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Introduction I

In 4D string vacua with N = 4 or N = 8 SUSY, the spectrum of BPS
black holes is essentially completely understood:

Detailed microscopic derivation of the index from D1-D5-KKM
Agreement with the Bekenstein-Hawking-Wald entropy, including
subleading quantum corrections.
Moduli dependence of index entirely accounted by two-centered
bound states
Partition functions have nice modular properties, even after
subtracting multi-centered contributions
Single centered (non-polar) degeneracies are positive,
consistently with Tr(−1)F = Tr 1 ≥ 0 for spherically symmetric BH.

Dijkgraaf Verlinde2; de Wit et al; David Jatkar Sen; Dabholkar et al;. . .
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Introduction II
In vacua with N = 2 SUSY, such as type IIA string theory on a CY
threefold, the situation is far less understood and much richer:

Microscopic description for vanishing D6 and primitive D3-brane
charges only, at large volume only. In general, Ω(γ, za) is a
generalized DT invariant, hard to (define and) compute.
Subleading quantum corrections are more involved, and include
e.g. all topological couplings R2F 2h−2.
Bound states of n ≥ 3 centers can and do contribute. Some of
them (scaling solutions) seem to be stable everywhere.
Modular properties are unclear, although invariance under
monodromies and type IIB SL(2,Z) should be there somehow.

Maldacena Strominger Witten; Ooguri Strominger Vafa; Denef Moore; . . .
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Introduction III

In this talk I will describe techniques to compute contributions of
multi-centered black holes to the BPS index in generic N = 2
string vacua.

One of the goals is to extract single-centered black hole
contributions from the total index. This can in principle be
compared with the path integral in AdS2 × S2 (or quantum entropy
function), which can be computed by localization.

On the microscopic side, BPS states can sometimes be described
by quivers. The analogue of single-centered black holes are then
middle cohomology states. The macroscopic description suggests
that these states are robust under wall-crossing, and that they
determine the complete cohomology of the quiver moduli space.
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Preliminaries I

Consider N = 2 supergravity in 4 dimensions. Let Γ = Γe ⊕ Γm be
the lattice of electric and magnetic charges, with antisymmetric
(Dirac-Schwinger- Zwanziger) integer pairing

〈γ, γ′〉 = qΛp′Λ − q′ΛpΛ ∈ Z

BPS states preserve 4 out of 8 supercharges, and saturate the
bound M ≥ |Z (γ, ta)| where Z (γ, ta) = 〈Y (ta), γ〉 is the central
charge.

The index Ω(γ; ta) = TrH′γ(ta)(−1)2J3 (where H′γ(ta) is the Hilbert
space of one-particle states with charge γ ∈ Γ in the vacuum with
vector moduli ta) receives contributions from short multiplets only.
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Preliminaries II

In N = 2 gauge theories (but not SUGRA/string vacua), there is
an additional SU(2)R symmetry, and the spin character

Ω(γ; t , y) = Tr(−1)2J3 y2(I3+J3)

is protected. The ’no exotics’ conjecture asserts that all states
have I3 = 0, and the PSC coincides with the refined index

Ω(γ; t , y) = Tr(−1)2J3 y2J3

Gaiotto Neitzke Moore

In N = 2 SUGRA/string vacua, one can still define Ω(γ; t , y) but it
is no longer protected, hence could get contributions from
non-BPS states and depend on HM moduli.
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Wall-crossing I

Ω(γ; t) is locally constant, but may jump on codimension 1 loci in
VM moduli space called ‘walls of marginal stability’, where the
bound state spectrum mixes with the continuum:

W (γ1, γ2) = {t ∈M : Z (γ1, t)/Z (γ2, t) ∈ R+}

For e.g. in pure N = 2, D = 4 SYM with G = SU(2),

(0,−1)

(2n,1)

(2n+2,−1)

u

(2,−1)

(2,0)

Seiberg Witten; Bilal Ferrari
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Wall-crossing II

Basic mechanism: Some of the BPS states with charge
γ = Mγ1 + Nγ2 are bound states of more elementary BPS states
with charge αi = Miγ1 + Niγ2, and these bound states exist only
on one side of the wall.
Rk1: for a given wall, we can always choose the basis γ1, γ2 such
that Ω(Mγ1 + Nγ2) has support on the cone MN ≥ 0. The
constituents have Mi ≥ 0,Ni ≥ 0, so only a finite number of bound
states can occur.
Rk2: The index of states with γ /∈ Zγ1 + Zγ2 is constant across the
wall. So are Ω(γ1) and Ω(γ2).
Rk3: The index Ω(Mγ1 + Nγ2) may contain contributions from
bound states of constituents with charges lying outside the lattice
Zγ1 + Zγ2. But those are insensitive to the wall.

Boris Pioline (CERN & LPTHE) From black holes to quivers IC London, Nov 2012 10 / 51



Primitive wall-crossing I

For 〈γ1, γ2〉 6= 0, there exists a two-centered BPS solution of
charge γ = γ1 + γ2, angular momentum ~J = 1

2〈γ1, γ2〉~u:

1

1 2

Denef 2002

The solution exists only on one side of the wall. As t approaches
the wall, the distance r12 diverges and the bound state decays into
its constituents γ1 and γ2.
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Primitive wall-crossing II

Near the wall, the two centers can be treated as pointlike particles
with Ω(γi) internal degrees of freedom, interacting via Newton,
Coulomb, Lorentz, scalar exchange forces.

The classical BPS phase spaceM2 for the two-particle system is
the two-sphere, with symplectic form

ω = 1
2γ12 sin θ dθdφ , γ12 ≡ 〈γ1, γ2〉

such that rotations ∂φ are generated by J3 = 1
2γ12 cos θ.

Quantum mechanically, one obtains |γ12| states transforming as a
spin J = 1

2(|γ12| − 1) multiplet under rotations.
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Primitive wall-crossing III
Near the wall, the internal degrees of freedom decouple from the
configurational degrees of freedom. The index of the two-particle
bound state is then

Ωbound = (−1)γ12+1γ12︸ ︷︷ ︸ × Ω(γ1)︸ ︷︷ ︸ × Ω(γ2)︸ ︷︷ ︸
angular internal internal

momentum states of 1 states of 2

These are the only bound states of charge γ = γ1 + γ2 which
(dis)appear across the wall. Thus

∆Ω(γ1 + γ2) = (−1)γ12+1 γ12 Ω(γ1) Ω(γ2) ,
Denef Moore

Boris Pioline (CERN & LPTHE) From black holes to quivers IC London, Nov 2012 13 / 51



Primitive wall-crossing IV

Similarly, the variation of the refined index is

∆Ω(γ1 + γ2; y) =
(−y)γ12 − (−y)−γ12

y − 1/y
Ω(γ1; y) Ω(γ2; y)

Diaconescu Moore; Dimofte Gukov

Let us try to extend this reasoning to compute ∆Ω(Mγ1 + Nγ2) for
general (M,N).
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Multi-centered solutions I

The most general stationary, BPS solution of N = 2 SUGRA is

ds2 = −e2U (dt +A)2 + e−2Ud~r2

2 e−U(~r)Im
[
e−iφY

(
ta(~r)

)]
= β +

n∑
i=1

αi

|~r −~ri |
,

φ = arg Zγ , γ = α1 + · · ·+ αn , β = 2 Im
[
e−iφ Y (t∞)

]
The integrability condition for A requires

[∗]
n∑

j=1
j 6=i

〈αi , αj〉
|~ri −~rj |

= ci , ci ≡ 2 Im (e−iφZαi )

Denef; Bates Denef

Boris Pioline (CERN & LPTHE) From black holes to quivers IC London, Nov 2012 15 / 51



Multi-centered solutions II

This provides n − 1 conditions on 3n locations ~ri . Modding out by
translations in R3, we defineMn({αi}, {ci}) to be the 2n − 2
dimensional space of solutions to [∗].
For the solution to be regular, one must also ensure

e−2U(~r) =
1
π

S

(
β +

n∑
i=1

αi

|~r −~ri |

)
> 0 , ∀ ~r ∈ R3 .

This may remove some connected components inMn.
When all charges αi lie in a two-dimensional lattice Zγ1 + Zγ2 and
satisfy the cone condition MN ≥ 0, this condition appears to be
automatically satisfied. Moreover ci = Λ

∑
j 6=i αij with Λ→ 0 at the

wall.
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Q. mech. of multi-centered black holes I

At least when the centers are well-separated, the dynamics of the
bound state is described by N = 4 quantum mechanics with 3n
bosonic coordinates, 4n fermionic coordinates with Lagrangian

L =
∑

i

[Wi(~ri)]2 +
∑

i

~Ai ~̇ri +
∑
i,j

γij ~̇ri ~̇rj + . . .

Wi =
∑
j 6=i

〈αi , αj〉
|~ri −~rj |

− ci , ~Ai =
∑
j 6=i

〈αi , αj〉 ~ADirac(~ri −~rj)

Denef;Kim Park Wang Yi
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Q. mech. of multi-centered black holes II

The classical ground state dynamics is then first order quantum
mechanics on the BPS phase spaceMn = {Wi = 0} equipped
with the symplectic form

ω = 1
2

∑
i<j

αij sin θij dθij ∧ dφij , ~J = 1
2

∑
i<j

αij
~rij

rij
de Boer El Showk Messamah Van den Bleeken

Semiclassically, the number of states is equal to the (equivariant)
symplectic volume

gclass({αi}, {ci}; y) =
(−1)

∑
i<j αij−n+1

(2π)n−1(n − 1)!

∫
Mn

ωn−1 y2J3
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Q. mech. of multi-centered black holes III
Quantum mechanically, the refined index is equal to the
equivariant Dirac index of the symplectic manifold (Mn, ω),

g({αi}, {ci}; y) = TrKerD+(−y)2J3 − TrKerD−(−y)2J3 .

This reduces to gclass in the limit αij →∞.
WhenMn is compact and J3 has only isolated fixed points, it can
be evaluated by Atiyah-Bott Lefschetz fixed point formula:

g({αi}, {ci}; y) =
∑

fixed pts

y2J3

det((−y)L − (−y)−L)

where L is the matrix of the action of J3 on the holomorphic
tangent space around the fixed point.
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Q. mech. of multi-centered black holes IV

E.g. for n = 2,M2 = S2, J3 = α12 cos θ:

g =
(−1)α12+1

(y − 1/y)

(
y+α12︸ ︷︷ ︸ − y−α12︸ ︷︷ ︸

North pole South pole

)
=Tr

j= 1
2 (α12−1)

y2J3

if c1α12 > 0, zero otherwise.
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Refined index from localization I

The fixed points of the action of J3 are collinear multi-centered
configurations along the z-axis, such that

n∑
j 6=i

αij

|zi − zj |
= ci , J3 =

1
2

∑
i<j

αij sign(zj − zi) .

Equivalently, fixed points are critical points of the ‘superpotential’

W ({zi}) = −
∑
i<j

sign[zj − zi ]αij ln |zj − zi | −
∑

i

cizi

The determinant turns out to be (y − 1/y)n−1 times a sign
s(p) = −sign(det W ′′) where W ′′ is the Hessian of W
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Refined index from localization II

After the dust settles, one finds the Coulomb branch formula

g({αi}, {ci}; y) =
(−1)

∑
i<j αij +n−1

(y − y−1)n−1

∑
p

s(p) y
∑

i<j αij sign(zj−zi )

where the sum runs over all collinear solutions of Denef’s
equations.

The contribution of each fixed point is singular at y = 1, but the
sum over fixed points is guaranteed to produce a symmetric
polynomial in y and 1/y , as long asMn is compact.

Fortunately, this is always the case for charge configurations
αi = Miγ1 + Niγ2 involved in wall-crossing, away from the walls.
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Coulomg branch wall-crossing formula I

Having computed the index of the quantum mechanics of n
centers, we can apply the same logic as before and write (naively),

∆Ω(γ)
??
=
∑
n≥2

∑
γ=α1+···+αn

g({αi})
∏n

i=1
Ω+(αi)

where γ = Mγ1 + Nγ2, αi = Miγ1 + Niγ2, and Ω+(αi) is the index
on the side where the bound state does not exist.

This is almost right, but it overlooks the issue of statistics.
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Statistics I

If the centers were classical, indistinguishable objects, Maxwell-
Boltzmann statistics would require a symmetry factor

∆Ω(γ)
!?
=
∑
n≥2

∑
γ=α1+···+αn

g({αi})
|Aut({αi})|

∏n

i=1
Ω+(αi)

where Aut({αi}) is the subgroup of the permutation group leaving
{αi} invariant.
Instead, the centers are quantum objects, with Bose statistics if
Ω(αi) > 0, or Fermi statistics if Ω(αi) < 0. One can show that the
Maxwell-Boltzmann prescription nevertheless works, provided one
replaces everywhere the index Ω(γ) with the rational index

Ω̄(γ) ≡
∑
d |γ

1
d2 Ω(γ/d) , Ω̄(γ, y) ≡

∑
d |γ

(y−y−1)
d(yd−y−d )

Ω(γ/d , yd )
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Statistics II

Consider for example ∆(γ1 + 2γ2): it receives contributions from
bound states {γ1 + γ2, γ2}, {γ1,2γ2}, {γ1, γ2, γ2}.
Taking into account Bose-Fermi statistics for {γ1, γ2, γ2},

∆Ω(γ1 + 2γ2) =(−1)γ12γ12Ω+(γ2) Ω+(γ1 + γ2)

+ 2γ12 Ω+(2γ2) Ω+(γ1)

+ 1
2γ12 Ω+(γ2)

(
γ12Ω+(γ2) + 1

)
Ω+(γ1) .

In terms of the rational invariant Ω̄(2γ2) = Ω(2γ2) + 1
4Ω(γ2),

charge conservation is manifest:

∆Ω̄(γ1 + 2γ2) =(−1)γ12γ12Ω̄+(γ2) Ω̄+(γ1 + γ2)

+ 2γ12 Ω̄+(2γ2) Ω̄+(γ1) + 1
2 [γ12 Ω̄+(γ2)]2Ω̄+(γ1) .
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Coulomb branch wall crossing formula I

We have finally arrived at the Coulomb branch wall-crossing
formula:

∆Ω̄(γ, y) =
∑
n≥2

∑
γ=α1+···+αn

g({αi}, y)

|Aut({αi})|
∏n

i=1
Ω̄+(αi , y)

Remarkably, the formula agrees with the mathematical formulae
established in the context of Donaldson-Thomas invariants for the
derived category of Abelian sheaves.

Kontsevich-Soibelman;Joyce-Song

The formula reproduces for example the weak coupling spectrum
of pure SU(2) gauge theory found by Seiberg and Witten.
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Towards elementary constituents I

Wall-crossing shows that some of the BPS states contributing to
Ω(γ) are not elementary, but can be decomposed into more
elementary constituents. However these constituents may still
decay elsewhere.
This suggests that the existence of a set of truly elementary,
absolutely stable BPS states such that any other BPS state would
arise as a bound state of those.
This is realized in pure SU(2) gauge theorie, where all states
arise as bound states of the monopole and dyon. In SUGRA,
single centered black holes should play the role of elementary
constituents.
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Towards elementary constituents II

In the remainder we shall propose a master formula which
expresses the total index Ω(γ; t , y) in terms of the indices ΩS(γ; y)
associated to the elementary/single centered constituents.

We shall test the validity of the formula in the context of quiver
quantum mechanics, which describe certain D-brane bound states
(as well as the BPS spectrum of certain gauge theories).
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The Master Formula (first pass) I

Let ΩS(αi , y) be the index of elementary/single centered states
with charge αi . The total index Ω(γ; t , y), or rather its rational
counterpart, should be a sum over all possible bound states

Ω̄(γ; t , y) =
∑
n≥1

∑
∑
αi =γ

g({αi},{ci},y)
|Aut({αi})| Ω̄S(αi , y)

Unlike in wall-crossing case, there are potentially infinitely many
possible sets {αi} such that γ =

∑
αi and Ω̄S(αi , y) 6= 0.

Hopefully the regularity condition e2U > 0 rules out all but a finite
number of them...
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Scaling solutions I

Ignoring this issue, another serious concern is that, unlike in
wall-crossing case, the phase spaceMn may be non-compact. As
a result, g({αi}, {ci}, y) and hence Ω(γ; t , y) may not be
symmetric Laurent polynomials.
To illustrate this, take n = 3,α12 = a, α23 = b, α31 = c satisfying
triangular inequalities 0 < a < b + c, etc, there exist scaling
solutions of Denef’s equations

a
r12
− c

r13
= c1,

b
r23
− a

r12
= c2

with r12 ∼ aε, r23 ∼ bε, r13 ∼ cε, ~J2 ∼ ε2 as ε→ 0.
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Scaling solutions II

For c1, c2 > 0, the only collinear configurations are (123) and
(321), leading to

g =
(−1)a+b+c(ya+b−c + y−a−b+c)

(y − 1/y)2

This is not a polynomial in y , in particular it is singular as y → 1.
Still the (equivariant) volume ofMn is finite.
This could be repaired by adding by hand a term with J3 ' 0,
attributed to scaling solutions:

g̃ =

(−1)a+b+c
(

ya+b−c + y−a−b+c −
[

2 a + b + c even
y + 1/y a + b + c odd

])
(y − 1/y)2
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Scaling solutions III

More generally, scaling regions inMn({αi}) arise whenever there
exist a subset A and vectors ~ri ∈ R3, i ∈ A such that

∀i ∈ A ,
∑
j∈A

αij

|~rij |
= 0 .

This is independent of the ci ’s, so scaling solutions cannot be
removed by changing the moduli.

One could give a general prescription to compactify the BPS
phase spaceMn, and complete the sum over collinear fixed
points g into a symmetric Laurent polynomial g̃, however this is
not quite sufficient to ensure that the Ω(γ, t) resulting from the
Master formula is sensible.
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Master formula (second pass) I

Instead, we postulate

Ω̄(γ, y) =
∑
n≥1

∑
{αi},

∑
αi =γ

g({αi},{ci},y)
|Aut({αi})|

×
n∏

i=1

∑
mi |αi

y−1/y
mi (ymi−y−mi )

[
ΩS(αi/mi , ymi )+Ωscaling(αi/mi , ymi )

]
Ωscaling is determined recursively in terms of ΩS by the minimal
modification hypothesis:

Ωscaling(α; y) =
∑

{βi∈Γ},{mi∈Z}
mi≥1,

∑
i miβi =α

H({βi}; {mi}; y)
∏

i

ΩS(βi ; ymi )
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Master formula (second pass) II

H({βi}; {mi}; y) is uniquely determined by the conditions
H is symmetric under y → 1/y ,
H vanishes at y → 0,
the coefficient of

∏
i ΩS(βi ; ymi ) in the expression for Ω(

∑
i miβi ; y)

is a Laurent polynomial in y .

E.g, for the 3-center configuration discussed above,

H({γ1, γ2, γ3};{1,1,1}; y) ={
−2 (y − y−1)−2 ,a + b + c even
(y + y−1) (y − y−1)−2 ,a + b + c odd

so the prescription reduces to g → g̃, but not in general...
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Master formula (second pass) III

The Master Formula expresses the set of indices Ω(γ; t , y) in
terms of a new set of indices ΩS(γ, y). What have we gained ?

First, ΩS(γ) no longer depend on the moduli. The formula is by
construction consistent with wall-crossing.

Second, in SUGRA we expect ΩS(γ, y) to count micro-states of
single-centered BPS black holes, and therefore to be
y -independent. This gives a non-trivial constraint on the total
refined index Ω(γ; t , y).
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Quiver quantum mechanics I

The N = 4 quantum mechanics of multi-centered solitons/black
holes arises as the Coulomb branch of a more complicated N = 4
matrix quantum mechanics, whose matter content is captured by
a quiver.
Each node ` = 1...K represents a U(N`) vector multiplet (~r`,D`),
each arrow represents a chiral multiplet φk ,` in (N`, N̄k )
representation of U(N`)× U(Nk ). The set {N`} is called the
dimension vector.
In addition, one must specify Fayet-Iliopoulos terms c` such that∑

` N`c` = 0, and (in presence of closed oriented loops) a gauge
invariant superpotential W .
Quivers also describe SUSY gauge theories in higher dimension,
but here we focus on D = 1.
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Quiver quantum mechanics II
In the case of N =

∑
`=1...K N` centers, N` of which carrying

charge γ`, the quiver has K nodes and γ`k arrows from node ` to
k .

1

2

. . .K − 1

K

γ12
##

γ23



oo

γK−1,K

TT

γK 1

;;

The FI terms c` depend on the VM moduli, while the coefficients of
W in general depend on HM moduli.
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Quiver quantum mechanics III

The Coulomb branch description arises by integrating out the
chiral multiplets, and reproduces Denef’s equations

∀` ,
∑
k 6=`

γ`k
|~r` −~rk |

= c`

It is valid when the centers are far apart.
The Higgs branch description arises by integrating out the vector
multiplets. It is valid for large values of the chiral multiplet scalars
φk`.
If both branches are regular, one expects the two descriptions to
be dual and have the same BPS states. This can break down if
the Coulomb and Higgs branches mix.
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Quantum mechanics on the Higgs branch I

The moduli spaceMH of SUSY vacua on the Higgs branch is the
set of solutions of the F-term ∂φW = 0 and D-term equations

∀` :
∑
γ`k>0

φ∗`k T a φ`k −
∑
γk`>0

φ∗k` T a φk`,α,s′t = c` Tr(T a)

modulo the action of
∏
` U(N`).

Equivalently,MH is the space of semi-stable solutions of ∂φW = 0
modulo

∏
` GL(N`,C).
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Quantum mechanics on the Higgs branch II
BPS states on the Higgs branch correspond to cohomology
classes in H∗(MH ,Z). They transform under SU(2) according to
the Lefschetz action

J+ · h = ω ∧ h , J− = ω xh , J3 · h = 1
2(n − d)h .

where d is the complex dimension ofMH , n the degree of h.
The refined index on the Higgs branch is given by the Poincaré
polynomial

Q(MH ; y) = Tr′(−y)2J3 =
2d∑

p=1

bp(MH) (−y)p−d

Q is a polynomial in y ,1/y , symmetric under y → 1/y .
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Quantum mechanics on the Higgs branch III
For example, for the 2-node (Kronecker) quiver with k arrows,
dimension vector (1,1), c1 > 0,

1 2k //

MH = Ck/C× = Pk−1 ⇒ Q(MH ; y) =
(−y)k − (−y)−k

y − 1/y

Remarkably, this agrees with the index of the Coulomb index of
2-centered solutions with 〈γ1, γ2〉 = k !
For k = 2 and dimension vector (M,N), one can show that
Q(MH ; y) is the number of BPS states of charge Mγ1 + Nγ2 in
pure SU(2) Seiberg-Witten theory, where γ1, γ2 are the monopole
and dyon charges !
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Quantum mechanics on the Higgs branch IV
More generally, the BPS spectrum of many (if not all) N = 2,
D = 4 gauge theories is governed by a quiver. Any BPS state
arises as a bound state of the BPS states which occur in the
strong coupling chamber.

Alim Cecotti Cordova Espahbodi Rastogi Vafa; Cecotti del Zotto; . . .

In general, the computation of Q(MH ; y) is a hard problem. For
quivers without oriented closed loop, there is a general formula
based on Harder-Narasimhan filtrations. This formula reproduces
our Coulomb branch formula, albeit in very non-trivial way !

Reineke; Joyce; MPS; Sen
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Quantum mechanics on the Higgs branch V

For non-Abelian quivers with loops and generic superpotential,
there is no general way to compute Q(MH ; y) at present.

For Abelian quivers with loops,MH is a complete intersection in a
product of projective spacesMamb, whose cohomology can be
computed using the Lefschetz hyperplane theorem

bp(MH ⊂Mamb) =

{
bp(Mamb) p < d
b2d−p(Mamb) p > d ,

and the Riemann-Roch theorem to compute χ(MH) and hence
the middle cohomology bd (MH).

Denef Moore; Bena Berkooz El Showk de Boer van den Bleeken
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Higgs branch vs Coulomb branch I

In the presence of scaling configurations, the Coulomb branch
describes only a subset of the states on the Higgs branch. For
example, consider the three-node quiver

1

23

a
��

c

FF

boo

a,b, c ≥ 0
N1 = N2 = N3 = 1
c1, c2 > 0, c3 < 0

The generating function of the Higgs branch indices

Q(x1, x2, x3; y) =
∑

a≥0,b≥0,c≥0

(x1)a(x2)b(x3)c Q(Ma,b,c , y)

can be computed using Lefschetz and Riemann-Roch.
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Higgs branch vs Coulomb branch II

it decomposes into Q = QC + QS, where

QC =
x1x2{1−x1x2+x1x2x3(x1+x2+y+y−1)}

(1−x1x2)(1−x1x3)(1−x2x3)(1+x1/y)(1+x1y)(1+x2/y)(1+x2y)

QS =
x2

1 x2
2 x2

3
(1−x1x2)(1−x2x3)(1−x1x3)[1−x1x2−x2x3−x1x3−2x1x2x3]

QC corresponds to contributions from 3-centered black holes,
each carrying unit degeneracy. It is y dependent, moduli
dependent, and grows polynomially with a,b, c.
Instead QS is y -independent, moduli-independent, has support on
{a < b + c,b < a + c, c < a + b}, and grows exponentially with
a,b, c. It counts spin zero Lefschetz multiplets, or pure Higgs
states for short.
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Master formula for quivers I

We conjecture that all states on the Higgs branch have a
generalized Coulomb branch description, as bound states of
elementary constituents whose refined index ΩS(αi) is both
y -independent and invariant under wall-crossing.
In particular, the master formula should hold for all quivers,

Ω̄(γ,y) =
∑
n≥1

∑
{αi},

∑
αi =γ

g({αi}, {ci}, y)

|Aut({αi})|

×
n∏

i=1

∑
mi |αi

1
mi

y − 1/y
ymi − y−mi

[
ΩS(αi/mi , /ymi )+Ωscaling(αi/mi , /ymi )

]
where Ωscaling is determined as before.
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Master formula for quivers II

We have tested the formula on a variety of Abelian quivers:
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and on some non-Abelian 3-node quivers: the master formula
seems to hold up...
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Summary and open problems I

The total index in N = 2 supersymmetric theories can be written
as a sum of contributions from bound states of n
elementary/single centered spinless constituents.
The index ΩS associated to elementary constituents is both
moduli- and y -independent. The existence of bound states does
depend on the moduli za. Angular momentum is carried by
configurational degrees of freedom.
The enumeration of all possible decompositions γ =

∑
i αi is

currently untractable. Can one find a simple criterium (beyond the
attractor flow conjecture) that determines whether a given choice
of charges will lead to a regular multi-center solution ?
The computation of the Coulomb branch index g({αi}, y) for
general {αi} is currently limited by computer power. Is there a
better way to compute the sum over collinear fixed points ?
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Summary and open problems II

Due to scaling solutions, the contribution of each elementary
constituent is corrected by a term Ωscaling(y) which depends on the
index of ’smaller’ charges, and ensures that the total index is a
Laurent polynomial. Can one derive this from a detailed study of
N = 4 quiver quantum mechanics ?
In the context of quivers, ΩS counts the number of Lefschetz
singlets in the cohomology of the quiver moduli space. Why these
states are robust under changing the FI parameters ? Is there a
general formula for the index for non-Abelian quivers with generic
superpotential ?
In supergravity, ΩS corresponds to the degeneracy in the attractor
chamber, and should count the degrees of freedom in a single
AdS2 × S2 throat. Can one compute it microscopically and match
it to the quantum entropy function ?
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