emph{N}) \neq (0,0) \} \; .$$

• Let c_{\pm} be the chamber in which $\arg(Z_{\gamma_1}) \geqslant \arg(Z_{\gamma_2})$. Our aim is to compute $\Delta\Omega(\gamma) \equiv \Omega^-(\gamma) - \Omega^+(\gamma)$ as a function of $\Omega^+(\gamma)$ (say).

Wall-crossing from semi-classical solutions I

• Assume that $M(\gamma_1)$, $M(\gamma_2)$ are much greater than the dynamical scale (Λ or m_P). In this limit, those single-particle states which are potentially unstable across W) can be described by classical configurations with n centers of charge $M_i\gamma_1 + N_i\gamma_2 \in \tilde{\Gamma}$, satisfying $(M,N) = \sum_i (M_i,N_i)$.

• In addition, in either chamber, there may be multi-centered configurations whose charge vectors do not lie in $\tilde{\Gamma}$. However, they remain bound across W and do not contribute to $\Delta\Omega(\gamma)$.

Wall-crossing from semi-classical solutions II

• Assume for definiteness that $\gamma_{12} < 0$. Then multi-centered solutions with charges in $\tilde{\Gamma}$ exist only in chamber c_- , not c_+ . E.g. two-centered solutions can only exist when

$$r_{12} = \frac{1}{2} \frac{\langle \alpha_1, \alpha_2 \rangle | Z(\alpha_1) + Z(\alpha_2)|}{\text{Im}[Z(\alpha_1)\bar{Z}(\alpha_2)]} > 0.$$

Denef

- At the wall, r_{ij} diverges: the single-particle bound state decays into the continuum of multi-particle states.
- $\Delta\Omega(\gamma)$ is equal to the index of the SUSY quantum mechanics of n point-like particles, each carrying its own set of degrees of freedom with index $\Omega(\gamma_i)$, interacting via Newtonian and Coulomb forces.

Wall-crossing from semi-classical solutions III

• For primitive decay $\gamma \to \gamma_1 + \gamma_2$, the quantization of the phase space of two-centered configuration reproduces the primitive WCF

$$\Delta\Omega(\gamma \to \gamma_1 + \gamma_2) = (-1)^{\gamma_{12}+1} |\gamma_{12}| \Omega^+(\gamma_1) \Omega^+(\gamma_2) ,$$

where $(-1)^{\gamma_{12}+1} |\gamma_{12}|$ is the index of Landau states on a sphere of radius r_{12} threaded by a magnetic flux $\gamma_{1,2}$.

• This generalizes to semi-primitive wall-crossing $\gamma \to \gamma_1 + N\gamma_2$: the potentially unstable configurations consist of a "halo" of m_s particles of charge $s\gamma_2$, $\sum sm_s = N$, orbiting around a "core" of charge γ_1 .

Denef Moore

Wall-crossing from semi-classical solutions IV

This leads to a Mac-Mahon type partition function,

$$\frac{\sum_{N\geq 0} \Omega^{-}(1,N) q^{N}}{\sum_{N\geq 0} \Omega^{+}(1,N) q^{N}} = \prod_{k>0} \left(1 - (-1)^{k\gamma_{12}} q^{k}\right)^{k |\gamma_{12}| |\Omega^{+}(k\gamma_{2})}$$

• E.g. for $\gamma \mapsto \gamma_1 + 2\gamma_2$,

$$\begin{split} \Delta\Omega(1,2) = & \Omega^{+}(1,0) \left[2\gamma_{12}\,\Omega^{+}(0,2) + \frac{1}{2}\gamma_{12}\,\Omega^{+}(0,1) \left(\gamma_{12}\Omega^{+}(0,1) + 1\right) \right] \\ & + \Omega^{+}(1,1) \left[(-1)^{\gamma_{12}}\gamma_{12}\Omega^{+}(0,1) \right] \; . \end{split}$$

• The term $\frac{1}{2}d(d+1)$ with $d=\gamma_{12}\Omega^+(0,1)$, reflects the Bose/Fermi statistics of identical particles, i.e. the projection on (anti)symmetric wave functions.

Wall-crossing from semi-classical solutions V

 It is instructive to rewrite the semi-primitive wcf using the rational BPS invariants

$$\bar{\Omega}(\gamma) \equiv \sum\nolimits_{\textit{d}|\gamma} \Omega(\gamma/\textit{d})/\textit{d}^2 \; , \label{eq:omega_delta$$

By the Möbius inversion formula,

$$\Omega(\gamma) = \sum_{\mathbf{d}|\gamma} \, \mu(\mathbf{d}) \, \bar{\Omega}(\gamma/\mathbf{d})/\mathbf{d}^2$$

- where $\mu(d)$ is the Möbius function (i.e. 1 if d is a product of an even number of distinct primes, -1 if d is a product of an odd number of primes, or 0 otherwise).
- The rational DT invariants $\bar{\Omega}(\gamma)$ appear in the JS formula, in constructions of modular invariant black hole partition functions, and in instanton corrections to hypermultiplet moduli spaces.

Manschot; Alexandrov BP Saueressig Vandoren

Wall-crossing from semi-classical solutions VI

In the (1,2) example,

$$\begin{split} \Delta \bar{\Omega}(1,2) = & \bar{\Omega}^{+}(1,0) \left[2\gamma_{12} \bar{\Omega}^{+}(0,2) + \frac{1}{2}\gamma_{12} \bar{\Omega}^{+}(0,1)^{2} \right] \\ & + \bar{\Omega}^{+}(1,1) \left[(-1)^{\gamma_{12}} \gamma_{12} \bar{\Omega}^{+}(0,1) \right] \; . \end{split}$$

is simpler, and manifestly consistent with charge conservation.

• More generally, using the identity $\prod_{d=1}^{\infty} (1-q^d)^{\mu(d)/d} = e^{-q}$, or working backwards, the semi-primitive wcf can be rewritten as

$$\frac{\sum_{N\geq 0}\bar{\Omega}^-(\mathbf{1},N)\,q^N}{\sum_{N\geq 0}\bar{\Omega}^+(\mathbf{1},N)\,q^N}=\exp\left[\sum_{s=1}^\infty q^s(-1)^{\langle\gamma_1,s\gamma_2\rangle}\langle\gamma_1,s\gamma_2\rangle\bar{\Omega}^+(s\gamma_2)\right]\,.$$

• Physically, this follows by treating the particles in the halo as distinguishable, each carrying an effective index $\bar{\Omega}(s\gamma_2)$, and applying Boltzmann statistics!

The main conjecture I

In general, we expect that the WCF is given by a sum

$$\Delta \bar{\Omega}(\gamma) = \sum_{n \geq 2} \sum_{\substack{\{\alpha_1, \dots \alpha_n\} \in \tilde{\Gamma} \\ \gamma = \alpha_1 + \dots + \alpha_n}} \frac{g(\{\alpha_i\})}{|\operatorname{Aut}(\{\alpha_i\})|} \prod_{i=1}^n \bar{\Omega}^+(\alpha_i) ,$$

over all unordered decompositions of the total charge vector γ into a sum of n vectors $\alpha_i \in \tilde{\Gamma}$. The symmetry factor $|\operatorname{Aut}(\{\alpha_i\})|$ is conventional, but natural in Boltzmannian statistics.

• The KS and JS formulae give a mathematical (implicit/explicit) prediction for the coefficients $g(\{\alpha_i\})$. After reviewing these formulae, we shall check them against a physical derivation based on black hole halo picture.

Outline

- Introduction
- A Boltzmannian view of wall-crossing
- The Kontsevich-Soibelman formula
- The Joyce-Song formula
- 5 Physical derivation of non-primitive wall-crossing

The Kontsevich-Soibelman formula I

• Consider the Lie algebra $\mathcal A$ spanned by abstract generators $\{e_\gamma, \gamma \in \Gamma\}$, satisfying the commutation rule

$$[e_{\gamma_1}, e_{\gamma_2}] = \kappa(\langle \gamma_1, \gamma_2 \rangle) e_{\gamma_1 + \gamma_2}, \qquad \kappa(x) = (-1)^x x.$$

• For a given charge vector γ and value of the VM moduli t^a , consider the operator $U_{\gamma}(t^a)$ in the Lie group $\exp(A)$

$$U_{\gamma}(t^a) \equiv \exp\left(\Omega(\gamma; t^a) \sum_{d=1}^{\infty} \frac{e_{d\gamma}}{d^2}\right)$$

• The operators e_{γ} / U_{γ} can be realized as Hamiltonian vector fields / symplectomorphisms of a twisted torus.

Gaiotto Moore Neitzke

The Kontsevich-Soibelman formula II

The KS wall-crossing formula states that the product

$$A_{\gamma_1,\gamma_2} = \prod_{\substack{\gamma = M\gamma_1 + N\gamma_2, \ M \ge 0, N \ge 0}} U_{\gamma} ,$$

ordered so that $\arg(Z_{\gamma})$ decreases from left to right, stays constant across the wall. As t^a crosses W, $\Omega(\gamma; t^a)$ jumps and the order of the factors is reversed, but the operator A_{γ_1,γ_2} stays constant. Equivalently,

$$\prod_{\substack{M\geq 0, N\geq 0,\\ M/N\downarrow}} U_{M\gamma_1+N\gamma_2}^+ = \prod_{\substack{M\geq 0, N\geq 0,\\ M/N\uparrow}} U_{M\gamma_1+N\gamma_2}^-\,,$$

The Kontsevich-Soibelman formula III

ullet The algebra ${\cal A}$ is infinite dimensional but filtered. The KS formula may be projected to any finite-dimensional algebra

$$\mathcal{A}_{M,N} = \mathcal{A}/\{\sum_{m>M \text{ or } n>N} \mathbb{R} \cdot e_{m\gamma_1+n\gamma_2}\} \ .$$

This projection is sufficient to infer $\Delta\Omega(m\gamma_1+n\gamma_2)$ for any $m\leq M, n\leq N$, e.g. using the Baker-Campbell-Hausdorff formula.

• For example, the primitive wcf follows in $A_{1,1}$ from

$$\begin{split} &\exp(\bar{\Omega}^+(\gamma_1)e_{\gamma_1})\,\exp(\bar{\Omega}^+(\gamma_1+\gamma_2)e_{\gamma_1+\gamma_2})\,\exp(\bar{\Omega}^+(\gamma_2)e_{\gamma_2})\\ &=\exp(\bar{\Omega}^-(\gamma_2)e_{\gamma_2})\,\exp(\bar{\Omega}^-(\gamma_1+\gamma_2)e_{\gamma_1+\gamma_2})\,\exp(\bar{\Omega}^-(\gamma_1)e_{\gamma_1}) \end{split}$$

and the order 2 truncation of the BCH formula

$$e^X e^Y = e^{X+Y+\frac{1}{2}[X,Y]}$$
.

The Kontsevich-Soibelman formula IV

• In some simple cases, one may work in the full algebra \mathcal{A} , and use the "pentagonal identity"

$$U_{\gamma_2} U_{\gamma_1} = U_{\gamma_1} U_{\gamma_1 + \gamma_2} U_{\gamma_2}, \qquad \gamma_{12} = -1$$

 Using this identity repeatedly, one can e.g. establish the wall-crossing identity in pure Seiberg-Witten SU(2) theory,

$$U_{2,-1} \cdot U_{0,1} = U_{0,1} \cdot U_{2,1} \cdot U_{4,1} \dots U_{2,0}^{(-2)} \dots U_{3,-1} \cdot U_{2,-1} U_{1,-1}$$

Denef Moore: Dimofte Gukov Soibelman

The Kontsevich-Soibelman formula V

• Noting that the operators $U_{k\gamma}$ for different $k \ge 1$ commute, one may combine them into a single factor

$$V_{\gamma} \equiv \prod_{k=1}^{\infty} U_{k\gamma} = \exp\left(\sum_{\ell=1}^{\infty} \bar{\Omega}(\ell\gamma) \, e_{\ell\gamma}\right), \qquad \bar{\Omega}(\gamma) = \sum_{m|\gamma} m^{-2} \Omega(\gamma/m) \, .$$

and rewrite the KS formula as a product over primitive charge vectors only,

$$\prod_{\substack{M\geq 0, N\geq 0,\\ \gcd(M,N)=1, M/N\downarrow}} V_{M\gamma_1+N\gamma_2}^+ = \prod_{\substack{M\geq 0, N\geq 0,\\ \gcd(M,N)=1, M/N\uparrow}} V_{M\gamma_1+N\gamma_2}^-\,,$$

• Using the BCH formula, one easily derives the semi-primitive wcf formula, and generalizations to $\gamma \to 2\gamma_1 + N\gamma_2, \dots$

Generic decay I

- When α_i have generic phases, $g(\{\alpha_i\})$ can be computed by projecting the KS formula to the subalgebra spanned by $e_{\sum \alpha_j}$ where $\{\alpha_i\}$ runs over all subsets of $\{\alpha_i\}$.
- E.g., for n = 3, assuming that the phase of the charges are ordered according to

$$\alpha_1, \ \alpha_1 + \alpha_2, \ \alpha_1 + \alpha_3, \ \alpha_1 + \alpha_2 + \alpha_3, \ \alpha_2, \ \alpha_2 + \alpha_3, \ \alpha_3,$$

we find

$$g(\{\alpha_1, \alpha_2, \alpha_3\}) = (-1)^{\alpha_{12} + \alpha_{23} + \alpha_{13}} \alpha_{12} (\alpha_{13} + \alpha_{23})$$

As we shall see later, this fits the macroscopic index of 3-centered configurations!

The motivic Kontsevich-Soibelman formula I

• KS have proposed a quantum deformation of their formula, which governs wall-crossing properties of motivic DT invariants $\Omega_{\rm ref}(\gamma;y,t)$. Physically, these correspond to the "refined index"

$$\Omega_{\mathrm{ref}}(\gamma,y) = \mathrm{Tr}_{\mathcal{H}(\gamma)}'(-y)^{2J_3} \equiv \sum_{n \in \mathbb{Z}} (-y)^n \, \Omega_{\mathrm{ref},n}(\gamma) \,,$$

where J_3 is the angular momentum in 3 dimensions along the z axis (more accurately, a combination of angular momentum and $SU(2)_R$ quantum numbers). As $y \to 1$, $\Omega_{\rm ref}(\gamma; y, t) \to \Omega(\gamma; t)$.

Dimofte Gukov Soibelman

• Caution: this index is protected in $\mathcal{N}=2, D=4$ field theories, but not in supergravity/string theory, where $SU(2)_R$ is generically broken.

The motivic Kontsevich-Soibelman formula II

• To state the formula, consider the Lie algebra A(y) spanned by generators $\{\tilde{e}_{\gamma}, \gamma \in \Gamma\}$, satisfying the commutation rule

$$[\tilde{e}_{\gamma_1}, \tilde{e}_{\gamma_2}] = \kappa(\langle \gamma_1, \gamma_2 \rangle) \, \tilde{e}_{\gamma_1 + \gamma_2} \,, \qquad \kappa(x) = \frac{(-y)^x - (-y)^{-x}}{y - 1/y} \,.$$

• To any charge vector γ , attach the operator

$$\hat{U}_{\gamma} = \prod_{n \in \mathbb{Z}} \mathbf{E} \left(\frac{y^n \, \tilde{e}_{\gamma}}{y - 1/y} \right)^{-(-1)^n \Omega_{\mathrm{ref},n}(\gamma)} \, , \quad \mathbf{E}(x) \equiv \exp \left[\sum_{k=1}^{\infty} \frac{(xy)^k}{k(1 - y^{2k})} \right]$$

where E is the quantum dilogarithm function.

The motivic Kontsevich-Soibelman formula III

 The motivic version of the KS wall-crossing formula again states that the ordered product

$$\hat{\boldsymbol{A}}_{\gamma_1,\gamma_2} = \prod_{\substack{\gamma = M\gamma_1 + N\gamma_2, \\ M \geq 0, N \geq 0}} \hat{\boldsymbol{U}}_{\gamma} \;,$$

is constant across the wall.

• As before, one may combine the $\hat{U}_{k\gamma}$ into a single factor

$$\hat{V}_{\gamma} = \prod_{\ell \geq 1} \hat{U}_{\ell \gamma} = \exp \left[\sum_{N=1}^{\infty} \bar{\Omega}_{\mathrm{ref}}(N \gamma, y) \, \tilde{\mathbf{e}}_{N \gamma}
ight]$$

where $\bar{\Omega}_{\mathrm{ref}}(N\gamma,y)$ are the "rational motivic invariants", defined by

$$\bar{\Omega}_{\mathrm{ref}}^+(\gamma,y) \equiv \sum_{m|\gamma} \frac{(y-y^{-1})}{m(y^m-y^{-m})} \Omega_{\mathrm{ref}}^+(\gamma/m,y^m).$$

The motivic Kontsevich-Soibelman formula IV

The motivic KS formula becomes

$$\prod_{\substack{M \geq 0, N \geq 0 > 0, \\ \gcd(M,N) = 1, M/N \downarrow}} \hat{V}^+_{M\gamma_1 + N\gamma_2} = \prod_{\substack{M \geq 0, N \geq 0 > 0, \\ \gcd(M,N) = 1, M/N \uparrow}} \hat{V}^-_{M\gamma_1 + N\gamma_2}\,,$$

• $\Delta\bar{\Omega}_{\rm ref}(\gamma,y)$ can be computed using the same techniques as before, e.g. the primitive wcf read

$$\Delta\Omega_{\mathrm{ref}}(\gamma_1+\gamma_2,y)=\frac{(-y)^{\langle\gamma_1,\gamma_2\rangle}-(-y)^{-\langle\gamma_1,\gamma_2\rangle}}{y-1/y}\,\Omega_{\mathrm{ref}}(\gamma_1,y)\,\Omega_{\mathrm{ref}}(\gamma_2,y)$$

Outline

- Introduction
- A Boltzmannian view of wall-crossing
- The Kontsevich-Soibelman formula
- The Joyce-Song formula
- 5 Physical derivation of non-primitive wall-crossing

The Joyce-Song formula I

 In the context of the Abelian category of coherent sheaves on a Calabi-Yau three-fold, Joyce & Song have shown that the jump of (generalized, rational) DT invariants across the wall is given by

$$\Delta\bar{\Omega}(\gamma) = \sum_{\substack{n \geq 2 \\ \gamma = \alpha_1 + \dots + \alpha_n}} \frac{g(\{\alpha_i\})}{|\operatorname{Aut}(\{\alpha_i\})|} \prod_{i=1}^n \bar{\Omega}^+(\alpha_i) .$$

where the coefficient g is given by

$$\begin{split} g(\{\alpha_i\}) = & \frac{1}{2^{n-1}} (-1)^{n-1+\sum_{i < j} \langle \alpha_i, \alpha_j \rangle} \sum_{\sigma \in \Sigma_n} \\ & \mathcal{L} \left(\alpha_{\sigma(1)}, \dots \alpha_{\sigma(n)} \right) \ U \left(\alpha_{\sigma(1)}, \dots \alpha_{\sigma(n)} \right) \end{split}$$

The Joyce-Song formula II

- ullet The definition of the ${\mathcal L}$ and ${\mathcal U}$ factors is technical and will be omitted. Let us simply say that they depend on the initial and final stability data and involve a sum over connected graphs.
- To derive the primitive wcf, note that there is only one oriented tree with 2 nodes. Assuming $\gamma_{12} < 0$, the JS data is then

σ (12)	S	U	\mathcal{L}
12	а	-1	γ 12
21	b	1	$-\gamma_{12}$

leading again to

$$\Delta\Omega(\gamma \to \gamma_1 + \gamma_2) = (-1)^{\gamma_{12}} \gamma_{12} \Omega(\gamma_1) \Omega(\gamma_2) , \qquad \gamma_{12} \equiv \langle \gamma_1, \gamma_2 \rangle$$

The Joyce-Song formula III

 For generic 3-body decay, assuming the same phase ordering as before and taking into account the 3 possible oriented trees, the JS data

σ (123)	S	U	\mathcal{L}
123	bb	1	$\alpha_{12}\alpha_{13} + \alpha_{13}\alpha_{23} + \alpha_{12}\alpha_{23}$
132	b-	0	$\alpha_{12}\alpha_{13} - \alpha_{13}\alpha_{23} - \alpha_{12}\alpha_{23}$
213	ab	-1	$-\alpha_{12}\alpha_{23} + \alpha_{13}\alpha_{23} - \alpha_{12}\alpha_{13}$
231	-a	0	$\alpha_{12}\alpha_{13} - \alpha_{13}\alpha_{23} - \alpha_{12}\alpha_{23}$
312	ab	-1	$\alpha_{13}\alpha_{23} - \alpha_{12}\alpha_{23} - \alpha_{13}\alpha_{12}$
321	aa	1	$\alpha_{13}\alpha_{23} + \alpha_{12}\alpha_{13} + \alpha_{12}\alpha_{23}$

leads to the same answer as KS,

$$g(\{\alpha_1, \alpha_2, \alpha_3\}) = (-1)^{\alpha_{12} + \alpha_{23} + \alpha_{13}} \alpha_{12} (\alpha_{13} + \alpha_{23})$$

The Joyce-Song formula IV

- We have checked that JS and KS also agree for generic 4-body decay (involving 16 trees), 5-body decay (125 trees) and for special cases (2,3), (2,4) (up to 1296 graphs!).
- While there is no general proof yet, it seems that the JS formula (derived for Abelian categories) is equivalent to the classical KS formula (stated for triangulated categories).
- Note that the JS formula involves large denominators and leads to many cancellations. We shall find a more economic formula which also works at the motivic level.

Outline

- Introduction
- A Boltzmannian view of wall-crossing
- The Kontsevich-Soibelman formula
- The Joyce-Song formula
- 5 Physical derivation of non-primitive wall-crossing

Quantum mechanics of multi-centered solutions I

• The moduli space \mathcal{M}_n of BPS configurations with n centers in $\mathcal{N}=2$ SUGRA is described by solutions to Denef's equations

$$\sum_{j=1...n,j\neq i}^{n} \frac{\alpha_{ij}}{|\vec{r}_i - \vec{r}_j|} = c_i, \qquad \left\{ \begin{array}{l} c_i = 2 \, \text{Im} \left[e^{-i\alpha} Z(\alpha_i) \right] \\ \alpha = \text{arg} [Z(\alpha_1 + \cdots + \alpha_n)] \end{array} \right..$$

• \mathcal{M}_n is a compact symplectic manifold of dimension 2n-2, and carries an Hamiltonian action of SU(2):

$$\omega = \frac{1}{2} \sum_{i < j} \alpha_{ij} \frac{\mathrm{d}\vec{r}_{ij} \wedge \mathrm{d}\vec{r}_{ij} \cdot \vec{r}_{ij}}{|r_{ij}|^3} , \qquad \vec{J} = \frac{1}{2} \sum_{i < j} \alpha_{ij} \frac{\vec{r}_{ij}}{|r_{ij}|}$$

de Boer El Showk Messamah Van den Bleeken

Quantum mechanics of multi-centered solutions II

• Quantizing the internal degrees of freedom of the multi-centered configurations amounts to quantizing the symplectic space \mathcal{M}_n . The index is given, at least when $|\alpha_{ij}| \gg 1, y \to 1$, by

$$g(\{\alpha_i\}, y) = \frac{(-1)^{\sum_{i < j} \alpha_{ij} - n + 1}}{(2\pi \sinh \nu / \nu)^{n-1}} \int_{\mathcal{M}_n} \omega^{n-1} e^{2\nu J_3}, \qquad \nu \equiv \log y$$

We conjecture that this is exact for all α_{ij} , y.

• By the Duistermaat-Heckmann theorem, the integral localizes to the fixed points of the action of J_3 , i.e. collinear multi-centered configurations along the z-axis, such that

$$\sum_{j=1...n,j\neq i}^{n} \frac{\alpha_{ij}}{|z_i-z_j|} = c_i, \quad J_3 = \frac{1}{2} \sum_{i< j} \alpha_{ij} \operatorname{sign}(z_i-z_j).$$

Quantum mechanics of multi-centered solutions III

• These are classified by permutations σ describing the order of z_i along the axis. Let $\mathcal{S}(t)$ be the set of permutations allowed by Denef's equations. Localization leads to the Coulomb branch formula

$$g_{\text{ref}}(\{\alpha_i\}, y) = \frac{(-1)^{\sum_{i < j} \alpha_{ij} + n - 1}}{(y - y^{-1})^{n - 1}} \sum_{\sigma \in \mathcal{S}(t)} s(\sigma) y^{\sum_{i < j} \alpha_{ij} \operatorname{sign}(\sigma(j) - \sigma(i))}.$$

where $s(\sigma) = (-1)^{\#\{i;\sigma(i+1)<\sigma(i)\}}$ originates from Hessian(J_3).

• For $n \le 5$, we find perfect agreement with JS/KS!

$$g(\alpha_1, \alpha_2; y) = (-1)^{\alpha_{12}} \frac{\sinh(\nu \alpha_{12})}{\sinh \nu}$$

$$g(\alpha_1, \alpha_2, \alpha_3; y) = (-1)^{\alpha_{13} + \alpha_{23} + \alpha_{12}} \frac{\sinh(\nu(\alpha_{13} + \alpha_{23})) \sinh(\nu\alpha_{12})}{\sinh^2 \nu},$$

Higgs branch picture I

- An alternative formula can be given using the Higgs branch description of the multi-centered configuration, namely the quiver with n nodes $\{1 \dots n\}$ of dimension 1 and α_{ij} arrows from i to j.
- Since α_i lie on a 2-dimensional sublattice $\tilde{\Gamma}$, the quiver has no oriented closed loop. Reineke's formula gives

$$g_{\text{ref}} = \frac{(-y)^{-\sum_{i < j} \alpha_{ij}}}{(y - 1/y)^{n-1}} \sum_{\text{partitions}} (-1)^{s-1} y^{2\sum_{a \le b} \sum_{j < i} \alpha_{ji} \, m_i^{(a)} \, m_j^{(b)}},$$

where \sum runs over all ordered partitions of $\gamma = \alpha_1 + \cdots + \alpha_n$ into s vectors $\beta^{(a)}$ (1 $\leq a \leq s$, 1 $\leq s \leq n$) such that

- The formula agrees with KS/JS/Coulomb for n = 2, 3, 4, 5!

Conclusion I

- Multi-centered black hole configurations provide a simple way to derive wall-crossing formulae for DT invariants.
- We have not proven the equivalence between our formulae, JS and KS, but there is overwhelming evidence that they all agree.
- The Coulomb branch formula seems the most economic: no denominators, no cancellations. Sadly, we do not know how to characterize $\mathcal{S}(t)$ (yet).
- The derivation of JS/KS relies on Ringel-Hall algebras. What does this mean physically? is this the long-sought Algebra of BPS states?

THANK YOU!