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Introduction I

In SUSY field theories and string theory vacua with extended
supersymmetry, the spectrum of BPS states can often be
determined exactly at weak coupling.
In following the BPS spectrum from weak to strong coupling, one
must be wary of two issues:

short multiplets may pair up into a long multiplet,
single-particle states may decay into multi-particle states.

The first issue can be avoided by considering a suitable index
Ω(γ, t), designed such that contributions from long multiplets
cancel. Ω(γ, t) is then a piecewise constant function of the charge
vector γ and couplings/moduli t .
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Introduction II
To deal with the second issue, one must understand how Ω(γ, t)
changes across a wall of marginal stability W , where a
single-particle state with charge γ can decay into a multi-particle
state with charges {γi}, such that γ =

∑
i γi , M(γ) =

∑
i M(γi).

Initial progress came from physics, by noting that single-particle
states (in a certain limit) can be represented by multi-centered
solitonic solutions. Those exist only on one side of the wall and
decay into the continuum of multi-particle states on the other side.
When γ = γ1 + γ2 is the sum of two primitive vectors, the index of
the two-centered configuration is easily computed, leading to the
primitive wall crossing formula for D = 4,N = 2 vacua:

∆Ω(γ → γ1 + γ2) = (−1)γ12 γ12 Ω(γ1) Ω(γ2) , γ12 ≡ 〈γ1, γ2〉
Denef Moore
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Introduction III

In the non-primitive case γ = Mγ1 + Nγ2 where M,N > 1 (γ1, γ2
being two primitive vectors), many multi-centered configurations in
general contribute, and computing their index is much harder.

The general answer to this problem came from the mathematical
study of the wall-crossing properties of (generalized)
Donaldson-Thomas invariants for Calabi-Yau three-folds. These
are believed to be the mathematical translation of the BPS index
Ω(γ) in type IIA CY vacua.

Notably, Kontsevich & Soibelman (KS) and Joyce & Song (JS)
have given implicit and explicit formulae for ∆Ω(γ → Mγ1 + Nγ2).
Our main goal will be to interpret these formulae physically.
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Physical interpretation of the KS/JS formulae I

The KS formula was first interpreted physically in terms of the VM
moduli spaceM3 of the N = 2,D = 4 theory compactified on a
circle S1 of radius R. SUSY requires thatM3 is hyperkähler (in
field theory) / quaternion-Kähler (in SUGRA).
The HK/QK metric onM3 is conveniently described in terms of
the complex symplectic/contact structure on the twistor space Z, a
P1 bundle overM3.
Above a fixed point t ∈M4, the symplectic/contact structure is
specified by a set of symplectomorphisms Uγ between Darboux
coordinate patches. The KS formula guarantees the smoothness
of the metric as t crosses a wall of marginal stability.

Gaiotto Moore Neitzke; Chen Dorey Petunin; Alexandrov BP Saueressig Vandoren
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Physical interpretation of the KS/JS formulae II
Recently, the (motivic/refined) KS formula was derived physically
by using the notion of framed BPS states and supersymmetric
galaxies. This reduces the general wall-crossing problem to a
sequence of semi-primitive wall-crossings.

Andriyanash Denef Jafferis Moore

The JS formula has not been interpreted physically yet. Its
equivalence with KS is still conjectural.
Here we shall interpret (and seek to derive) the KS/JS formulae in
terms of the supersymmetric quantum mechanics of
multi-centered solitonic/black hole configurations.

Denef; de Boer El Showk Messamah Van den Bleeken
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Physical interpretation of the KS/JS formulae III

In particular, we shall explain the physical relevance of the rational
DT invariants

Ω̄(γ) ≡
∑
d |γ

Ω(γ/d)/d2 ,

which feature prominently in the KS/JS formulae: replacing
Ω(γ)→ Ω̄(γ) effectively reduces the Bose-Fermi statistics of the
centers to Boltzmannian statistics !

We shall also apply the KS/JS formulae to derive generalizations
of the semi-primitive wall-crossing formula, and compute the index
of D0-D6 bound states with [D6] = 2,3.
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Preliminaries I

We consider N = 2 supergravity in 4 dimensions (this includes
field theories with rigid N = 2 as a special case). Let Γ = Γe ⊕ Γm
be the lattice of electric and magnetic charges, with symplectic
pairing

〈γ, γ′〉 = 〈(pΛ,qΛ), γ′ = (p′Λ,q′Λ)〉 ≡ qΛp′Λ − q′ΛpΛ ∈ Z

BPS states preserve 4 out of 8 supercharges, and saturate the
bound M(γ) ≥ |Z (γ)| with Z (γ) = eK/2(qΛX Λ − pΛFΛ).
We are interested in the index Ω(γ; ta) = TrH′γ(ta)(−1)2J3 where
H′γ(ta) is the Hilbert space of states with charge γ ∈ Γ in the
vacuum where the VM scalars asymptote to ta at spatial infinity,
after factoring out the bosonic and fermionic center of motion d.o.f.
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Preliminaries II

The BPS invariants Ω(γ; ta) are locally constant functions of ta,
but may jump across codimension-one subspaces

W (γ1, γ2) = {ta / arg[Z (γ1)] = arg[Z (γ2)]}

where γ1 and γ2 are two primitive (non-zero) vectors such that
γ = Mγ1 + Nγ2, M,N ≥ 1.
Let c± be the chamber in which arg(Zγ1) ≷ arg(Zγ2). Our aim is to
compute ∆Ω(γ) ≡ Ω−(γ)− Ω+(γ) as a function of Ω+(γ) (say).
Assume that close to W (γ1, γ2), Ω(Mγ1 + Nγ2) = 0 whenever
MN < 0 (root property). Let Γ̃ be the positive cone

Γ̃ : {Mγ1 + Nγ2, M,N ≥ 0, (M,N) 6= (0,0)} .
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Wall-crossing from semi-classical solutions I

Assume that M(γ1),M(γ2) are much greater than the dynamical
scale (Λ or mP). In this limit, single-particle states (potentially
unstable across W ) can be described by classical configurations
with mr ,s centers of charge rγ1 + sγ2 ∈ Γ̃, satisfying
(M,N) =

∑
(r , s)mr ,s.

In addition, in either chamber, there may be multi-centered
configurations whose charge vectors do not lie in Γ̃. However, they
remain bound across W and do not contribute to ∆Ω(γ).
Assume for definiteness that γ12 < 0. Then multi-centered
solutions with charges in Γ̃ exist only in chamber c−, not c+. E.g.
two-centered solutions can only exist when

r12 =
1
2
〈α1, α2〉 |Z (α1) + Z (α2)|

Im[Z (α1)Z̄ (α2)]
> 0 .

Denef
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Wall-crossing from semi-classical solutions II
At the wall, rij →∞ : the single-particle bound state decays into
the continuum of multi-particle state. ∆Ω(γ) is equal to the index
of the SUSY quantum mechanics describing the internal d.o.f. of
the multi-centered configurations which are gained/lost across the
wall.
Close to the wall, this reduces to the SUSY quantum mechanics of
point-like particles, each carrying its own set of degrees of
freedom with index Ω(γi), interacting via Newtonian and Coulomb
forces. The statistics of each center is bosonic or fermionic,
depending on the sign of Ω(γi).
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Wall-crossing from semi-classical solutions III
For primitive decay γ → γ1 + γ2, one recovers the primitive WCF

∆Ω(γ → γ1 + γ2) = (−1)γ12+1 |γ12|Ω+(γ1) Ω+(γ2) ,

where (−1)γ12+1 |γ12| is the index of Landau states on a sphere of
radius r12 threaded by a magnetic flux γ1,2.
This argument generalizes to semi-primitive wall-crossing
γ → γ1 + Nγ2: one set of classical configurations consists of a
“halo" of ms particles of charge sγ2,

∑
sms = N, orbiting around

one particle of charge γ1.

Zhalo(γ1,q) ≡1 +
∑
{ms}

∆Ω(γ → γ1 +
∑

s msγ2) qs ms

=
∏
k>0

(
1− (−1)kγ12qk

)k |γ12| Ω+(kγ2)
.

Denef Moore
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Wall-crossing from semi-classical solutions IV

More generally however, there are configurations with a core of
charge γ1 + lγ2 and halo of total charge (N − l)γ2. Defining

Z±(1,q) =
∑

N≥0
Ω±(γ1 + Nγ2) qN ,

the final formula is Z−(1,q) = Z +(1,q) Zhalo(γ1,q). E.g.

∆Ω(1,2) =Ω+(1,0)

[
2γ12 Ω+(0,2) +

1
2
γ12 Ω+(0,1)

(
γ12Ω+(0,1) + 1

)]
+ Ω+(1,1)

[
(−1)γ12γ12Ω+(0,1)

]
.

The term in red reflects the Bose/Fermi statistics of the particles
with degeneracy γ12Ω+(0,1) and apparently “violates charge
conservation" !
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Wall-crossing from semi-classical solutions V

It is instructive to rewrite the semi-primitive wcf using the rational
BPS invariants

Ω̄(γ) ≡
∑
d |γ

Ω(γ/d)/d2 , Ω(γ) =
∑
d |γ

µ(d) Ω̄(γ/d)/d2 ,

where µ(d) is the Möbius function (i.e. 1 if d is a product of an
even number of distinct primes, −1 if d is a product of an odd
number of primes, or 0 otherwise).
Using the identity

∏∞
d=1(1− qd )µ(d)/d = e−q, or working

backwards, we can rewrite

Zhalo(γ1,q) = exp

[ ∞∑
s=1

qs(−1)〈γ1,sγ2〉〈γ1, sγ2〉Ω̄+(sγ2)

]
.
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Wall-crossing from semi-classical solutions VI

Thus, the halo partition function can be equivalently obtained by
treating the particles in the halo as distinguishable, each carrying
an effective index Ω̄(sγ2), and applying Boltzmann statistics !
In terms of the rational invariants, the WCF is simpler, and
manifestly consistent with charge conservation. E.g.,

∆Ω̄(1,2) =Ω̄+(1,0)

[
2γ12 Ω̄+(0,2) +

1
2
γ12 Ω̄+(0,1)2

]
+ Ω̄+(1,1)

[
(−1)γ12γ12Ω̄+(0,1)

]
.

The rational DT invariants Ω̄(γ) are also useful in constructing
modular invariant black hole partition functions, and in computing
instanton corrections to hypermultiplet moduli spaces.

Manschot; Alexandrov BP Saueressig Vandoren
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The main conjecture I

In general, we expect that the WCF is given by a sum

∆Ω̄(γ) =
∑
n≥2

∑
{α1,...αn}∈Γ̃
γ=α1+···+αn

g({αi})
|Aut({αi})|

∏n

i=1
Ω̄+(αi) ,

over all unordered decompositions of the total charge vector γ into
a sum of n vectors αi ∈ Γ̃. The symmetry factor |Aut({αi})| is the
one relevant for Boltzmannian statistics.
We conjecture that the coefficient g({αi}) is equal to the index of
the SUSY quantum mechanics of n distinguishable particles with
charge αi .
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The main conjecture II

The KS/JS formulae give a mathematical (implicit/explicit)
prediction for the coefficients g({αi}). We shall show that this
prediction is correct for n = 2,3.

The computation of the SUSY index for n ≥ 4 is a difficult problem,
which may be amenable to localization methods. Hopefully, this
will lead to a new, elementary physical derivation of the JS/KS
formula.
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The Kontsevich-Soibelman formula I

Consider the Lie algebra A spanned by abstract generators
{eγ , γ ∈ Γ}, satisfying the commutation rule

[eγ1 ,eγ2 ] = κ(〈γ1, γ2〉) eγ1+γ2 , κ(x) = (−1)x x .

For a given charge vector γ and value of the VM moduli ta,
consider the operator Uγ(ta) in the Lie group exp(A)

Uγ(ta) ≡ exp

(
Ω(γ; ta)

∞∑
d=1

edγ

d2

)
The operators eγ / Uγ can be realized as Hamiltonian vector fields
/ symplectomorphisms of a twisted torus.

Gaiotto Moore Neitzke
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The Kontsevich-Soibelman formula II

The KS wall-crossing formula states that the product

Aγ1,γ2 =
∏

γ=Mγ1+Nγ2,
M≥0,N≥0

Uγ ,

ordered so that arg(Zγ) decreases from left to right, stays constant
across the wall. As ta crosses W , Ω(γ; ta) jumps and the order of
the factors is reversed, but the operator Aγ1,γ2 stays constant.
Equivalently, ∏

M≥0,N≥0,
M/N↓

U+
Mγ1+Nγ2

=
∏

M≥0,N≥0,
M/N↑

U−Mγ1+Nγ2
,
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The Kontsevich-Soibelman formula III
Noting that the operators Ukγ for different k ≥ 1 commute, one
may combine them into a single factor

Vγ ≡
∞∏

k=1

Ukγ = exp

( ∞∑
`=1

Ω̄(`γ) e`γ

)
, Ω̄(γ) =

∑
m|γ

m−2Ω(γ/m) .

and rewrite the KS formula as a product over primitive charge
vectors only,∏

M≥0,N≥0,
gcd(M,N)=1,M/N↓

V +
Mγ1+Nγ2

=
∏

M≥0,N≥0,
gcd(M,N)=1,M/N↑

V−Mγ1+Nγ2
,
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The Kontsevich-Soibelman formula IV
The algebra A is infinite dimensional, but the KS formula may be
projected to any finite-dimensional algebra

AM,N = A/{
∑

m>M or n>N

R · emγ1+nγ2} .

This truncation is sufficient to infer ∆Ω(mγ1 + nγ2) for any
m ≤ M,n ≤ N, e.g. using the Baker-Campbell-Hausdorff formula.
For example, the primitive wcf follows in A1,1 from

exp(Ω̄+(γ1)eγ1) exp(Ω̄+(γ1 + γ2)eγ1+γ2) exp(Ω̄+(γ2)eγ2)

= exp(Ω̄−(γ2)eγ2) exp(Ω̄−(γ1 + γ2)eγ1+γ2) exp(Ω̄−(γ1)eγ1)

and the order 2 truncation of the BCH formula

eX eY = eX+Y + 1
2 [X ,Y ] .
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The Kontsevich-Soibelman formula V
In some cases, once can work directly with the full algebra A,
upon using the identity

Uγ2 Uγ1 = Uγ1 Uγ1+γ2 Uγ2 , γ12 = −1

which follows from the pentagonal identity for the di-logarithm.
Using this identity repeatedly, one can e.g. establish

U2,−1 · U0,1 = U0,1 · U2,1 · U4,1 . . .U2,0 . . .U3,−1 · U2,−1U1,−1

where Ω(γ) = 1 in each factor except Ω(2,0) = −2. This
reproduces the wall-crossing from the strong to weak coupling
region in N = 2 SYM with G = SU(2) and no flavor.

Seiberg Witten; Bilal Ferrari; Denef
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The Kontsevich-Soibelman formula VI

The semi-primitive formula can be derived similarly by projecting
the KS formula to A1,∞,

V +
γ1

V +
γ1+γ2

V +
γ1+2γ2

· · ·V +
γ2

= V−γ2
· · ·V−γ1+2γ2

V−γ1+γ2
V−γ1

and combining on either side the factors V +
γ1+Nγ2

in a single
exponential using the order-2 BCH formula:

eX +
1 V +

γ2
= V−γ2

eX−1

Finally, the Hadamard lemma for eY = V +
γ2

= V−γ2
,X = eX +

1

eY X e−Y = X + [Y ,X ] +
1
2!

[Y , [Y ,X ]] + +
1
3!

[Y , [Y , [Y ,X ]]] + . . .

leads directly to Z−(1,q) = Z +(1,q) Zhalo(γ1,q).
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The Kontsevich-Soibelman formula VII

By projecting the KS formula to AM,∞, one can obtain ”order M"
generalizations of the semi-primitive WCF, e.g. for M = 2

Z̃−2 (q) = Z̃ +
2 (q) Zhalo(2γ1,q)

where

Z̃±2 (q) ≡
∞∑

N≥0

Ω̄±(2γ1 + Nγ2) qN

±1
4

∑
N1,N2≥0

κ(|N1 − N2|γ12) Ω̄±(γ1 + N1γ2) Ω̄+(γ1 + N2γ2) qN1+N2 .

and Zhalo(2γ1,q) is the same factor which appeared in the
semi-primitive wcf, after replacing γ1 7→ 2γ1.

Toda; Stoppa; Cheung Diaconescu Pan
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D6-D0 bound states I

E.g for D6-D0 bound states (i.e. dimension zero sheaves on X ):
at large volume, zero B-field,

D6\D0 0 1 2 3 4
0 · −χ −χ −χ −χ
1 1 0 0 0 . . .
2 0 0 0 0 . . .
3 0 0 0 0 . . .

Ω+(1,0) = 1 , Ω+(0,n) = −χ (n > 0) .
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D6-D0 bound states II

As the B-field is increased, one enters the DT chamber, wherein

D6\D0 0 1 2 3 4
0 · −χ −χ −χ −χ
1 1 −χ 1

2(χ2 + 5χ) −1
6(χ3 + 15χ2 + 20χ) . . .

2 0 0 −χ −1
6(χ3 + 15χ2 + 20χ) . . .

3 0 0 0 −χ . . .

The partition function of rank 1 DT invariants is

Z−(1,q) = [M(−q)]χ , M(q) =
∏
n≥1

1− qn)n
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D6-D0 bound states III

The partition function of rank 2 DT invariants is

Z−(2,q) =
1
4

(
[M(q)]2χ − [M(−q2)]χ

)
− 1

4

∑
n1,n2

κ(|n1 − n2|)Ω−(1,n1) Ω−(1,n2) qn1+n2

Toda; Stoppa; Nagao
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Generic decay I

When αi have generic phases, g({αi}) can be computed by
projecting the KS formula to the subalgebra spanned by eP

αj

where {αj} runs over all subsets of {αi}.
E.g., for n = 3, assuming that the phase of the charges are
ordered according to

α1, (α1 + α2, α1 + α3), α1 + α2 + α3, α2, α2 + α3, α3 ,

we find

g({α1, α2, α3}) = (−1)α12+α23+α13 α12 (α13 + α23)

As we shall see later, this fits the macroscopic index !
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Generic decay II

Similarly, for n = 4, assuming the clockwise ordering

α1 , (α1 + α2 , α1 + α3 , α1 + α2 + α3) , α2 ,

(α2 + α3 , α1 + α2 + α4) , α1 + α2 + α3 + α4 , α1 + α3 + α4 ,

α3 , (α1 + α4 , α2 + α4 , α2 + α3 + α4 , α3 + α4) , α4 ,

we find

g({α1, α2, α3, α4}) =(−1)1+
P

i<j αij ×
[〈α1, α2〉 〈α1 + α2, α3〉 〈α1 + α2 + α3, α4〉
+ 〈α1, α3〉 〈α1 + α3, α4〉 〈α2, α1 + α3, α4〉
+〈α2, α3〉 〈α1, α4〉 〈α2 + α3, α1 + α4〉]

which is a prediction for the index of the 4-body SUSY quantum
mechanics.
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The motivic Kontsevich-Soibelman formula I

KS have proposed a quantum deformation of their formula, which
governs wall-crossing properties of motivic DT invariants
Ωref(γ; y , t). Physically, these correspond to the “refined index"

Ωref(γ, y) = Tr′H(γ)(−y)2J3 ≡
∑
n∈Z

(−y)n Ωref,n(γ) ,

where J3 is the angular momentum in 3 dimensions along the z
axis (more accurately, a combination of angular momentum and
SU(2)R quantum numbers). As y → 1, Ωref(γ; y , t)→ Ω(γ; t).

Dimofte Gukov Soibelman

While this index is protected in N = 2,D = 4 field theories, this is
not so in in supergravity/string theory, where SU(2)R is generically
broken. Still, one may consider the wall-crossing properties of
Ωref(γ; y , t) at fixed coupling.
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The motivic Kontsevich-Soibelman formula II

To state the formula, consider the Lie algebra A(y) spanned by
generators {ẽγ , γ ∈ Γ}, satisfying the commutation rule

[ẽγ1 , ẽγ2 ] = κ(〈γ1, γ2〉) ẽγ1+γ2 , κ(x) =
(−y)x − (−y)−x

y − 1/y
.

To any charge vector γ, attach the operator

Ûγ =
∏
n∈Z

E
(

yn ẽγ
y − 1/y

)−(−1)nΩref,n(γ)

, E(x) ≡ exp

[ ∞∑
k=1

(xy)k

k(1− y2k )

]
,

where E is the quantum dilogarithm function.
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The motivic Kontsevich-Soibelman formula III
The motivic version of the KS wall-crossing formula again states
that the product

Âγ1,γ2 =
∏

γ=Mγ1+Nγ2,
M≥0,N≥0

Ûγ ,

ordered such that arg Zγ decreases from left to right, is constant
across the wall.
As before, one may combine the Ûkγ into a single factor

V̂γ =
∏
`≥1

Û`γ = exp

[ ∞∑
N=1

Ω̄ref(Nγ, y) ẽNγ

]

where Ω̄ref(Nγ, y) are the “rational motivic invariants", defined by

Ω̄+
ref(γ, y) ≡

∑
m|γ

(y − y−1)

m(ym − y−m)
Ω+

ref(γ/m, y
m) .
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The motivic Kontsevich-Soibelman formula IV

Manschot

The motivic KS formula becomes∏
M≥0,N≥0>0,

gcd(M,N)=1,M/N↓

V̂ +
Mγ1+Nγ2

=
∏

M≥0,N≥0>0,
gcd(M,N)=1,M/N↑

V̂−Mγ1+Nγ2
,

∆Ω̄ref(γ, y) can be computed using the same techniques as
before, e.g. the primitive wcf read

∆Ωref(γ1 + γ2, y) =
(−y)〈γ1,γ2〉 − (−y)−〈γ1,γ2〉

y − 1/y
Ωref(γ1, y) Ωref(γ2, y)
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The motivic Kontsevich-Soibelman formula V

The refined semi-primitive wall-crossing formula is given by

Z−(1,q, y) = Z +(1,q, y) Zhalo(γ1,q, y)

where

Zhalo(γ1,q, y) ≡ exp

( ∞∑
`=1

(−y)〈γ1,`γ2〉 − (−y)−〈γ1,`γ2〉

y − y−1 Ω̄ref(`γ2, y) q`
)
,

or in terms of the integer motivic invariants,

Zhalo(γ1,q, y) =
∏

k≥1,n∈Z
1≤j≤k |γ12|

(
1− (−1)k |γ12|qkyn+2j−1−k |γ12|

)(−1)n Ωref,n(kγ2)

Dimofte Gukov Soibelman
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The Joyce-Song formula I

Joyce & Song have derived an explicit wall-crossing formula in the
context of the Abelian category of coherent sheaves on a
Calabi-Yau three-fold.
KS instead considered the derived category of coherent sheaves,
which is not an Abelian but rather a triangulated category. In spite
of these subtleties, we shall find evidence that the two formulae
agree.
To formulate the JS formula, we need to introduce S, U and L
factors, which are functions of an ordered list of charge vectors
αi ∈ Γ̃, i = 1 . . . n.
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The Joyce-Song formula II
We define S(α1, . . . , αn) ∈ {0,±1} as follows. If n = 1, set
S(α1) = 1. If n > 1 and, for every i = 1 . . . n − 1, either

(a) 〈αi , αi+1〉 ≤ 0 and 〈α1 + · · ·+ αi , αi+1 + · · ·+ αn〉 < 0, or
(b) 〈αi , αi+1〉 > 0 and 〈α1 + · · ·+ αi , αi+1 + · · ·+ αn〉 ≥ 0 ,

let S(α1, . . . , αn) = (−1)r , where r is the number of times option
(a) is realized; otherwise, S(α1, . . . , αn) = 0.
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The Joyce-Song formula III

To define the U factor, consider all ordered partitions of the n
vectors αi into 1 ≤ m ≤ n packets {αaj−1+1, · · · , αaj}, j = 1 . . .m,
with 0 = a0 < a1 < · · · < am = n, such that all vectors in each
packet have the same phase arg Z (αi). Let

βj = αaj−1+1 + · · ·+ αaj , j = 1 . . .m

be the sum of the charge vectors in each packet.

Next, consider all ordered partitions of the m vectors βj into
1 ≤ l ≤ m packets {βbk−1+1, · · · , βbk}, with
0 = b0 < b1 < · · · < bl = m, k = 1 . . . l , such that the total charge
vectors δk = βbk−1+1 + · · ·+ βbk , k = 1 . . . l in each packets all
have the same phase arg Z (δk ).
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The Joyce-Song formula IV
Define the U-factor as the sum

U(α1, . . . , αn) ≡
∑

l

(−1)l−1

l
·
∏l

k=1

m∏
j=1

1
(aj − aj−1)!

S(βbk−1+1, βbk−1+2, . . . , βbk ) .

over all partitions of αi and βj satisfying the conditions above.
If none of the phases of the vectors αi coincide, S = U.
Contributions with l > 1 arise only when {αi} can be split into two
(or more) packets with the same total charge, e.g.

U[γ1, γ2, γ1, γ2] = S[γ1, γ2, γ1, γ2]− 1
2

S[γ1, γ2]2 = 1− 1
2

(−1)2 =
1
2
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The Joyce-Song formula V
Finally (departing slightly from JS), define the (Landau) L factor
Landau factor L is a

L(α1, . . . , αn) =
∑
trees

∏
edges(i,j)

〈αi , αj〉

where the sum runs over all labeled trees with n vertices labelled
{1, . . . ,n}, with edges oriented from i to j if i < j .
Each tree can be labelled by its Prüfer code, a sequence of n − 2
numbers in {1, . . .n}.
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The Joyce-Song formula VI

The JS formula then says that the coefficient g({αi}) in

∆Ω̄(γ) =
∑
n≥2

∑
{α1,...αn}∈Γ̃
γ=α1+···+αn

g({αi})
|Aut({αi})|

∏n

i=1
Ω̄+(αi) .

is given by a sum over permutations

g({αi}) =
1

2n−1 (−1)n−1+
P

i<j 〈αi ,αj 〉
∑
σ∈Σn

L
(
ασ(1), . . . ασ(n)

)
U
(
ασ(1), . . . ασ(n)

)
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The Joyce-Song formula VII
To derive the primitive wcf, note that there is only one oriented
tree with 2 nodes. Assuming γ12 < 0, the JS data is then

σ(12) S U L
12 a −1 γ12
21 b 1 −γ12

leading again to

∆Ω(γ → γ1 + γ2) = (−1)γ12 γ12 Ω(γ1) Ω(γ2) , γ12 ≡ 〈γ1, γ2〉
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The Joyce-Song formula VIII
For generic 3-body decay, assuming the same phase ordering as
before and taking into account the 3 possible oriented trees, the
JS data

σ(123) S U L
123 bb 1 α12α13 + α13α23 + α12α23
132 b- 0 α12α13 − α13α23 − α12α23
213 ab −1 −α12α23 + α13α23 − α12α13
231 -a 0 α12α13 − α13α23 − α12α23
312 ab −1 α13α23 − α12α23 − α13α12
321 aa 1 α13α23 + α12α13 + α12α23

leads to the same answer as KS,

g({α1, α2, α3}) = (−1)α12+α23+α13 α12 (α13 + α23)
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The Joyce-Song formula IX

We have checked that JS and KS also agree for generic 4-body
decay (involving 16 graphs), and for special cases (2,3), (2,4)
(involving up to 1296 graphs !).

While there is no general proof yet, it seems that the JS formula is
equivalent to the classical KS formula. Finding a motivic
generalization of JS seems an interesting problem.

Note that the JS formula involves large denominators and leads to
many cancellations. There may be a more economic way to state
the solution to KS.
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The quantum mechanics of multi-centered solutions I

The spaceMn of BPS configurations with n centers in N = 2
SUGRA is described by solutions to Denef’s equations

n∑
j=1...n,j 6=i

αij

|~rij |
= 2 Im

[
e−iαZ (αi)

]
, α = arg[Z (α1 + · · ·αn)] .

Denef

Mn has real dimension 2n − 2, and carries a symplectic form

ω =
1
2

∑
i<j

αij
d~rij ∧ d~rij · d~rij

|rij |3

with an Hamiltonian action of spatial rotations SU(2). In the case
of interest to us,Mn is compact (no “scaling" solutions).

de Boer El Showk Messamah Van den Bleeken
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The quantum mechanics of multi-centered solutions II

Quantizing the internal degrees of freedom of the multi-centered
configurations amounts to quantizing the symplectic spaceMn.
The index is given, at least in the classical limit where all αij are
large, by

g({αi}, y) =

∫
Mn

ωn−1 (−y)j3

where j3 is the moment map associated to U(1) rotations.
For n = 2,3,Mn is toric. The integral localizes to the fixed points
of the torus action:

g(α1, α2; y) =
(−y)〈γ1,γ2〉 − (−y)−〈γ1,γ2〉

y − 1/y

g(α1, α2, α3; y) =
(−1)α13+α23+α12

sinh2 ν
sinh(ν(α13 + α23)) sinh(να12) ,

where ν = ln y . This is in precise agreement with KS/JS !
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The quantum mechanics of multi-centered solutions III

For n > 3, we expect thatMn is still toric. This is manifest on the
dual, Higgs branch description of the same problem, given by a
quiver with n nodes. Hopefully, the JS formula can be derived by
computing the index via localization.

If so, one may also get a motivic version of the JS formula.

THANK YOU !
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