A smooth index for $D=4, \mathcal{N}=2$ theories on \mathbb{R}^{3}

Boris Pioline

Puri, Dec , 2014
based on work with S. Alexandrov, G. Moore, A. Neitzke, arXiv:1406.2360 and work in progress with S. Alexandrov

Introduction I

- In recent years, much progress has been made on understanding the spectrum of BPS states in $D=4$ theories with $\mathcal{N}=2$ supersymmetry. Powerful methods (wall-crossing, quivers, spectral networks, ...) allow to compute the BPS index in a large class of models:

$$
\Omega(\gamma, u)=-\frac{1}{2} \operatorname{Tr}_{\mathcal{H}_{1}(\gamma, u)}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{2} \in \mathbb{Z}
$$

where $\mathcal{H}_{1}(\gamma, u)$ is the space of single particle states, and u labels the Coulomb branch.

- While $\Omega(\gamma, u)$ is locally constant, it can jump across walls of marginal stability, when some of the BPS states with total charge γ decay into their constituents. The jump is determined by a universal wall-crossing formula.

Kontsevich Soibelman 2008; Denef Moore 2008; ... ; Manschot BP Sen 2010

Introduction II

- Another protected quantity is the Witten index

$$
\mathcal{I}(R, u, C)=-\frac{1}{2} \operatorname{Tr}_{\mathcal{H}(u)}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{2} \sigma_{\gamma} e^{-2 \pi R H-2 \pi \mathrm{i}\langle\gamma, C\rangle} \quad \notin \mathbb{Z}!
$$

Here $\mathcal{H}(u)$ is the full Hilbert space of the four-dimensional theory on \mathbb{R}^{3}, including multi-particle states, H is the Hamiltonian, C are chemical potentials conjugate to the charges, σ_{γ} is a pesky sign.

- Equivalently, consider the path integral on $\mathbb{R}^{3} \times S^{1}(R)$ with periodic boundary conditions, and with an insertion of a 4-fermion vertex to soak up fermionic zero-modes.
- In a sector with charge $\gamma \neq 0$, and in center of mass frame, the Hamiltonian has a discrete spectrum starting at $E=|Z(\gamma)|$ (assuming $\Omega(\gamma, u) \neq 0$), and a continuum starting at

$$
E_{c}=\min \left\{\sum_{i}\left|Z_{\alpha_{i}}\right| ; \gamma=\sum \alpha_{i}, \Omega\left(\alpha_{i}, u\right) \neq 0\right\}
$$

Introduction III

- Although multi-particle states do not saturate the BPS bound, they can still contribute to the Witten index, due to a possible spectral asymmetry between densities of bosonic and fermionic states.

Kaul Rajaraman 1983, Akhoury Comtet 1984, Troost 2010

- Because the path integral has no phase transition, the Witten index $\mathcal{I}(R, u, C)$ is expected to be smooth across walls of marginal stability. The single-particle contribution to $\mathcal{I}(R, u, C)$ may jump, but the discontinuity must be cancelled by multi-particle contributions.
- The BPS indices $\Omega(\gamma, u)$ can be recovered from $\mathcal{I}(R, u, C)$ by Fourier transforming with respect to C and taking the limit $R \rightarrow \infty$.

Introduction IV

- A similar phenomenon occurs in $D=2$ massive theories with $(2,2)$ supersymmetry: the 'new supersymmetric index' $Z_{a b}=\operatorname{Tr}(-1)^{F} F e^{-2 \pi R H}$ receives contributions from multi-kinks interpolating between vacua a and b, and is a smooth function of R, u determined by the single-particle degeneracies $\Omega_{a b}(u)$.

Cecotti Fendley Intriligator Vafa 1992

- In the context of $D=4, \mathcal{N}=2$ theories, close cousins of $\mathcal{I}(R, u, C)$ are the hyperkähler metric on the Coulomb branch in $\mathbb{R}^{3} \times S^{1}$, and the line defects vevs $\left\langle L_{\zeta}\right\rangle$: both are expressable in terms of the (framed) BPS indices $\Omega(\gamma, u)$, and are smooth across the walls.

Gaiotto Moore Neitzke 2008, 2010

- Our aim is to propose a natural candidate for the Witten index $\mathcal{I}(R, u, C)$, which has the expected large radius limit and is smooth across the walls.

Coulomb branch on $\mathbb{R}^{3} \times S^{1}$ I

- On $\mathbb{R}^{3,1}$, the Coulomb branch \mathcal{M}_{4} is a special Kähler manifold determined by the central charge function $Z: \Gamma \rightarrow \mathbb{C}$.
- After compactification on a circle of radius R, and dualizing the vector fields in $D=3$ into scalars C, the low energy dynamics can be formulated in terms of a non-linear sigma model $\mathbb{R}^{3} \rightarrow \mathcal{M}_{3}(R)$.
- The target space $\mathcal{M}_{3}(R)$ is a torus bundle over \mathcal{M}_{4}, equipped with a hyperkähler metric.
- In the large radius limit, the metric is obtained by the 'rigid c-map' from \mathcal{M}_{4}, and has translational isometries along the torus fiber. At finite radius, instanton corrections from $D=4$ BPS states winding around the circle and break the isometries.

Coulomb branch on $\mathbb{R}^{3} \times S^{1} \|$

- The HK metric on $\mathcal{M}_{3}(R)$ is best described using twistorial methods: the twistor space $\mathcal{Z}=\mathbb{P}_{t} \times \mathcal{M}_{3}$ carries a natural complex structure and holomorphic 'symplectic' form

$$
\omega=\mathrm{it} t^{-1} \omega_{+}+\omega_{3}+\mathrm{i} t \omega_{-}=\epsilon^{a b} \frac{\mathrm{~d} \mathcal{X}_{a}}{\mathcal{X}_{a}} \wedge \frac{\mathrm{~d} \mathcal{X}_{b}}{\mathcal{X}_{b}}
$$

The metric on $\mathcal{M}_{3}(R)$ can be read off from the holomorphic Darboux coordinates $\mathcal{X}_{\gamma_{a}}(t, u, C)$.

- In the infinite radius limit, a natural set of Darboux coordinates are exponentiated moment maps for the torus isometries,

$$
\mathcal{X}_{a}=\mathcal{X}_{\gamma_{a}}, \quad \mathcal{X}_{\gamma}^{\mathrm{sf}}=\sigma_{\gamma} e^{-\pi \mathrm{i} R\left(t^{-1} Z_{\gamma}-t \bar{\Sigma}_{\gamma}\right)-2 \pi \mathrm{i}\langle\gamma, C\rangle}
$$

Coulomb branch on $\mathbb{R}^{3} \times S^{1}$ III

- Instanton corrections induce discontinuities across 'BPS rays'

$$
\begin{aligned}
\ell_{\gamma^{\prime}}=\left\{t^{\prime} \in \mathbb{C}^{\times}: Z_{\gamma^{\prime}} / t^{\prime}\right. & \left.\in \mathrm{i} \mathbb{R}^{-}\right\} \\
\mathcal{X}_{\gamma} & \rightarrow \mathcal{X}_{\gamma}\left(1-\mathcal{X}_{\gamma^{\prime}}\right)^{\left\langle\gamma, \gamma^{\prime}\right\rangle \Omega\left(\gamma^{\prime}\right)}
\end{aligned}
$$

- The quantum corrected Darboux coordinates are solutions of the integral equations

$$
\frac{\mathcal{X}_{\gamma}}{\mathcal{X}_{\gamma}^{\mathrm{sf}}}=\exp \left[\sum_{\gamma^{\prime}} \frac{\Omega\left(\gamma^{\prime}, u\right)}{4 \pi \mathrm{i}}\left\langle\gamma, \gamma^{\prime}\right\rangle \int_{\ell_{\gamma^{\prime}}} \frac{\mathrm{d} t^{\prime}}{} \frac{t+t^{\prime}}{t-t^{\prime}} \log \left(1-\mathcal{X}_{\gamma^{\prime}}\left(t^{\prime}\right)\right)\right]
$$

reminiscent of TBA equations in integrable systems.
Gaiotto Moore Neitzke 2008, 2010

Coulomb branch on $\mathbb{R}^{3} \times S^{1}$ IV

- At large radius, a formal solution is obtained by iterating the system, leading to a 'multi-instanton sum'

$$
\mathcal{X}_{\gamma}=\mathcal{X}_{\gamma}^{\mathrm{sf}} \exp \left[\sum_{T} \prod_{(i, j) \in T_{1}}\left\langle\alpha_{i}, \alpha_{j}\right\rangle \prod_{i \in T_{0}} \bar{\Omega}\left(\alpha_{i}\right) g_{T}\right]
$$

where T runs over trees decorated by charges α_{i} such that $\gamma=\sum \alpha_{i}, g_{T}$ are iterated contour integrals, and

$$
\bar{\Omega}(\gamma)=\sum_{d \mid \gamma} \frac{1}{d^{2}} \Omega(\gamma / d)
$$

are the 'rational BPS indices'.

Conjecture (Alexandrov Moore Neitzke BP 2014)

- Conjecture: the Witten index in $\mathcal{N}=2, D=4$ theories on the Coulomb branch is given by

$$
\mathcal{I}(R, u, C)=\frac{R}{16 \mathrm{i} \pi^{2}} \sum_{\gamma} \Omega(\gamma) \int_{\ell_{\gamma}} \frac{\mathrm{d} t}{t}\left(t^{-1} Z_{\gamma}-t \bar{Z}_{\gamma}\right) \log \left(1-\mathcal{X}_{\gamma}(t)\right)
$$

- This function first appeared as the contact potential on the hypermultiplet moduli space in type II string vacua. In the analogy between the integral equations of GMN and TBA, $\mathcal{I}(R, u, C)$ is the free energy. Similarly, in the TBA approach to null Wilson loops in AdS, $\mathcal{I}(R, u, C)$ is the regularized area.

Alexandrov Saueressig BP Vandoren 08; Alexandrov Roche; Alday Gaiotto Maldacena 09

- $\mathcal{I}(R, u, C)$ is closely related to the Kähler potential for the HK metric on $\mathcal{M}_{3}(R)$ (upon adding a classical term, plus the Kähler potential for a canonical hyperholomorphic line bundle)

Smoothness across the walls

- To support this claim, note that for any smooth function $F_{\gamma}(t, u, C)$ on $\Gamma \times \mathcal{Z}$, linear in γ,

$$
\Phi(R, u, C)=\sum_{\gamma} \Omega(\gamma) \int_{\ell_{\gamma}} \frac{\mathrm{d} t}{t} F_{\gamma} \log \left(1-\mathcal{X}_{\gamma}\right)
$$

is smooth across the walls, as a result of the dilogarithm identities

$$
\sum_{\gamma} \Omega^{+}(\gamma) L_{\sigma_{\gamma}}\left(\mathcal{X}_{\gamma}^{+}\right)=\sum_{\gamma} \Omega^{-}(\gamma) L_{\sigma_{\gamma}}\left(\mathcal{X}_{\gamma}^{-}\right)
$$

implied by the KS motivic wall-crossing formula. Here $L_{\sigma}(z)=\mathrm{Li}_{2}(z)+\frac{1}{2} \log (g / \sigma) \log (1-z)$ is a variant of Rogers' dilogarithm.

- The proposed index arises for $F_{\gamma} \propto t^{-1} Z_{\gamma}-t \bar{Z}_{\gamma}$.

One-particle contributions

- In the large radius limit, approximating \mathcal{X}_{γ} by $\mathcal{X}_{\gamma}^{\text {sf }}$,

$$
\mathcal{I}(R, u, C)=\sum_{\gamma} \frac{R}{8 \pi^{2}} \sigma_{\gamma} \bar{\Omega}(\gamma)\left|Z_{\gamma}\right| K_{1}\left(2 \pi R\left|Z_{\gamma}\right|\right) e^{-2 \pi \mathrm{i}\langle\gamma, C\rangle}+\ldots
$$

- For γ primitive, this is the expected contribution of a single-particle, relativistic BPS state of charge γ :

$$
\operatorname{Tr} e^{-2 \pi R \sqrt{-\Delta+M^{2}}+\mathrm{i} \theta J_{3}}=\frac{L}{2 \pi} \frac{\chi_{\operatorname{spin}}(\theta)}{4 \sin ^{2}(\theta / 2)} 2 M K_{1}(2 \pi M R)
$$

provided we define the Witten index as follows:

Multi-particle contributions I

- If correct, this predicts the contribution of an arbitrary multi-particle state. E.g. for two particles,

$$
\mathcal{I}_{\gamma, \gamma^{\prime}}=-\frac{R}{64 \pi^{3}} \bar{\Omega}(\gamma) \bar{\Omega}\left(\gamma^{\prime}\right)\left\langle\gamma, \gamma^{\prime}\right\rangle J_{\gamma, \gamma^{\prime}}
$$

where

$$
J_{\gamma, \gamma^{\prime}}=\int_{\ell_{\gamma}} \frac{\mathrm{d} t}{t} \int_{\ell_{\gamma}^{\prime}} \frac{\mathrm{d} t^{\prime}}{t^{\prime}} \frac{t+t^{\prime}}{t-t^{\prime}}\left(t^{-1} Z_{\gamma}-t \bar{Z}_{\gamma}\right) \mathcal{X}_{\gamma}^{\mathrm{sf}}(t) \mathcal{X}_{\gamma^{\prime}}^{\mathrm{sf}}\left(t^{\prime}\right)
$$

- In the limit $R \rightarrow \infty, \psi_{\gamma, \gamma^{\prime}} \rightarrow 0$, a saddle point approximation gives

$$
J_{\gamma, \gamma^{\prime}} \sim \operatorname{sgn}\left(\psi_{\gamma, \gamma^{\prime}}\right) \operatorname{Erfc}\left(\left|\psi_{\gamma \gamma^{\prime}}\right| \sqrt{\frac{\pi R\left|Z_{\gamma}\right|\left|Z_{\gamma^{\prime}}\right|}{\left|Z_{\gamma}\right|+\left|Z_{\gamma^{\prime}}\right|}}\right) e^{-2 \pi R\left|Z_{\gamma}+Z_{\gamma^{\prime}}\right|-2 \pi \mathrm{i}\left\langle\gamma+\gamma^{\prime}, C\right\rangle}
$$

Multi-particle contributions II

- Using $\operatorname{Erf}(x)=\operatorname{sgn}(x)\left(1-\operatorname{Erfc}(|x|)\right.$, one checks that $\mathcal{I}_{\gamma+\gamma^{\prime}}+\mathcal{I}_{\gamma, \gamma^{\prime}}$ is smooth across the wall:

- In the remainder, we shall check this prediction by studying the quantum mechanics of a system of two mutually non-local non-relativistic particles.
- Note: the constituents can be treated as distinguishable and subject to Boltzmannian statistics, provided one uses the rational BPS index $\bar{\Omega}(\gamma)$ for the internal degrees of freedom.

Manschot BP Sen 2010

Non-relativistic electron-monopole problem I

- Consider a non-relativistic particle of electric charge $q=\frac{1}{2}\left\langle\gamma, \gamma^{\prime}\right\rangle$ in the field of a Dirac monopole of unit magnetic charge:

$$
\begin{aligned}
& H=\frac{1}{2 m}(\vec{p}-q \vec{A})^{2}-\frac{q}{2 m} \vec{B} \cdot \vec{\sigma} \otimes\left(1_{2}-\sigma_{3}\right)+\frac{1}{2 m}\left(\vartheta-\frac{q}{r}\right)^{2} \\
& \vec{\nabla} \wedge \vec{A}=\vec{B}=\frac{\vec{r}}{r^{3}}, \quad m=\frac{\left|Z_{\gamma}\right|\left|Z_{\gamma^{\prime}}\right|}{\left|Z_{\gamma}\right|+\left|Z_{\gamma^{\prime}}\right|}, \quad \frac{\vartheta^{2}}{2 m}=\left|Z_{\gamma}\right|+\left|Z_{\gamma^{\prime}}\right|-\left|Z_{\gamma+\gamma^{\prime}}\right| \\
& \mathrm{q} \theta>0
\end{aligned}
$$

Non-relativistic electron-monopole problem II

- H describes two bosonic degrees of freedom with helicity $h=0$, and one helicity $h= \pm 1 / 2$ fermionic doublet with gyromagnetic ratio $g=4$.

D'Hoker Vinet 1985; Denef 2002; Avery Michelson 2007;Lee Yi 2011

- H commutes with 4 supercharges,

$$
\begin{gathered}
Q_{4}=\frac{1}{\sqrt{2 m}}\left(\begin{array}{cc}
0 \\
i\left(\vartheta-\frac{q}{r}\right)+\vec{\sigma} \cdot(\vec{p}-q \vec{A}) & -\mathrm{i}\left(\vartheta-\frac{q}{r}\right)+\vec{\sigma} \cdot(\vec{p}-q \vec{A}) \\
0
\end{array}\right) \\
Q_{a}=\ldots
\end{gathered}
$$

$$
\left\{Q_{m}, Q_{n}\right\}=2 H \delta_{m n}
$$

Non-relativistic electron-monopole problem III

- Going to a basis of monopole spherical harmonics, the Schrödinger equation with energy $E=k^{2} /(2 m)$ becomes

$$
\left[-\frac{1}{r} \partial_{r}^{2} r+\frac{\nu^{2}-q^{2}-\frac{1}{4}}{r^{2}}+\left(\vartheta-\frac{q}{r}\right)^{2}\right] \Psi(r)=k^{2} \Psi
$$

where

$$
\nu=j+\frac{1}{2}+h, \quad j=|q|+h+\ell, \ell \in \mathbb{N} .
$$

- Supersymmetric bound states exist for $q \vartheta>0, h=-1 / 2, \ell=0$, and form a multiplet of spin $j=|q|-\frac{1}{2}$, with $2 j+1=\left|\left\langle\gamma_{1}, \gamma_{2}\right\rangle\right|$.

Denef 2002

Non-relativistic electron-monopole problem IV

- The S-matrix for partial waves is similar to that of H -atom,

$$
S_{\nu}(k)=\frac{\Gamma\left(\frac{1}{2}+\nu+\mathrm{i} \frac{q \vartheta}{\sqrt{k^{2}-\vartheta^{2}}}\right)}{\Gamma\left(\frac{1}{2}+\nu-\mathrm{i} \frac{q \vartheta}{\sqrt{k^{2}-\vartheta^{2}}}\right)}=e^{2 \mathrm{i} \delta_{\nu}(k)} \quad \text { Alexandrov BP, to appear }
$$

- The contribution of the continuum to $\operatorname{Tr}(-1)^{F} e^{-2 \pi R H}$ is thus

$$
\sum_{h=0^{2}, \pm \frac{1}{2}}(-1)^{2 h} \sum_{\ell=0_{k=\vartheta}^{\infty}}^{\infty} \frac{\mathrm{d} k \partial_{k}}{2 \pi \mathrm{i}} \log \frac{\Gamma\left(|q|+\ell+2 h+1+\mathrm{i} \frac{q \vartheta}{\sqrt{k^{2}-\vartheta^{2}}}\right)}{\Gamma\left(|q|+\ell+2 h+1-\mathrm{i} \frac{q \vartheta}{\sqrt{k^{2}-\vartheta^{2}}}\right)} e^{-\frac{\pi R k^{2}}{m}}
$$

Non-relativistic electron-monopole problem V

- Terms with $\ell>0$ cancel, leaving the contribution from $\ell=0$ only:

$$
\begin{aligned}
\operatorname{Tr}(-1)^{F} e^{-2 \pi R H} & =-|2 q| \Theta(q \vartheta)-\frac{2 q \vartheta}{\pi} \int_{k=|\vartheta|}^{\infty} \frac{\mathrm{d} k}{k \sqrt{k^{2}-\vartheta^{2}}} e^{-\frac{\pi R k^{2}}{m}} \\
& =-2|q| \Theta(q \vartheta)+|q| \operatorname{sgn}(q \vartheta) \operatorname{Erfc}\left(|\vartheta| \sqrt{\frac{\pi R}{m}}\right) \\
& =-|q|-q \operatorname{Erf}\left(\vartheta \sqrt{\frac{\pi R}{m}}\right)
\end{aligned}
$$

Non-relativistic electron-monopole problem VI

- The result is robust under perturbations of the potential and metric at short distance, and depends only on the ratio $S_{\nu+1}(k) / S_{\nu}(k)$, which is fixed by supersymmetry. In fact, the spectral asymmetry

$$
\frac{\mathrm{d} k}{k \sqrt{k^{2}-\vartheta^{2}}}
$$

is as predicted by Callias' index theorem.

Summary and open problems I

- The Witten index in $\mathcal{N}=2, D=4$ theories on \mathbb{R}^{3} is smooth across walls of marginal stability, due to interplay between bound states and multiparticle states.
- Our proposal for $\mathcal{I}(R, u, C)$ is consistent with the quantum mechanics of the relativistic one-particle and non-relativitistic two-particle systems.
- The replacement $\operatorname{sgn}(x) \rightarrow \operatorname{Erf}(x)$ is a well-known trick to ensure modularity of indefinite theta series. It was also postulated in early studies of D4-D2-D0 black hole partition functions to ensure S-duality. Its physical justification is now transparent!
- Can one compute the index for the quantum mechanics of n mutually non-local particles using localization?
- How about the refined index $\operatorname{Tr}(-1)^{2 / 3} y^{2\left(J_{3}+I_{3}\right)} e^{-2 \pi R H}$?

Cecotti Neitzke Vafa 2014

