Wall-crossing from Boltzmannian Black Hole Halos

Boris Pioline

LPTHE, Paris

PICS meeting, London, 19/10/2010
based on work with J. Manschot and A. Sen, to appear

Introduction I

- In SUSY field theories and string theory vacua with extended supersymmetry, the spectrum of BPS states can often be determined exactly at weak coupling.
- In following the BPS spectrum from weak to strong coupling, one must be wary of two issues:
- short multiplets may pair up into a long multiplet,
- single-particle states may decay into multi-particle states.
- The first issue can be avoided by considering a suitable index $\Omega(\gamma, t)$, designed such that contributions from long multiplets cancel. $\Omega(\gamma, t)$ is then a piecewise constant function of the charge vector γ and couplings/moduli t.

Introduction II

- To deal with the second issue, one must understand how $\Omega(\gamma, t)$ changes across a wall of marginal stability W, where a single-particle state with charge γ can decay into a multi-particle state with charges $\left\{\gamma_{i}\right\}$, such that $\gamma=\sum_{i} \gamma_{i}, M(\gamma)=\sum_{i} M\left(\gamma_{i}\right)$.
- Initial progress came from physics, by noting that single-particle states (in a certain limit) can be represented by multi-centered solitonic solutions. Those exist only on one side of the wall and decay into the continuum of multi-particle states on the other side.
- When $\gamma=\gamma_{1}+\gamma_{2}$ is the sum of two primitive vectors, the index of the two-centered configuration is easily computed, leading to the primitive wall crossing formula for $D=4, N=2$ vacua:

$$
\Delta \Omega\left(\gamma \rightarrow \gamma_{1}+\gamma_{2}\right)=(-1)^{\gamma_{12}} \gamma_{12} \Omega\left(\gamma_{1}\right) \Omega\left(\gamma_{2}\right), \quad \gamma_{12} \equiv\left\langle\gamma_{1}, \gamma_{2}\right\rangle
$$

Denef Moore

Introduction III

- In the non-primitive case $\gamma=M \gamma_{1}+N \gamma_{2}$ where $M, N>1\left(\gamma_{1}, \gamma_{2}\right.$ being two primitive vectors), many multi-centered configurations in general contribute, and computing their index is much harder.
- The general answer to this problem came from the mathematical study of the wall-crossing properties of (generalized) Donaldson-Thomas invariants for Calabi-Yau three-folds. These are believed to be the mathematical translation of the BPS index $\Omega(\gamma)$ in type IIA CY vacua.
- Notably, Kontsevich \& Soibelman (KS) and Joyce \& Song (JS) have given implicit and explicit formulae for $\Delta \Omega\left(\gamma \rightarrow M \gamma_{1}+N \gamma_{2}\right)$. Our main goal will be to interpret these formulae physically.

Physical interpretation of the KS/JS formulae I

- The KS formula was first interpreted physically in terms of the VM moduli space \mathcal{M}_{3} of the $\mathcal{N}=2, D=4$ theory compactified on a circle S^{1} of radius R. SUSY requires that \mathcal{M}_{3} is hyperkähler (in field theory) / quaternion-Kähler (in SUGRA).
- The HK/QK metric on \mathcal{M}_{3} is conveniently described in terms of the complex symplectic/contact structure on the twistor space \mathcal{Z}, a \mathbb{P}^{1} bundle over \mathcal{M}_{3}.
- Above a fixed point $t \in \mathcal{M}_{4}$, the symplectic/contact structure is specified by a set of symplectomorphisms U_{γ} between Darboux coordinate patches. The KS formula guarantees the smoothness of the metric as t crosses a wall of marginal stability.

Gaiotto Moore Neitzke; Chen Dorey Petunin; Alexandrov BP Saueressig Vandoren

Physical interpretation of the KS/JS formulae II

- Recently, the (motivic/refined) KS formula was derived physically by using the notion of framed BPS states and supersymmetric galaxies. This reduces the general wall-crossing problem to a sequence of semi-primitive wall-crossings.
- The JS formula has not been interpreted physically yet. Its equivalence with KS is still conjectural.
- Here we shall interpret (and seek to derive) the KS/JS formulae in terms of the supersymmetric quantum mechanics of multi-centered solitonic/black hole configurations.

Denef; de Boer El Showk Messamah Van den Bleeken

Physical interpretation of the KS/JS formulae III

- In particular, we shall explain the physical relevance of the rational DT invariants

$$
\bar{\Omega}(\gamma) \equiv \sum_{d \mid \gamma} \Omega(\gamma / d) / d^{2}
$$

which feature prominently in the KS/JS formulae: replacing $\Omega(\gamma) \rightarrow \bar{\Omega}(\gamma)$ effectively reduces the Bose-Fermi statistics of the centers to Boltzmannian statistics !

- We shall also apply the KS/JS formulae to derive generalizations of the semi-primitive wall-crossing formula, and compute the index of D0-D6 bound states with $[D 6]=2,3$.

Outline

(1) Introduction
(2) A Boltzmannian view of wall-crossing
(3) The Kontsevich-Soibelman formula
(4) The Joyce-Song formula
(5) Towards a physical derivation of the JS/KS formulae

Outline

(1) Introduction

(2) A Boltzmannian view of wall-crossing

3 The Kontsevich-Soibelman formula

(4) The Joyce-Song formula
(5) Towards a physical derivation of the JS/KS formulae

Preliminaries I

- We consider $\mathcal{N}=2$ supergravity in 4 dimensions (this includes field theories with rigid $\mathcal{N}=2$ as a special case). Let $\Gamma=\Gamma_{e} \oplus \Gamma_{m}$ be the lattice of electric and magnetic charges, with symplectic pairing

$$
\left\langle\gamma, \gamma^{\prime}\right\rangle=\left\langle\left(p^{\wedge}, q_{\Lambda}\right), \gamma^{\prime}=\left(p^{\prime \wedge}, q_{\Lambda}^{\prime}\right)\right\rangle \equiv q_{\wedge} p^{\prime \wedge}-q_{\Lambda}^{\prime} p_{\Lambda} \in \mathbb{Z}
$$

- BPS states preserve 4 out of 8 supercharges, and saturate the bound $M(\gamma) \geq|Z(\gamma)|$ with $Z(\gamma)=e^{\mathcal{K} / 2}\left(q_{\wedge} X^{\wedge}-p^{\wedge} F_{\Lambda}\right)$.
- We are interested in the index $\Omega\left(\gamma ; t^{a}\right)=\operatorname{Tr}_{\mathcal{H}_{\gamma}^{\prime}\left(t^{a}\right)}(-1)^{2 J_{3}}$ where $\mathcal{H}_{\gamma}^{\prime}\left(t^{a}\right)$ is the Hilbert space of states with charge $\gamma \in \Gamma$ in the vacuum where the VM scalars asymptote to t^{a} at spatial infinity, after factoring out the bosonic and fermionic center of motion d.o.f.

Preliminaries II

- The BPS invariants $\Omega\left(\gamma ; t^{a}\right)$ are locally constant functions of t^{a}, but may jump across codimension-one subspaces

$$
W\left(\gamma_{1}, \gamma_{2}\right)=\left\{t^{a} / \arg \left[Z\left(\gamma_{1}\right)\right]=\arg \left[Z\left(\gamma_{2}\right)\right]\right\}
$$

where γ_{1} and γ_{2} are two primitive (non-zero) vectors such that $\gamma=M \gamma_{1}+N \gamma_{2}, M, N \geq 1$.

- Let $c_{ \pm}$be the chamber in which $\arg \left(Z_{\gamma_{1}}\right) \gtrless \arg \left(Z_{\gamma_{2}}\right)$. Our aim is to compute $\Delta \Omega(\gamma) \equiv \Omega^{-}(\gamma)-\Omega^{+}(\gamma)$ as a function of $\Omega^{+}(\gamma)$ (say).
- Assume that close to $W\left(\gamma_{1}, \gamma_{2}\right), \Omega\left(M \gamma_{1}+N \gamma_{2}\right)=0$ whenever $M N<0$ (root property). Let $\tilde{\Gamma}$ be the positive cone

$$
\tilde{\Gamma}: \quad\left\{M \gamma_{1}+N \gamma_{2}, \quad M, N \geq 0, \quad(M, N) \neq(0,0)\right\}
$$

Wall-crossing from semi-classical solutions I

- Assume that $M\left(\gamma_{1}\right), M\left(\gamma_{2}\right)$ are much greater than the dynamical scale (\wedge or m_{P}). In this limit, single-particle states (potentially unstable across W) can be described by classical configurations with $m_{r, s}$ centers of charge $r \gamma_{1}+s \gamma_{2} \in \tilde{\Gamma}$, satisfying $(M, N)=\sum(r, s) m_{r, s}$.
- In addition, in either chamber, there may be multi-centered configurations whose charge vectors do not lie in $\tilde{\Gamma}$. However, they remain bound across W and do not contribute to $\Delta \Omega(\gamma)$.
- Assume for definiteness that $\gamma_{12}<0$. Then multi-centered solutions with charges in $\tilde{\Gamma}$ exist only in chamber c_{-}, not c_{+}. E.g. two-centered solutions can only exist when

$$
r_{12}=\frac{1}{2} \frac{\left\langle\alpha_{1}, \alpha_{2}\right\rangle\left|Z\left(\alpha_{1}\right)+Z\left(\alpha_{2}\right)\right|}{\operatorname{Im}\left[Z\left(\alpha_{1}\right) \bar{Z}\left(\alpha_{2}\right)\right]}>0
$$

Wall-crossing from semi-classical solutions II

- At the wall, $r_{i j} \rightarrow \infty$: the single-particle bound state decays into the continuum of multi-particle state. $\Delta \Omega(\gamma)$ is equal to the index of the SUSY quantum mechanics describing the internal d.o.f. of the multi-centered configurations which are gained/lost across the wall.
- Close to the wall, this reduces to the SUSY quantum mechanics of point-like particles, each carrying its own set of degrees of freedom with index $\Omega\left(\gamma_{i}\right)$, interacting via Newtonian and Coulomb forces. The statistics of each center is bosonic or fermionic, depending on the sign of $\Omega\left(\gamma_{i}\right)$.

Wall-crossing from semi-classical solutions III

- For primitive decay $\gamma \rightarrow \gamma_{1}+\gamma_{2}$, one recovers the primitive WCF

$$
\Delta \Omega\left(\gamma \rightarrow \gamma_{1}+\gamma_{2}\right)=(-1)^{\gamma_{12}+1}\left|\gamma_{12}\right| \Omega^{+}\left(\gamma_{1}\right) \Omega^{+}\left(\gamma_{2}\right),
$$

where $(-1)^{\gamma_{12}+1}\left|\gamma_{12}\right|$ is the index of Landau states on a sphere of radius r_{12} threaded by a magnetic flux $\gamma_{1,2}$.

- This argument generalizes to semi-primitive wall-crossing $\gamma \rightarrow \gamma_{1}+\boldsymbol{N} \gamma_{2}$: one set of classical configurations consists of a "halo" of m_{s} particles of charge $s \gamma_{2}, \sum s m_{s}=N$, orbiting around one particle of charge γ_{1}.

$$
\begin{aligned}
Z_{\text {halo }}\left(\gamma_{1}, q\right) & \equiv 1+\sum_{\left\{m_{s}\right\}} \Delta \Omega\left(\gamma \rightarrow \gamma_{1}+\sum s m_{s} \gamma_{2}\right) q^{s m_{s}} \\
& =\prod_{k>0}\left(1-(-1)^{k \gamma_{12}} q^{k}\right)^{k\left|\gamma_{12}\right| \Omega^{+}\left(k \gamma_{2}\right)}
\end{aligned}
$$

Wall-crossing from semi-classical solutions IV

- More generally however, there are configurations with a core of charge $\gamma_{1}+l \gamma_{2}$ and halo of total charge $(N-I) \gamma_{2}$. Defining

$$
Z^{ \pm}(1, q)=\sum_{N \geq 0} \Omega^{ \pm}\left(\gamma_{1}+N \gamma_{2}\right) q^{N}
$$

the final formula is $Z^{-}(1, q)=Z^{+}(1, q) Z_{\text {halo }}\left(\gamma_{1}, q\right)$. E.g.

$$
\begin{aligned}
\Delta \Omega(1,2)= & \Omega^{+}(1,0)\left[2 \gamma_{12} \Omega^{+}(0,2)+\frac{1}{2} \gamma_{12} \Omega^{+}(0,1)\left(\gamma_{12} \Omega^{+}(0,1)+1\right)\right] \\
& +\Omega^{+}(1,1)\left[(-1)^{\gamma_{12}} \gamma_{12} \Omega^{+}(0,1)\right]
\end{aligned}
$$

- The term in red reflects the Bose/Fermi statistics of the particles with degeneracy $\gamma_{12} \Omega^{+}(0,1)$ and apparently "violates charge conservation"!

Wall-crossing from semi-classical solutions V

- It is instructive to rewrite the semi-primitive wcf using the rational BPS invariants

$$
\bar{\Omega}(\gamma) \equiv \sum_{d \mid \gamma} \Omega(\gamma / d) / d^{2}, \quad \Omega(\gamma)=\sum_{d \mid \gamma} \mu(d) \bar{\Omega}(\gamma / d) / d^{2}
$$

where $\mu(d)$ is the Möbius function (i.e. 1 if d is a product of an even number of distinct primes, -1 if d is a product of an odd number of primes, or 0 otherwise).

- Using the identity $\prod_{d=1}^{\infty}\left(1-q^{d}\right)^{\mu(d) / d}=e^{-q}$, or working backwards, we can rewrite

$$
Z_{\text {halo }}\left(\gamma_{1}, q\right)=\exp \left[\sum_{s=1}^{\infty} q^{s}(-1)^{\left\langle\gamma_{1}, s \gamma_{2}\right\rangle}\left\langle\gamma_{1}, s \gamma_{2}\right\rangle \bar{\Omega}^{+}\left(s \gamma_{2}\right)\right]
$$

Wall-crossing from semi-classical solutions VI

- Thus, the halo partition function can be equivalently obtained by treating the particles in the halo as distinguishable, each carrying an effective index $\bar{\Omega}\left(s \gamma_{2}\right)$, and applying Boltzmann statistics !
- In terms of the rational invariants, the WCF is simpler, and manifestly consistent with charge conservation. E.g.,

$$
\begin{aligned}
\Delta \bar{\Omega}(1,2)= & \bar{\Omega}^{+}(1,0)\left[2 \gamma_{12} \bar{\Omega}^{+}(0,2)+\frac{1}{2} \gamma_{12} \bar{\Omega}^{+}(0,1)^{2}\right] \\
& +\bar{\Omega}^{+}(1,1)\left[(-1)^{\gamma_{12}} \gamma_{12} \bar{\Omega}^{+}(0,1)\right] .
\end{aligned}
$$

- The rational DT invariants $\bar{\Omega}(\gamma)$ are also useful in constructing modular invariant black hole partition functions, and in computing instanton corrections to hypermultiplet moduli spaces.

Manschot; Alexandrov BP Saueressig Vandoren

The main conjecture I

- In general, we expect that the WCF is given by a sum

$$
\Delta \bar{\Omega}(\gamma)=\sum_{n \geq 2} \sum_{\substack{\left\{\alpha_{1}, \ldots \alpha_{n}\right\} \in \tilde{\Gamma} \\ \gamma=\alpha_{1}+\cdots+\alpha_{n}}} \frac{g\left(\left\{\alpha_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|} \prod_{i=1}^{n} \bar{\Omega}^{+}\left(\alpha_{i}\right),
$$

over all unordered decompositions of the total charge vector γ into a sum of n vectors $\alpha_{i} \in \tilde{\Gamma}$. The symmetry factor $\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|$ is the one relevant for Boltzmannian statistics.

- We conjecture that the coefficient $g\left(\left\{\alpha_{i}\right\}\right)$ is equal to the index of the SUSY quantum mechanics of n distinguishable particles with charge α_{i}.

The main conjecture II

- The KS/JS formulae give a mathematical (implicit/explicit) prediction for the coefficients $g\left(\left\{\alpha_{i}\right\}\right)$. We shall show that this prediction is correct for $n=2,3$.
- The computation of the SUSY index for $n \geq 4$ is a difficult problem, which may be amenable to localization methods. Hopefully, this will lead to a new, elementary physical derivation of the JS/KS formula.

Outline

(1) Introduction
(2) A Boltzmannian view of wall-crossing
(3) The Kontsevich-Soibelman formula

4 The Joyce-Song formula
(5) Towards a physical derivation of the JS/KS formulae

The Kontsevich-Soibelman formula I

- Consider the Lie algebra \mathcal{A} spanned by abstract generators $\left\{e_{\gamma}, \gamma \in \Gamma\right\}$, satisfying the commutation rule

$$
\left[\boldsymbol{e}_{\gamma_{1}}, \boldsymbol{e}_{\gamma_{2}}\right]=\kappa\left(\left\langle\gamma_{1}, \gamma_{2}\right\rangle\right) e_{\gamma_{1}+\gamma_{2}}, \quad \kappa(x)=(-1)^{x} x .
$$

- For a given charge vector γ and value of the VM moduli t^{a}, consider the operator $U_{\gamma}\left(t^{a}\right)$ in the Lie group $\exp (\mathcal{A})$

$$
U_{\gamma}\left(t^{a}\right) \equiv \exp \left(\Omega\left(\gamma ; t^{a}\right) \sum_{d=1}^{\infty} \frac{e_{d \gamma}}{d^{2}}\right)
$$

- The operators e_{γ} / U_{γ} can be realized as Hamiltonian vector fields / symplectomorphisms of a twisted torus.

Gaiotto Moore Neitzke

The Kontsevich-Soibelman formula II

- The KS wall-crossing formula states that the product

$$
A_{\gamma_{1}, \gamma_{2}}=\prod_{\substack{\gamma=M \not \gamma_{1}+N \gamma_{2}, M \geq 0, N \geq 0}} U_{\gamma},
$$

ordered so that $\arg \left(Z_{\gamma}\right)$ decreases from left to right, stays constant across the wall. As t^{a} crosses $\boldsymbol{W}, \Omega\left(\gamma ; t^{2}\right)$ jumps and the order of the factors is reversed, but the operator $A_{\gamma_{1}, \gamma_{2}}$ stays constant. Equivalently,

$$
\prod_{\substack{1 \geq 0, N \geq 0, M / N \downarrow}} U_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0, M / N \uparrow}} U_{M \gamma_{1}+N \gamma_{2}}^{-}
$$

The Kontsevich-Soibelman formula III

- Noting that the operators $U_{k \gamma}$ for different $k \geq 1$ commute, one may combine them into a single factor

$$
V_{\gamma} \equiv \prod_{k=1}^{\infty} U_{k \gamma}=\exp \left(\sum_{\ell=1}^{\infty} \bar{\Omega}(\ell \gamma) e_{\ell \gamma}\right), \quad \bar{\Omega}(\gamma)=\sum_{m \mid \gamma} m^{-2} \Omega(\gamma / m) .
$$

and rewrite the KS formula as a product over primitive charge vectors only,

$$
\prod_{\substack{M \geq 0, N \geq 0, \operatorname{gcd}(M, N)=1, M / N \downarrow}} V_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0, \operatorname{gcd}(M, N)=1, M / N \uparrow}} V_{M \gamma_{1}+N \gamma_{2}}^{-},
$$

The Kontsevich-Soibelman formula IV

- The algebra \mathcal{A} is infinite dimensional, but the KS formula may be projected to any finite-dimensional algebra

$$
\mathcal{A}_{M, N}=\mathcal{A} /\left\{\sum_{m>M \text { or } n>N} \mathbb{R} \cdot e_{m \gamma_{1}+m \gamma_{2}}\right\} .
$$

This truncation is sufficient to infer $\Delta \Omega\left(m_{\gamma_{1}}+n \gamma_{2}\right)$ for any $m \leq M, n \leq N$, e.g. using the Baker-Campbell-Hausdorff formula.

- For example, the primitive wcf follows in $\mathcal{A}_{1,1}$ from

$$
\begin{aligned}
& \exp \left(\bar{\Omega}^{+}\left(\gamma_{1}\right) e_{\gamma_{1}}\right) \exp \left(\bar{\Omega}^{+}\left(\gamma_{1}+\gamma_{2}\right) e_{\gamma_{1}+\gamma_{2}}\right) \exp \left(\bar{\Omega}^{+}\left(\gamma_{2}\right) e_{\gamma_{2}}\right) \\
= & \exp \left(\bar{\Omega}^{-}\left(\gamma_{2}\right) e_{\gamma_{2}}\right) \exp \left(\bar{\Omega}^{-}\left(\gamma_{1}+\gamma_{2}\right) e_{\gamma_{1}+\gamma_{2}}\right) \exp \left(\bar{\Omega}^{-}\left(\gamma_{1}\right) e_{\gamma_{1}}\right)
\end{aligned}
$$

and the order 2 truncation of the BCH formula

$$
e^{X} e^{Y}=e^{X+Y+\frac{1}{2}[X, Y]} .
$$

The Kontsevich-Soibelman formula \vee

- In some cases, once can work directly with the full algebra \mathcal{A}, upon using the identity

$$
U_{\gamma_{2}} U_{\gamma_{1}}=U_{\gamma_{1}} U_{\gamma_{1}+\gamma_{2}} U_{\gamma_{2}}, \quad \gamma_{12}=-1
$$

which follows from the pentagonal identity for the di-logarithm.

- Using this identity repeatedly, one can e.g. establish

$$
U_{2,-1} \cdot U_{0,1}=U_{0,1} \cdot U_{2,1} \cdot U_{4,1} \ldots U_{2,0} \ldots U_{3,-1} \cdot U_{2,-1} U_{1,-1}
$$

where $\Omega(\gamma)=1$ in each factor except $\Omega(2,0)=-2$. This reproduces the wall-crossing from the strong to weak coupling region in $\mathcal{N}=2 S Y M$ with $G=S U(2)$ and no flavor.

Seiberg Witten; Bilal Ferrari; Denef

The Kontsevich-Soibelman formula VI

- The semi-primitive formula can be derived similarly by projecting the KS formula to $\mathcal{A}_{1, \infty}$,

$$
V_{\gamma_{1}}^{+} V_{\gamma_{1}+\gamma_{2}}^{+} V_{\gamma_{1}+2 \gamma_{2}}^{+} \cdots V_{\gamma_{2}}^{+}=V_{\gamma_{2}}^{-} \ldots V_{\gamma_{1}+2 \gamma_{2}}^{-} V_{\gamma_{1}+\gamma_{2}}^{-} V_{\gamma_{1}}^{-}
$$

and combining on either side the factors $V_{\gamma_{1}+N \gamma_{2}}^{+}$in a single exponential using the order-2 BCH formula:

$$
e^{X_{1}^{+}} V_{\gamma_{2}}^{+}=V_{\gamma_{2}}^{-} e^{X_{1}^{-}}
$$

- Finally, the Hadamard lemma for $e^{Y}=V_{\gamma_{2}}^{+}=V_{\gamma_{2}}^{-}, X=e^{X_{1}^{+}}$

$$
e^{Y} X e^{-Y}=X+[Y, X]+\frac{1}{2!}[Y,[Y, X]]++\frac{1}{3!}[Y,[Y,[Y, X]]]+\ldots
$$

leads directly to $Z^{-}(1, q)=Z^{+}(1, q) Z_{\text {halo }}\left(\gamma_{1}, q\right)$.

The Kontsevich-Soibelman formula VII

- By projecting the KS formula to $\mathcal{A}_{M, \infty}$, one can obtain "order $M^{\prime \prime}$ generalizations of the semi-primitive WCF, e.g. for $M=2$

$$
\tilde{Z}_{2}^{-}(q)=\tilde{Z}_{2}^{+}(q) Z_{\text {halo }}\left(2 \gamma_{1}, q\right)
$$

where

$$
\begin{aligned}
& \widetilde{Z}_{2}^{ \pm}(q) \equiv \sum_{N \geq 0}^{\infty} \bar{\Omega}^{ \pm}\left(2 \gamma_{1}+N \gamma_{2}\right) q^{N} \\
& \quad \pm \frac{1}{4} \sum_{N_{1}, N_{2} \geq 0} k\left(\left|N_{1}-N_{2}\right| \gamma_{12}\right) \bar{\Omega}^{ \pm}\left(\gamma_{1}+N_{1} \gamma_{2}\right) \bar{\Omega}^{+}\left(\gamma_{1}+N_{2} \gamma_{2}\right) q^{N_{1}+N_{2}} .
\end{aligned}
$$

and $Z_{\text {halo }}\left(2 \gamma_{1}, q\right)$ is the same factor which appeared in the semi-primitive wcf, after replacing $\gamma_{1} \mapsto 2 \gamma_{1}$.

Toda; Stoppa; Cheung Diaconescu Pan

D6-D0 bound states I

- E.g for D6-D0 bound states (i.e. dimension zero sheaves on \mathcal{X}): at large volume, zero B-field,

$$
\begin{gathered}
\begin{array}{|c|c|c|c|c|c}
\hline D 6 \backslash D 0 & 0 & 1 & 2 & 3 & 4 \\
\hline 0 & \cdot & -\chi & -\chi & -\chi & -\chi \\
1 & 1 & 0 & 0 & 0 & \cdots \\
2 & 0 & 0 & 0 & 0 & \cdots \\
3 & 0 & 0 & 0 & 0 & \cdots \\
\Omega^{+}(1,0)=1, & \Omega^{+}(0, n)=-\chi \quad(n>0) .
\end{array}
\end{gathered}
$$

D6-D0 bound states II

- As the B-field is increased, one enters the DT chamber, wherein

$D 6 \backslash D 0$	0	1	2	3	4
0	\cdot	$-\chi$	$-\chi$	$-\chi$	$-\chi$
1	1	$-\chi$	$\frac{1}{2}\left(\chi^{2}+5 \chi\right)$	$-\frac{1}{6}\left(\chi^{3}+15 \chi^{2}+20 \chi\right)$	\cdots
2	0	0	$-\chi$	$-\frac{1}{6}\left(\chi^{3}+15 \chi^{2}+20 \chi\right)$	\cdots
3	0	0	0	$-\chi$	\cdots

- The partition function of rank 1 DT invariants is

$$
\left.Z^{-}(1, q)=[M(-q)]^{\chi}, \quad M(q)=\prod_{n \geq 1} 1-q^{n}\right)^{n}
$$

D6-D0 bound states III

- The partition function of rank 2 DT invariants is

$$
\begin{aligned}
Z^{-}(2, q)= & \frac{1}{4}\left([M(q)]^{2 \chi}-\left[M\left(-q^{2}\right)\right]^{\chi}\right) \\
& -\frac{1}{4} \sum_{n_{1}, n_{2}} \kappa\left(\left|n_{1}-n_{2}\right|\right) \Omega^{-}\left(1, n_{1}\right) \Omega^{-}\left(1, n_{2}\right) q^{n_{1}+n_{2}}
\end{aligned}
$$

Generic decay I

- When α_{i} have generic phases, $\boldsymbol{g}\left(\left\{\alpha_{i}\right\}\right)$ can be computed by projecting the KS formula to the subalgebra spanned by $e_{\sum \alpha_{j}}$ where $\left\{\alpha_{j}\right\}$ runs over all subsets of $\left\{\alpha_{i}\right\}$.
- E.g., for $n=3$, assuming that the phase of the charges are ordered according to

$$
\alpha_{1},\left(\alpha_{1}+\alpha_{2}, \quad \alpha_{1}+\alpha_{3}\right), \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{3}
$$

we find

$$
g\left(\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}\right)=(-1)^{\alpha_{12}+\alpha_{23}+\alpha_{13}} \alpha_{12}\left(\alpha_{13}+\alpha_{23}\right)
$$

As we shall see later, this fits the macroscopic index!

Generic decay II

- Similarly, for $n=4$, assuming the clockwise ordering

$$
\begin{aligned}
& \alpha_{1},\left(\alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right), \alpha_{2} \\
& \quad\left(\alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{4}\right), \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{1}+\alpha_{3}+\alpha_{4} \\
& \quad \alpha_{3},\left(\alpha_{1}+\alpha_{4}, \alpha_{2}+\alpha_{4}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{3}+\alpha_{4}\right), \alpha_{4}
\end{aligned}
$$

we find

$$
\begin{aligned}
g\left(\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}\right)= & (-1)^{1+\sum_{i<j} \alpha_{i j} \times} \\
& {\left[\left\langle\alpha_{1}, \alpha_{2}\right\rangle\left\langle\alpha_{1}+\alpha_{2}, \alpha_{3}\right\rangle\left\langle\alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{4}\right\rangle\right.} \\
& +\left\langle\alpha_{1}, \alpha_{3}\right\rangle\left\langle\alpha_{1}+\alpha_{3}, \alpha_{4}\right\rangle\left\langle\alpha_{2}, \alpha_{1}+\alpha_{3}, \alpha_{4}\right\rangle \\
& \left.+\left\langle\alpha_{2}, \alpha_{3}\right\rangle\left\langle\alpha_{1}, \alpha_{4}\right\rangle\left\langle\alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{4}\right\rangle\right]
\end{aligned}
$$

which is a prediction for the index of the 4-body SUSY quantum mechanics.

The motivic Kontsevich-Soibelman formula I

- KS have proposed a quantum deformation of their formula, which governs wall-crossing properties of motivic DT invariants $\Omega_{\mathrm{ref}}(\gamma ; y, t)$. Physically, these correspond to the "refined index"

$$
\Omega_{\mathrm{ref}}(\gamma, y)=\operatorname{Tr}_{\mathcal{H}(\gamma)}^{\prime}(-y)^{2 J_{3}} \equiv \sum_{n \in \mathbb{Z}}(-y)^{n} \Omega_{\mathrm{ref}, n}(\gamma)
$$

where J_{3} is the angular momentum in 3 dimensions along the z axis (more accurately, a combination of angular momentum and $S U(2)_{R}$ quantum numbers). As $y \rightarrow 1, \Omega_{\mathrm{ref}}(\gamma ; y, t) \rightarrow \Omega(\gamma ; t)$.

Dimofte Gukov Soibelman

- While this index is protected in $\mathcal{N}=2, D=4$ field theories, this is not so in in supergravity/string theory, where $S U(2)_{R}$ is generically broken. Still, one may consider the wall-crossing properties of $\Omega_{\mathrm{ref}}(\gamma ; y, t)$ at fixed coupling.

The motivic Kontsevich-Soibelman formula II

- To state the formula, consider the Lie algebra $\mathcal{A}(y)$ spanned by generators $\left\{\tilde{e}_{\gamma}, \gamma \in \Gamma\right\}$, satisfying the commutation rule

$$
\left[\tilde{e}_{\gamma_{1}}, \tilde{e}_{\gamma_{2}}\right]=\kappa\left(\left\langle\gamma_{1}, \gamma_{2}\right\rangle\right) \tilde{e}_{\gamma_{1}+\gamma_{2}}, \quad \kappa(x)=\frac{(-y)^{x}-(-y)^{-x}}{y-1 / y} .
$$

- To any charge vector γ, attach the operator

$$
\hat{U}_{\gamma}=\prod_{n \in \mathbb{Z}} \mathbf{E}\left(\frac{y^{n} \tilde{e}_{\gamma}}{y-1 / y}\right)^{-(-1)^{n} \Omega_{\text {ref }, n}(\gamma)}, \quad \mathbf{E}(x) \equiv \exp \left[\sum_{k=1}^{\infty} \frac{(x y)^{k}}{k\left(1-y^{2 k}\right)}\right]
$$

where \mathbf{E} is the quantum dilogarithm function.

The motivic Kontsevich-Soibelman formula III

- The motivic version of the KS wall-crossing formula again states that the product

$$
\hat{A}_{\gamma_{1}, \gamma_{2}}=\prod_{\substack{\gamma=M \gamma_{1}+N \gamma_{2}, M \geq 0, N \geq 0}} \hat{U}_{\gamma},
$$

ordered such that $\arg Z_{\gamma}$ decreases from left to right, is constant across the wall.

- As before, one may combine the $\hat{U}_{k \gamma}$ into a single factor

$$
\hat{V}_{\gamma}=\prod_{\ell \geq 1} \hat{U}_{\ell \gamma}=\exp \left[\sum_{N=1}^{\infty} \bar{\Omega}_{\mathrm{ref}}(N \gamma, y) \tilde{e}_{N_{\gamma}}\right]
$$

where $\bar{\Omega}_{\text {ref }}(N \gamma, y)$ are the "rational motivic invariants", defined by

$$
\bar{\Omega}_{\text {ref }}^{+}(\gamma, y) \equiv \sum_{m \mid \gamma} \frac{\left(y-y^{-1}\right)}{m\left(y^{m}-y^{-m}\right)} \Omega_{\text {ref }}^{+}\left(\gamma / m, y^{m}\right) .
$$

The motivic Kontsevich-Soibelman formula IV

- The motivic KS formula becomes

$$
\prod_{\substack{M \geq 0, N \geq 0>0, \operatorname{gcd}(\bar{M}, N)=1, M / N \downarrow}} \hat{V}_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0>0, \operatorname{gcd}(M, N)=1, M / N \uparrow}} \hat{V}_{M \gamma_{1}+N \gamma_{2}}^{-}
$$

- $\Delta \bar{\Omega}_{\text {ref }}(\gamma, y)$ can be computed using the same techniques as before, e.g. the primitive wcf read

$$
\Delta \Omega_{\mathrm{ref}}\left(\gamma_{1}+\gamma_{2}, y\right)=\frac{(-y)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}-(-y)^{-\left\langle\gamma_{1}, \gamma_{2}\right\rangle}}{y-1 / y} \Omega_{\mathrm{ref}}\left(\gamma_{1}, y\right) \Omega_{\mathrm{ref}}\left(\gamma_{2}, y\right)
$$

The motivic Kontsevich-Soibelman formula V

- The refined semi-primitive wall-crossing formula is given by

$$
Z^{-}(1, q, y)=Z^{+}(1, q, y) Z_{\text {halo }}\left(\gamma_{1}, q, y\right)
$$

where

$$
Z_{\text {halo }}\left(\gamma_{1}, q, y\right) \equiv \exp \left(\sum_{\ell=1}^{\infty} \frac{(-y)^{\left\langle\gamma_{1}, \ell \gamma_{2}\right\rangle}-(-y)^{-\left\langle\gamma_{1}, \ell \gamma_{2}\right\rangle}}{y-y^{-1}} \bar{\Omega}_{\mathrm{ref}}\left(\ell \gamma_{2}, y\right) q^{\ell}\right)
$$

or in terms of the integer motivic invariants,

$$
Z_{\text {halo }}\left(\gamma_{1}, q, y\right)=\prod_{\substack{k \geq 1, n \in \mathbb{Z} \\ 1 \leq j \leq k\left|\gamma_{12}\right|}}\left(1-(-1)^{k\left|\gamma_{12}\right|} q^{k} y^{n+2 j-1-k\left|\gamma_{12}\right|}\right)^{(-1)^{n} \Omega_{\mathrm{ref}, n}\left(k \gamma_{2}\right)}
$$

Outline

(1) Introduction

(2) A Boltzmannian view of wall-crossing

(3) The Kontsevich-Soibelman formula

4 The Joyce-Song formula
(5) Towards a physical derivation of the JS/KS formulae

The Joyce-Song formula I

- Joyce \& Song have derived an explicit wall-crossing formula in the context of the Abelian category of coherent sheaves on a Calabi-Yau three-fold.
- KS instead considered the derived category of coherent sheaves, which is not an Abelian but rather a triangulated category. In spite of these subtleties, we shall find evidence that the two formulae agree.
- To formulate the JS formula, we need to introduce S, U and \mathcal{L} factors, which are functions of an ordered list of charge vectors $\alpha_{i} \in \tilde{\Gamma}, i=1 \ldots n$.

The Joyce-Song formula II

- We define $S\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\{0, \pm 1\}$ as follows. If $n=1$, set $S\left(\alpha_{1}\right)=1$. If $n>1$ and, for every $i=1 \ldots n-1$, either
(a) $\left\langle\alpha_{i}, \alpha_{i+1}\right\rangle \leq 0$ and $\left\langle\alpha_{1}+\cdots+\alpha_{i}, \alpha_{i+1}+\cdots+\alpha_{n}\right\rangle<0$,
(b) $\left\langle\alpha_{i}, \alpha_{i+1}\right\rangle>0$ and $\left\langle\alpha_{1}+\cdots+\alpha_{i}, \alpha_{i+1}+\cdots+\alpha_{n}\right\rangle \geq 0$,
let $S\left(\alpha_{1}, \ldots, \alpha_{n}\right)=(-1)^{r}$, where r is the number of times option
(a) is realized; otherwise, $S\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$.

The Joyce-Song formula III

- To define the U factor, consider all ordered partitions of the n vectors α_{i} into $1 \leq m \leq n$ packets $\left\{\alpha_{a_{j-1}+1}, \cdots, \alpha_{a_{j}}\right\}, j=1 \ldots m$, with $0=a_{0}<a_{1}<\cdots<a_{m}=n$, such that all vectors in each packet have the same phase $\arg Z\left(\alpha_{i}\right)$. Let

$$
\beta_{j}=\alpha_{a_{j-1}+1}+\cdots+\alpha_{a_{j}}, \quad j=1 \ldots m
$$

be the sum of the charge vectors in each packet.

- Next, consider all ordered partitions of the m vectors β_{j} into $1 \leq I \leq m$ packets $\left\{\beta_{b_{k-1}+1}, \cdots, \beta_{b_{k}}\right\}$, with $0=b_{0}<b_{1}<\cdots<b_{l}=m, k=1 \ldots l$, such that the total charge vectors $\delta_{k}=\beta_{b_{k-1}+1}+\cdots+\beta_{b_{k}}, k=1 \ldots /$ in each packets all have the same phase $\arg Z\left(\delta_{k}\right)$.

The Joyce-Song formula IV

- Define the U-factor as the sum

$$
\begin{aligned}
U\left(\alpha_{1}, \ldots, \alpha_{n}\right) & \equiv \sum_{l} \frac{(-1)^{l-1}}{l} \cdot \prod_{k=1}^{l} \\
& \prod_{j=1}^{m} \frac{1}{\left(a_{j}-a_{j-1}\right)!} S\left(\beta_{b_{k-1}+1}, \beta_{b_{k-1}+2}, \ldots, \beta_{b_{k}}\right)
\end{aligned}
$$

over all partitions of α_{i} and β_{j} satisfying the conditions above.

- If none of the phases of the vectors α_{i} coincide, $S=U$.

Contributions with $I>1$ arise only when $\left\{\alpha_{i}\right\}$ can be split into two (or more) packets with the same total charge, e.g.

$$
U\left[\gamma_{1}, \gamma_{2}, \gamma_{1}, \gamma_{2}\right]=S\left[\gamma_{1}, \gamma_{2}, \gamma_{1}, \gamma_{2}\right]-\frac{1}{2} S\left[\gamma_{1}, \gamma_{2}\right]^{2}=1-\frac{1}{2}(-1)^{2}=\frac{1}{2}
$$

The Joyce-Song formula V

- Finally (departing slightly from JS), define the (Landau) \mathcal{L} factor Landau factor \mathcal{L} is a

$$
\mathcal{L}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\sum_{\text {trees }} \prod_{\text {edges }(\mathrm{i}, \mathrm{j})}\left\langle\alpha_{i}, \alpha_{j}\right\rangle
$$

where the sum runs over all labeled trees with n vertices labelled $\{1, \ldots, n\}$, with edges oriented from i to j if $i<j$.

- Each tree can be labelled by its Prüfer code, a sequence of $n-2$ numbers in $\{1, \ldots n\}$.

The Joyce-Song formula VI

- The JS formula then says that the coefficient $g\left(\left\{\alpha_{i}\right\}\right)$ in

$$
\Delta \bar{\Omega}(\gamma)=\sum_{n \geq 2} \sum_{\substack{\left\{\alpha_{1}, \ldots \alpha_{n}\right\} \in \tilde{\Gamma} \\ \gamma=\alpha_{1}+\cdots+\alpha_{n}}} \frac{g\left(\left\{\alpha_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|} \prod_{i=1}^{n} \bar{\Omega}^{+}\left(\alpha_{i}\right)
$$

is given by a sum over permutations

$$
\begin{aligned}
g\left(\left\{\alpha_{i}\right\}\right)= & \frac{1}{2^{n-1}}(-1)^{n-1+\sum_{i<j}\left\langle\alpha_{i}, \alpha_{j}\right\rangle} \sum_{\sigma \in \Sigma_{n}} \\
& \mathcal{L}\left(\alpha_{\sigma(1)}, \ldots \alpha_{\sigma(n)}\right) \cup\left(\alpha_{\sigma(1)}, \ldots \alpha_{\sigma(n)}\right)
\end{aligned}
$$

The Joyce-Song formula VII

- To derive the primitive wcf, note that there is only one oriented tree with 2 nodes. Assuming $\gamma_{12}<0$, the JS data is then

$\sigma(12)$	S	U	\mathcal{L}
12	a	-1	γ_{12}
21	b	1	$-\gamma_{12}$

leading again to

$$
\Delta \Omega\left(\gamma \rightarrow \gamma_{1}+\gamma_{2}\right)=(-1)^{\gamma_{12}} \gamma_{12} \Omega\left(\gamma_{1}\right) \Omega\left(\gamma_{2}\right), \quad \gamma_{12} \equiv\left\langle\gamma_{1}, \gamma_{2}\right\rangle
$$

The Joyce-Song formula VIII

- For generic 3-body decay, assuming the same phase ordering as before and taking into account the 3 possible oriented trees, the JS data

$\sigma(123)$	S	U	\mathcal{L}
123	bb	1	$\alpha_{12} \alpha_{13}+\alpha_{13} \alpha_{23}+\alpha_{12} \alpha_{23}$
132	$\mathrm{~b}-$	0	$\alpha_{12} \alpha_{13}-\alpha_{13} \alpha_{23}-\alpha_{12} \alpha_{23}$
213	ab	-1	$-\alpha_{12} \alpha_{23}+\alpha_{13} \alpha_{23}-\alpha_{12} \alpha_{13}$
231	-a	0	$\alpha_{12} \alpha_{13}-\alpha_{13} \alpha_{23}-\alpha_{12} \alpha_{23}$
312	ab	-1	$\alpha_{13} \alpha_{23}-\alpha_{12} \alpha_{23}-\alpha_{13} \alpha_{12}$
321	aa	1	$\alpha_{13} \alpha_{23}+\alpha_{12} \alpha_{13}+\alpha_{12} \alpha_{23}$

leads to the same answer as KS,

$$
g\left(\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}\right)=(-1)^{\alpha_{12}+\alpha_{23}+\alpha_{13}} \alpha_{12}\left(\alpha_{13}+\alpha_{23}\right)
$$

The Joyce-Song formula IX

- We have checked that JS and KS also agree for generic 4-body decay (involving 16 graphs), and for special cases $(2,3),(2,4)$ (involving up to 1296 graphs !).
- While there is no general proof yet, it seems that the JS formula is equivalent to the classical KS formula. Finding a motivic generalization of JS seems an interesting problem.
- Note that the JS formula involves large denominators and leads to many cancellations. There may be a more economic way to state the solution to KS.

Outline

(1) Introduction

(2) A Boltzmannian view of wall-crossing

(3) The Kontsevich-Soibelman formula
(4) The Joyce-Song formula
(5) Towards a physical derivation of the JS/KS formulae

The quantum mechanics of multi-centered solutions I

- The space \mathcal{M}_{n} of BPS configurations with n centers in $\mathcal{N}=2$ SUGRA is described by solutions to Denef's equations

$$
\sum_{j=1 \ldots n, j \neq i}^{n} \frac{\alpha_{i j}}{\left|\vec{r}_{i j}\right|}=2 \operatorname{lm}\left[e^{-i \alpha} Z\left(\alpha_{i}\right)\right], \quad \alpha=\arg \left[Z\left(\alpha_{1}+\cdots \alpha_{n}\right)\right]
$$

- \mathcal{M}_{n} has real dimension $2 n-2$, and carries a symplectic form

$$
\omega=\frac{1}{2} \sum_{i<j} \alpha_{i j} \frac{\mathrm{~d} \vec{r}_{i j} \wedge \mathrm{~d} \vec{r}_{i j} \cdot \mathrm{~d} \vec{r}_{i j}}{\left|r_{i j}\right|^{3}}
$$

with an Hamiltonian action of spatial rotations $S U(2)$. In the case of interest to us, \mathcal{M}_{n} is compact (no "scaling" solutions).
de Boer El Showk Messamah Van den Bleeken

The quantum mechanics of multi-centered solutions II

- Quantizing the internal degrees of freedom of the multi-centered configurations amounts to quantizing the symplectic space \mathcal{M}_{n}. The index is given, at least in the classical limit where all $\alpha_{i j}$ are large, by

$$
g\left(\left\{\alpha_{i}\right\}, y\right)=\int_{\mathcal{M}_{n}} \omega^{n-1}(-y)^{i_{3}}
$$

where j_{3} is the moment map associated to $U(1)$ rotations.

- For $n=2,3, \mathcal{M}_{n}$ is toric. The integral localizes to the fixed points of the torus action:

$$
\begin{gathered}
g\left(\alpha_{1}, \alpha_{2} ; y\right)=\frac{(-y)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}-(-y)^{-\left\langle\gamma_{1}, \gamma_{2}\right\rangle}}{y-1 / y} \\
g\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; y\right)=\frac{(-1)^{\alpha_{13}+\alpha_{23}+\alpha_{12}}}{\sinh ^{2} \nu} \sinh \left(\nu\left(\alpha_{13}+\alpha_{23}\right)\right) \sinh \left(\nu \alpha_{12}\right),
\end{gathered}
$$

where $\nu=\ln y$. This is in precise agreement with KS/JS !

The quantum mechanics of multi-centered solutions III

- For $n>3$, we expect that \mathcal{M}_{n} is still toric. This is manifest on the dual, Higgs branch description of the same problem, given by a quiver with n nodes. Hopefully, the JS formula can be derived by computing the index via localization.
- If so, one may also get a motivic version of the JS formula.

THANK YOU!

