Wall-crossing from Boltzmannian Black Hole Halos

Boris Pioline
LPTHE, Jussieu
UРМС

AGMP-6, Tjärnö 28/10/2010

based on work with J. Manschot and A. Sen, to appear

Introduction I

- In $D=4, N=2$ supersymmetric field and string theories, the exact spectrum of BPS states can often be determined at weak coupling, and extrapolated to strong coupling.
- E.g., in pure $S U(2)$ Seiberg-Witten theory,

Seiberg Witten; Bilal Ferrari

Introduction II

- In following the BPS spectrum from weak to strong coupling, one must be wary of two issues:
- short multiplets may pair up into a long multiplet,
- single-particle states may decay into multi-particle states.
- The first issue can be avoided by considering a suitable index $\Omega(\gamma, t)$, designed such that contributions from long multiplets cancel. $\Omega(\gamma, t)$ is then a piecewise constant function of the charge vector γ and couplings/moduli t.
- To deal with the second issue, one must understand how $\Omega(\gamma, t)$ changes across a wall of marginal stability W, where a single-particle state with charge γ can decay into a multi-particle state with charges $\left\{\gamma_{i}\right\}$, such that $\gamma=\sum_{i} \gamma_{i}$, $\arg Z\left(\gamma_{i}\right)=\arg Z(\gamma)$.

Introduction III

- Initial progress came from physics, by noting that single-particle states (in a certain limit) can be represented by multi-centered solitonic solutions. Those exist only on one side of the wall and decay into the continuum of multi-particle states on the other side.

- The simplest "primitive" decay $\gamma \rightarrow \gamma_{1}+\gamma_{2}$ involves only two-centered configurations, whose index is easily computed.
- In the non-primitive case $\gamma=\boldsymbol{M} \gamma_{1}+\boldsymbol{N} \gamma_{2}$ where $\boldsymbol{M}, \boldsymbol{N}>1\left(\gamma_{1}, \gamma_{2}\right.$ being two primitive vectors), many multi-centered configurations in general contribute, and computing their index is in general difficult.

Introduction IV

- A general answer to this problem has come from the mathematical study of the wall-crossing properties of (generalized)
Donaldson-Thomas invariants for Calabi-Yau three-folds, or more generally CY-3 categories.
- These DT invariants are believed to be the mathematical translation of the BPS index $\Omega(\gamma)$ in type IIA CY vacua.
- Notably, Kontsevich \& Soibelman (KS) and Joyce \& Song (JS) gave two different-looking formulae for $\Delta \Omega\left(\gamma \rightarrow M \gamma_{1}+N \gamma_{2}\right)$.
- Our goal will be to interpret/derive/generalize these formulae from physical reasoning.

Physical interpretation of the KS/JS formulae I

- The KS formula was first interpreted physically by considering Seiberg-Witten theory on $\mathbb{R}^{3} \times S^{1}$: the resulting moduli space \mathcal{M}_{3} is a torus bundle over \mathcal{M}_{4}, and is equipped with a hyperkähler metric. Instanton corrections to the metric on \mathcal{M}_{3} come from BPS states in $D=4$.
- The twistor space of \mathcal{M}_{3} is a complex symplectic manifold. It can be specified by a set of symplectomorphisms U_{γ} between Darboux coordinate patches. The KS formula guarantees the consistency of this construction, and smoothness of the hyperkähler metric across the walls !

Gaiotto Moore Neitzke; Chen Dorey Petunin

Physical interpretation of the KS/JS formulae II

- The same story works formally in string theory, upon replacing (hyperkähler, symplectic) with (quaternion-Kähler, contact), and ignoring the exponential growth of DT invariants.

Alexandrov BP Saueressig Vandoren; BP Vandoren

- Recently, the (motivic/refined) KS formula was derived physically by using the notion of framed BPS states and supersymmetric galaxies. This reduces the general wall-crossing problem to a sequence of semi-primitive wall-crossings.

Andriyanash Denef Jafferis Moore

Our main results I

- We shall approach the wall-crossing problem by quantizing multi-centered solitonic/black hole configurations.
- Our main new insight is a physical explanation of the relevance of the rational DT invariants

$$
\bar{\Omega}(\gamma) \equiv \sum_{d \mid \gamma} \Omega(\gamma / d) / d^{2}
$$

which feature prominently in the KS/JS formulae: replacing $\Omega(\gamma) \rightarrow \bar{\Omega}(\gamma)$ effectively reduces the Bose-Fermi statistics of the centers to Boltzmannian statistics !

- We shall propose two new wall-crossing "Coulomb branch" and "Higgs branch" formulae, which appear to agree with KS/JS.

Outline

(1) Introduction
(2) A Boltzmannian view of wall-crossing
(3) The Kontsevich-Soibelman formula
(4) The Joyce-Song formula
(5) Physical derivation of non-primitive wall-crossing

Outline

(1) Introduction

(2) A Boltzmannian view of wall-crossing

(3) The Kontsevich-Soibelman formula

4 The Joyce-Song formula
(5) Physical derivation of non-primitive wall-crossing

Preliminaries I

- We consider $\mathcal{N}=2$ supergravity in 4 dimensions (this includes field theories with rigid $\mathcal{N}=2$ as a special case). Let $\Gamma=\Gamma_{e} \oplus \Gamma_{m}$ be the lattice of electric and magnetic charges, with symplectic pairing

$$
\left\langle\gamma, \gamma^{\prime}\right\rangle=\left\langle\left(p^{\wedge}, q_{\Lambda}\right), \gamma^{\prime}=\left(p^{\prime \wedge}, q_{\Lambda}^{\prime}\right)\right\rangle \equiv q_{\wedge} p^{\prime \wedge}-q_{\Lambda}^{\prime} p_{\Lambda} \in \mathbb{Z}
$$

- BPS states preserve 4 out of 8 supercharges, and saturate the bound $M \geq\left|Z\left(\gamma, t^{a}\right)\right|$ where $Z\left(\gamma, t^{a}\right)=e^{\mathcal{K} / 2}\left(q_{\Lambda} X^{\wedge}-p^{\wedge} F_{\wedge}\right)$ is the central charge/stability data.
- We are interested in the index $\Omega\left(\gamma ; t^{a}\right)=\operatorname{Tr}_{\mathcal{H}_{\gamma}^{\prime}\left(t^{a}\right)}(-1)^{2 ل_{3}}$ where $\mathcal{H}_{\gamma}^{\prime}\left(t^{a}\right)$ is the Hilbert space of stable states with charge $\gamma \in \Gamma$.

Preliminaries II

- The BPS invariants $\Omega\left(\gamma ; t^{a}\right)$ are locally constant functions of t^{a}, but may jump across codimension-one subspaces

$$
W\left(\gamma_{1}, \gamma_{2}\right)=\left\{t^{a} / \arg \left[Z\left(\gamma_{1}\right)\right]=\arg \left[Z\left(\gamma_{2}\right)\right]\right\}
$$

where γ_{1} and γ_{2} are two primitive (non-zero) vectors such that $\gamma=M \gamma_{1}+N \gamma_{2}, M, N \geq 1$.

- We choose γ_{1}, γ_{2} such that $\Omega\left(\gamma ; t^{a}\right)$ has support only on the positive cone (root basis property)

$$
\tilde{\Gamma}: \quad\left\{M \gamma_{1}+N \gamma_{2}, \quad M, N \geq 0, \quad(M, N) \neq(0,0)\right\}
$$

- Let $c_{ \pm}$be the chamber in which $\arg \left(Z_{\gamma_{1}}\right) \gtrless \arg \left(Z_{\gamma_{2}}\right)$. Our aim is to compute $\Delta \Omega(\gamma) \equiv \Omega^{-}(\gamma)-\Omega^{+}(\gamma)$ as a function of $\Omega^{+}(\gamma)$ (say).

Wall-crossing from semi-classical solutions I

- Assume that $M\left(\gamma_{1}\right), M\left(\gamma_{2}\right)$ are much greater than the dynamical scale (Λ or m_{P}). In this limit, those single-particle states which are potentially unstable across W) can be described by classical configurations with n centers of charge $M_{i} \gamma_{1}+N_{i} \gamma_{2} \in \tilde{\Gamma}$, satisfying $(M, N)=\sum_{i}\left(M_{i}, N_{i}\right)$.

- In addition, in either chamber, there may be multi-centered configurations whose charge vectors do not lie in $\tilde{\Gamma}$. However, they remain bound across W and do not contribute to $\Delta \Omega(\gamma)$.

Wall-crossing from semi-classical solutions II

- Assume for definiteness that $\gamma_{12}<0$. Then multi-centered solutions with charges in $\tilde{\Gamma}$ exist only in chamber c_{-}, not c_{+}. E.g. two-centered solutions can only exist when

$$
r_{12}=\frac{1}{2} \frac{\left\langle\alpha_{1}, \alpha_{2}\right\rangle\left|Z\left(\alpha_{1}\right)+Z\left(\alpha_{2}\right)\right|}{\operatorname{Im}\left[Z\left(\alpha_{1}\right) \bar{Z}\left(\alpha_{2}\right)\right]}>0
$$

- At the wall, $r_{i j}$ diverges : the single-particle bound state decays into the continuum of multi-particle states.
- $\Delta \Omega(\gamma)$ is equal to the index of the SUSY quantum mechanics of n point-like particles, each carrying its own set of degrees of freedom with index $\Omega\left(\gamma_{i}\right)$, interacting via Newtonian and Coulomb forces.

Wall-crossing from semi-classical solutions III

- For primitive decay $\gamma \rightarrow \gamma_{1}+\gamma_{2}$, the quantization of the phase space of two-centered configuration reproduces the primitive WCF

$$
\Delta \Omega\left(\gamma \rightarrow \gamma_{1}+\gamma_{2}\right)=(-1)^{\gamma_{12}+1}\left|\gamma_{12}\right| \Omega^{+}\left(\gamma_{1}\right) \Omega^{+}\left(\gamma_{2}\right)
$$

where $(-1)^{\gamma_{12}+1}\left|\gamma_{12}\right|$ is the index of Landau states on a sphere of radius r_{12} threaded by a magnetic flux $\gamma_{1,2}$.

- This generalizes to semi-primitive wallcrossing $\gamma \rightarrow \gamma_{1}+N \gamma_{2}$: the potentially unstable configurations consist of of a "halo" of m_{s} particles of charge $s \gamma_{2}, \sum s m_{s}=$ N, orbiting around a "core" of charge γ_{1}.

Wall-crossing from semi-classical solutions IV

- This leads to a Mac-Mahon type partition function,

$$
\frac{\sum_{N \geq 0} \Omega^{-}(1, N) q^{N}}{\sum_{N \geq 0} \Omega^{+}(1, N) q^{N}}=\prod_{k>0}\left(1-(-1)^{k \gamma_{12}} q^{k}\right)^{k\left|\gamma_{12}\right| \Omega^{+}\left(k \gamma_{2}\right)}
$$

- E.g. for $\gamma \mapsto \gamma_{1}+2 \gamma_{2}$,

$$
\begin{aligned}
\Delta \Omega(1,2)= & \Omega^{+}(1,0)\left[2 \gamma_{12} \Omega^{+}(0,2)+\frac{1}{2} \gamma_{12} \Omega^{+}(0,1)\left(\gamma_{12} \Omega^{+}(0,1)+1\right)\right] \\
& +\Omega^{+}(1,1)\left[(-1)^{\gamma_{12}} \gamma_{12} \Omega^{+}(0,1)\right]
\end{aligned}
$$

- The term $\frac{1}{2} d(d+1)$ with $d=\gamma_{12} \Omega^{+}(0,1)$, reflects the Bose/Fermi statistics of identical particles, i.e. the projection on (anti)symmetric wave functions.

Wall-crossing from semi-classical solutions V

- It is instructive to rewrite the semi-primitive wcf using the rational BPS invariants

$$
\bar{\Omega}(\gamma) \equiv \sum_{d \mid \gamma} \Omega(\gamma / d) / d^{2},
$$

- By the Möbius inversion formula,

$$
\Omega(\gamma)=\sum_{d \mid \gamma} \mu(d) \bar{\Omega}(\gamma / d) / d^{2}
$$

where $\mu(d)$ is the Möbius function (i.e. 1 if d is a product of an even number of distinct primes, -1 if d is a product of an odd number of primes, or 0 otherwise).

- The rational DT invariants $\bar{\Omega}(\gamma)$ appear in the JS formula, in constructions of modular invariant black hole partition functions, and in instanton corrections to hypermultiplet moduli spaces.

Manschot; Alexandrov BP Saueressig Vandoren

Wall-crossing from semi-classical solutions VI

- In the $(1,2)$ example,

$$
\begin{aligned}
\Delta \bar{\Omega}(1,2)= & \bar{\Omega}^{+}(1,0)\left[2 \gamma_{12} \bar{\Omega}^{+}(0,2)+\frac{1}{2} \gamma_{12} \bar{\Omega}^{+}(0,1)^{2}\right] \\
& +\bar{\Omega}^{+}(1,1)\left[(-1)^{\gamma_{12}} \gamma_{12} \bar{\Omega}^{+}(0,1)\right] .
\end{aligned}
$$

is simpler, and manifestly consistent with charge conservation.

- More generally, using the identity $\prod_{d=1}^{\infty}\left(1-q^{d}\right)^{\mu(d) / d}=e^{-q}$, or working backwards, the semi-primitive wcf can be rewritten as

$$
\frac{\sum_{N \geq 0} \bar{\Omega}^{-}(1, N) q^{N}}{\sum_{N \geq 0} \bar{\Omega}^{+}(1, N) q^{N}}=\exp \left[\sum_{s=1}^{\infty} q^{s}(-1)^{\left\langle\gamma_{1}, s \gamma_{2}\right\rangle}\left\langle\gamma_{1}, s \gamma_{2}\right\rangle \bar{\Omega}^{+}\left(s \gamma_{2}\right)\right] .
$$

- Physically, this follows by treating the particles in the halo as distinguishable, each carrying an effective index $\bar{\Omega}\left(s \gamma_{2}\right)$, and applying Boltzmann statistics !

The main conjecture I

- In general, we expect that the WCF is given by a sum

$$
\Delta \bar{\Omega}(\gamma)=\sum_{n \geq 2} \sum_{\substack{\left\{\alpha_{1}, \ldots \alpha_{n}\right\} \in \tilde{\Gamma} \\ \gamma=\alpha_{1}+\cdots+\alpha_{n}}} \frac{g\left(\left\{\alpha_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|} \prod_{i=1}^{n} \bar{\Omega}^{+}\left(\alpha_{i}\right),
$$

over all unordered decompositions of the total charge vector γ into a sum of n vectors $\alpha_{i} \in \tilde{\Gamma}$. The symmetry factor $\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|$ is conventional, but natural in Boltzmannian statistics.

- The KS and JS formulae give a mathematical (implicit/explicit) prediction for the coefficients $g\left(\left\{\alpha_{i}\right\}\right)$. After reviewing these formulae, we shall check them against a physical derivation based on black hole halo picture.

Outline

(1) Introduction
(2) A Boltzmannian view of wall-crossing
(3) The Kontsevich-Soibelman formula

4 The Joyce-Song formula
(5) Physical derivation of non-primitive wall-crossing

The Kontsevich-Soibelman formula I

- Consider the Lie algebra \mathcal{A} spanned by abstract generators $\left\{e_{\gamma}, \gamma \in \Gamma\right\}$, satisfying the commutation rule

$$
\left[\boldsymbol{e}_{\gamma_{1}}, \boldsymbol{e}_{\gamma_{2}}\right]=\kappa\left(\left\langle\gamma_{1}, \gamma_{2}\right\rangle\right) e_{\gamma_{1}+\gamma_{2}}, \quad \kappa(x)=(-1)^{x} x .
$$

- For a given charge vector γ and value of the VM moduli t^{a}, consider the operator $U_{\gamma}\left(t^{a}\right)$ in the Lie group $\exp (\mathcal{A})$

$$
U_{\gamma}\left(t^{a}\right) \equiv \exp \left(\Omega\left(\gamma ; t^{a}\right) \sum_{d=1}^{\infty} \frac{e_{d \gamma}}{d^{2}}\right)
$$

- The operators e_{γ} / U_{γ} can be realized as Hamiltonian vector fields / symplectomorphisms of a twisted torus.

Gaiotto Moore Neitzke

The Kontsevich-Soibelman formula II

- The KS wall-crossing formula states that the product

$$
A_{\gamma_{1}, \gamma_{2}}=\prod_{\substack{\gamma=M \gamma_{1}+N_{2}, M \geq 0, N \geq 0}} U_{\gamma},
$$

ordered so that $\arg \left(Z_{\gamma}\right)$ decreases from left to right, stays constant across the wall. As t^{a} crosses $W, \Omega\left(\gamma ; t^{a}\right)$ jumps and the order of the factors is reversed, but the operator $A_{\gamma_{1}, \gamma_{2}}$ stays constant. Equivalently,

$$
\prod_{\substack{M \geq 0, N \geq 0, M / N \downarrow}} U_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0, M / N \uparrow}} U_{M \gamma_{1}+N \gamma_{2}}^{-}
$$

The Kontsevich-Soibelman formula III

- The algebra \mathcal{A} is infinite dimensional but filtered. The KS formula may be projected to any finite-dimensional algebra

$$
\mathcal{A}_{M, N}=\mathcal{A} /\left\{\sum_{m>M \text { or } n>N} \mathbb{R} \cdot e_{m \gamma_{1}+m \gamma_{2}}\right\} .
$$

This projection is sufficient to infer $\Delta \Omega\left(m \gamma_{1}+n \gamma_{2}\right)$ for any $m \leq M, n \leq N$, e.g. using the Baker-Campbell-Hausdorff formula.

- For example, the primitive wcf follows in $\mathcal{A}_{1,1}$ from

$$
\begin{aligned}
& \exp \left(\bar{\Omega}^{+}\left(\gamma_{1}\right) e_{\gamma_{1}}\right) \exp \left(\bar{\Omega}^{+}\left(\gamma_{1}+\gamma_{2}\right) e_{\gamma_{1}+\gamma_{2}}\right) \exp \left(\bar{\Omega}^{+}\left(\gamma_{2}\right) e_{\gamma_{2}}\right) \\
= & \exp \left(\bar{\Omega}^{-}\left(\gamma_{2}\right) e_{\gamma_{2}}\right) \exp \left(\bar{\Omega}^{-}\left(\gamma_{1}+\gamma_{2}\right) e_{\gamma_{1}+\gamma_{2}}\right) \exp \left(\bar{\Omega}^{-}\left(\gamma_{1}\right) e_{\gamma_{1}}\right)
\end{aligned}
$$

and the order 2 truncation of the BCH formula

$$
e^{X} e^{Y}=e^{X+Y+\frac{1}{2}[X, Y]} .
$$

The Kontsevich-Soibelman formula IV

- In some simple cases, one may work in the full algebra \mathcal{A}, and use the "pentagonal identity"

$$
U_{\gamma_{2}} U_{\gamma_{1}}=U_{\gamma_{1}} U_{\gamma_{1}+\gamma_{2}} U_{\gamma_{2}}, \quad \gamma_{12}=-1
$$

- Using this identity repeatedly, one can e.g. establish the wall-crossing identity in pure Seiberg-Witten $S U(2)$ theory,

$$
U_{2,-1} \cdot U_{0,1}=U_{0,1} \cdot U_{2,1} \cdot U_{4,1} \ldots U_{2,0}^{(-2)} \ldots U_{3,-1} \cdot U_{2,-1} U_{1,-1}
$$

Denef Moore; Dimofte Gukov Soibelman

The Kontsevich-Soibelman formula V

- Noting that the operators $U_{k \gamma}$ for different $k \geq 1$ commute, one may combine them into a single factor

$$
V_{\gamma} \equiv \prod_{k=1}^{\infty} U_{k \gamma}=\exp \left(\sum_{\ell=1}^{\infty} \bar{\Omega}(\ell \gamma) e_{\ell \gamma}\right), \quad \bar{\Omega}(\gamma)=\sum_{m \mid \gamma} m^{-2} \Omega(\gamma / m)
$$

and rewrite the KS formula as a product over primitive charge vectors only,

$$
\prod_{\substack{M \geq 0, N \geq 0, \operatorname{gcd}(M, N)=1, M / N \downarrow}} V_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0, \operatorname{gcd}(M, N)=1, M / N \uparrow}} V_{M \gamma_{1}+N \gamma_{2}}^{-},
$$

- Using the BCH formula, one easily derives the semi-primitive wcf formula, and generalizations to $\gamma \rightarrow 2 \gamma_{1}+N \gamma_{2}, \ldots$.

Generic decay I

- When α_{i} have generic phases, $g\left(\left\{\alpha_{i}\right\}\right)$ can be computed by projecting the KS formula to the subalgebra spanned by $e_{\sum \alpha_{j}}$ where $\left\{\alpha_{j}\right\}$ runs over all subsets of $\left\{\alpha_{i}\right\}$.
- E.g., for $n=3$, assuming that the phase of the charges are ordered according to

$$
\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{3}
$$

we find

$$
g\left(\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}\right)=(-1)^{\alpha_{12}+\alpha_{23}+\alpha_{13}} \alpha_{12}\left(\alpha_{13}+\alpha_{23}\right)
$$

As we shall see later, this fits the macroscopic index of 3-centered configurations!

The motivic Kontsevich-Soibelman formula I

- KS have proposed a quantum deformation of their formula, which governs wall-crossing properties of motivic DT invariants $\Omega_{\text {ref }}(\gamma ; y, t)$. Physically, these correspond to the "refined index"

$$
\Omega_{\mathrm{ref}}(\gamma, y)=\operatorname{Tr}_{\mathcal{H}(\gamma)}^{\prime}(-y)^{2 J_{3}} \equiv \sum_{n \in \mathbb{Z}}(-y)^{n} \Omega_{\mathrm{ref}, n}(\gamma),
$$

where J_{3} is the angular momentum in 3 dimensions along the z axis (more accurately, a combination of angular momentum and $S U(2)_{R}$ quantum numbers). As $y \rightarrow 1, \Omega_{\text {ref }}(\gamma ; y, t) \rightarrow \Omega(\gamma ; t)$.

- Caution: this index is protected in $\mathcal{N}=2, D=4$ field theories, but not in supergravity/string theory, where $S U(2)_{R}$ is generically broken.

The motivic Kontsevich-Soibelman formula II

- To state the formula, consider the Lie algebra $\mathcal{A}(y)$ spanned by generators $\left\{\tilde{e}_{\gamma}, \gamma \in \Gamma\right\}$, satisfying the commutation rule

$$
\left[\tilde{e}_{\gamma_{1}}, \tilde{e}_{\gamma_{2}}\right]=\kappa\left(\left\langle\gamma_{1}, \gamma_{2}\right\rangle\right) \tilde{e}_{\gamma_{1}+\gamma_{2}}, \quad \kappa(x)=\frac{(-y)^{x}-(-y)^{-x}}{y-1 / y} .
$$

- To any charge vector γ, attach the operator

$$
\hat{U}_{\gamma}=\prod_{n \in \mathbb{Z}} \mathbf{E}\left(\frac{y^{n} \tilde{e}_{\gamma}}{y-1 / y}\right)^{-(-1)^{n} \Omega_{\operatorname{ref}, n}(\gamma)}, \quad \mathbf{E}(x) \equiv \exp \left[\sum_{k=1}^{\infty} \frac{(x y)^{k}}{k\left(1-y^{2 k}\right)}\right]
$$

where \mathbf{E} is the quantum dilogarithm function.

The motivic Kontsevich-Soibelman formula III

- The motivic version of the KS wall-crossing formula again states that the ordered product

$$
\hat{A}_{\gamma_{1}, \gamma_{2}}=\prod_{\substack{\gamma=M \gamma_{1}+N \gamma_{2} \\ M \geq 0, N \geq 0}} \hat{U}_{\gamma},
$$

is constant across the wall.

- As before, one may combine the $\hat{U}_{k \gamma}$ into a single factor

$$
\hat{V}_{\gamma}=\prod_{\ell \geq 1} \hat{U}_{\ell \gamma}=\exp \left[\sum_{N=1}^{\infty} \bar{\Omega}_{\mathrm{ref}}(N \gamma, y) \tilde{e}_{N \gamma}\right]
$$

where $\bar{\Omega}_{\text {ref }}(N \gamma, y)$ are the "rational motivic invariants", defined by

$$
\bar{\Omega}_{\text {ref }}^{+}(\gamma, y) \equiv \sum_{m \mid \gamma} \frac{\left(y-y^{-1}\right)}{m\left(y^{m}-y^{-m}\right)} \Omega_{\text {ref }}^{+}\left(\gamma / m, y^{m}\right) .
$$

The motivic Kontsevich-Soibelman formula IV

- The motivic KS formula becomes

$$
\prod_{\substack{M \geq 0, N \geq 0>0, \operatorname{gcd}(\bar{M}, N)=1, M / N \downarrow}} \hat{V}_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0>0, \operatorname{gcd}(\bar{M}, N)=1, M / N \uparrow}} \hat{V}_{M \gamma_{1}+N \gamma_{2}}^{-},
$$

- $\Delta \bar{\Omega}_{\text {ref }}(\gamma, y)$ can be computed using the same techniques as before, e.g. the primitive wcf read

$$
\Delta \Omega_{\mathrm{ref}}\left(\gamma_{1}+\gamma_{2}, y\right)=\frac{(-y)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}-(-y)^{-\left\langle\gamma_{1}, \gamma_{2}\right\rangle}}{y-1 / y} \Omega_{\mathrm{ref}}\left(\gamma_{1}, y\right) \Omega_{\mathrm{ref}}\left(\gamma_{2}, y\right)
$$

Outline

(1) Introduction

(2) A Boltzmannian view of wall-crossing

(3) The Kontsevich-Soibelman formula

4 The Joyce-Song formula
(5) Physical derivation of non-primitive wall-crossing

The Joyce-Song formula I

- In the context of the Abelian category of coherent sheaves on a Calabi-Yau three-fold, Joyce \& Song have shown that the jump of (generalized, rational) DT invariants across the wall is given by

$$
\Delta \bar{\Omega}(\gamma)=\sum_{n \geq 2} \sum_{\substack{\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \in \tilde{\Gamma} \\ \gamma=\alpha_{1}+\cdots+\alpha_{n}}} \frac{g\left(\left\{\alpha_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|} \prod_{i=1}^{n} \bar{\Omega}^{+}\left(\alpha_{i}\right)
$$

where the coefficient g is given by

$$
\begin{aligned}
g\left(\left\{\alpha_{i}\right\}\right)= & \frac{1}{2^{n-1}}(-1)^{n-1+\sum_{i<j}\left\langle\alpha_{i}, \alpha_{j}\right\rangle} \sum_{\sigma \in \Sigma_{n}} \\
& \mathcal{L}\left(\alpha_{\sigma(1)}, \ldots \alpha_{\sigma(n)}\right) \cup\left(\alpha_{\sigma(1)}, \ldots \alpha_{\sigma(n)}\right)
\end{aligned}
$$

The Joyce-Song formula II

- The definition of the \mathcal{L} and \mathcal{U} factors is technical and will be omitted. Let us simply say that they depend on the initial and final stability data and involve a sum over connected graphs.
- To derive the primitive wcf, note that there is only one oriented tree with 2 nodes. Assuming $\gamma_{12}<0$, the JS data is then

$\sigma(12)$	S	U	\mathcal{L}
12	a	-1	γ_{12}
21	b	1	$-\gamma_{12}$

leading again to

$$
\Delta \Omega\left(\gamma \rightarrow \gamma_{1}+\gamma_{2}\right)=(-1)^{\gamma_{12}} \gamma_{12} \Omega\left(\gamma_{1}\right) \Omega\left(\gamma_{2}\right), \quad \gamma_{12} \equiv\left\langle\gamma_{1}, \gamma_{2}\right\rangle
$$

The Joyce-Song formula III

- For generic 3-body decay, assuming the same phase ordering as before and taking into account the 3 possible oriented trees, the JS data

$\sigma(123)$	S	U	\mathcal{L}
123	bb	1	$\alpha_{12} \alpha_{13}+\alpha_{13} \alpha_{23}+\alpha_{12} \alpha_{23}$
132	$\mathrm{~b}-$	0	$\alpha_{12} \alpha_{13}-\alpha_{13} \alpha_{23}-\alpha_{12} \alpha_{23}$
213	ab	-1	$-\alpha_{12} \alpha_{23}+\alpha_{13} \alpha_{23}-\alpha_{12} \alpha_{13}$
231	-a	0	$\alpha_{12} \alpha_{13}-\alpha_{13} \alpha_{23}-\alpha_{12} \alpha_{23}$
312	ab	-1	$\alpha_{13} \alpha_{23}-\alpha_{12} \alpha_{23}-\alpha_{13} \alpha_{12}$
321	aa	1	$\alpha_{13} \alpha_{23}+\alpha_{12} \alpha_{13}+\alpha_{12} \alpha_{23}$

leads to the same answer as KS,

$$
g\left(\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}\right)=(-1)^{\alpha_{12}+\alpha_{23}+\alpha_{13}} \alpha_{12}\left(\alpha_{13}+\alpha_{23}\right)
$$

The Joyce-Song formula IV

- We have checked that JS and KS also agree for generic 4-body decay (involving 16 trees), 5-body decay (125 trees) and for special cases $(2,3),(2,4)$ (up to 1296 graphs !).
- While there is no general proof yet, it seems that the JS formula (derived for Abelian categories) is equivalent to the classical KS formula (stated for triangulated categories).
- Note that the JS formula involves large denominators and leads to many cancellations. We shall find a more economic formula which also works at the motivic level.

Outline

(1) Introduction

(2) A Boltzmannian view of wall-crossing

3 The Kontsevich-Soibelman formula

4 The Joyce-Song formula
(5) Physical derivation of non-primitive wall-crossing

Quantum mechanics of multi-centered solutions I

- The moduli space \mathcal{M}_{n} of BPS configurations with n centers in $\mathcal{N}=2$ SUGRA is described by solutions to Denef's equations

$$
\sum_{j=1 \ldots n, j \neq i}^{n} \frac{\alpha_{i j}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}=c_{i}, \quad\left\{\begin{array}{l}
c_{i}=2 \operatorname{lm}\left[e^{-i \alpha} Z\left(\alpha_{i}\right)\right] \\
\alpha=\arg \left[Z\left(\alpha_{1}+\cdots \alpha_{n}\right)\right]
\end{array}\right.
$$

- \mathcal{M}_{n} is a compact symplectic manifold of dimension $2 n-2$, and carries an Hamiltonian action of $S U(2)$:

$$
\omega=\frac{1}{2} \sum_{i<j} \alpha_{i j} \frac{\mathrm{~d} \vec{r}_{i j} \wedge \mathrm{~d} \vec{r}_{i j} \cdot \vec{r}_{i j}}{\left|r_{i j}\right|^{3}}, \quad \vec{\jmath}=\frac{1}{2} \sum_{i<j} \alpha_{i j} \frac{\vec{r}_{i j}}{\left|r_{i j}\right|}
$$

de Boer El Showk Messamah Van den Bleeken

Quantum mechanics of multi-centered solutions II

- Quantizing the internal degrees of freedom of the multi-centered configurations amounts to quantizing the symplectic space \mathcal{M}_{n}. The index is given, at least when $\left|\alpha_{i j}\right| \gg 1, y \rightarrow 1$, by

$$
g\left(\left\{\alpha_{i}\right\}, y\right)=\frac{(-1)^{\sum_{i<j} \alpha_{i j}-n+1}}{(2 \pi \sinh \nu / \nu)^{n-1}} \int_{\mathcal{M}_{n}} \omega^{n-1} e^{2 \nu J_{3}}, \quad \nu \equiv \log y
$$

We conjecture that this is exact for all $\alpha_{i j}, y$.

- By the Duistermaat-Heckmann theorem, the integral localizes to the fixed points of the action of J_{3}, i.e. collinear multi-centered configurations along the z-axis, such that

$$
\sum_{j=1 \ldots n, j \neq i}^{n} \frac{\alpha_{i j}}{\left|z_{i}-z_{j}\right|}=c_{i}, \quad J_{3}=\frac{1}{2} \sum_{i<j} \alpha_{i j} \operatorname{sign}\left(z_{i}-z_{j}\right)
$$

Quantum mechanics of multi-centered solutions III

- These are classified by permutations σ describing the order of z_{i} along the axis. Let $\mathcal{S}(t)$ be the set of permutations allowed by Denef's equations. Localization leads to the Coulomb branch formula

$$
g_{\mathrm{ref}}\left(\left\{\alpha_{i}\right\}, y\right)=\frac{(-1)^{\sum_{i<j} \alpha_{i j}+n-1}}{\left(y-y^{-1}\right)^{n-1}} \sum_{\sigma \in \mathcal{S}(t)} s(\sigma) y^{\sum_{i<j} \alpha_{i j} \operatorname{sign}(\sigma(j)-\sigma(i))}
$$

where $s(\sigma)=(-1)^{\#\{i ; \sigma(i+1)<\sigma(i)\}}$ originates from Hessian $\left(J_{3}\right)$.

- For $n \leq 5$, we find perfect agreement with JS/KS !

$$
\begin{gathered}
g\left(\alpha_{1}, \alpha_{2} ; y\right)=(-1)^{\alpha_{12}} \frac{\sinh \left(\nu \alpha_{12}\right)}{\sinh \nu} \\
g\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; y\right)=(-1)^{\alpha_{13}+\alpha_{23}+\alpha_{12}} \frac{\sinh \left(\nu\left(\alpha_{13}+\alpha_{23}\right)\right) \sinh \left(\nu \alpha_{12}\right)}{\sinh ^{2} \nu}
\end{gathered}
$$

Higgs branch picture I

- An alternative formula can be given using the Higgs branch description of the multi-centered configuration, namely the quiver with n nodes $\{1 \ldots n\}$ of dimension 1 and $\alpha_{i j}$ arrows from i to j.
- Since α_{i} lie on a 2-dimensional sublattice $\tilde{\Gamma}$, the quiver has no oriented closed loop. Reineke's formula gives

$$
g_{\mathrm{ref}}=\frac{(-y)^{-\sum_{i<j} \alpha_{i j}}}{(y-1 / y)^{n-1}} \sum_{\text {partitions }}(-1)^{s-1} y^{2 \sum_{a \leq b} \sum_{j<i} \alpha_{j i} m_{i}^{(a)} m_{j}^{(b)}}
$$

where \sum runs over all ordered partitions of $\gamma=\alpha_{1}+\cdots+\alpha_{n}$ into s vectors $\beta^{(a)}(1 \leq a \leq s, 1 \leq s \leq n)$ such that
(1) $\beta^{(a)}=\sum_{i} m_{i}^{(a)} \alpha_{i}$ with $m_{i}^{(a)} \in\{0,1\}, \sum_{a} \beta^{(a)}=\gamma$
(2) $\left\langle\sum_{a=1}^{b} \beta^{(a)}, \gamma\right\rangle>0 \quad \forall b$ with $1 \leq b \leq s-1$

- The formula agrees with $\mathrm{KS} / \mathrm{JS} /$ Coulomb for $n=2,3,4,5$!

Conclusion I

- Multi-centered black hole configurations provide a simple way to derive wall-crossing formulae for DT invariants.
- We have not proven the equivalence between our formulae, JS and KS, but there is overwhelming evidence that they all agree.
- The Coulomb branch formula seems the most economic: no denominators, no cancellations. Sadly, we do not know how to characterize $\mathcal{S}(t)$ (yet).
- The derivation of JS/KS relies on Ringel-Hall algebras. What does this mean physically? is this the long-sought Algebra of BPS states?

THANK YOU!

