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Introduction I

Moduli spaces of quiver representations play a prominent role in
representation theory and algebraic geometry.

Given a quiver Q with K vertices, adjacency matrix αij = −αji ,
dimension vector γ = (N1, . . .NK ) and stability parameters
ζ = (ζ1, . . . ζK ) such that

∑K
i=1 Niζi = 0, the quiver moduli space

MQ(γ, ζ) is the set of equivalence classes of stable linear maps
Φij,k : CNi → CNj , for each (i , j) such that αij > 0, k = 1, . . . αij ,
modulo conjugation by

∏
GL(Ni) (and subject to algebraic

relations ∂ΦW = 0 when the quiver has oriented loops)
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Introduction II
In physics, they control the vacuum structure of certain
supersymmetric gauge theories with product gauge groups in
various dimensions.
More surprisingly, they also govern the spectrum of BPS dyons in
a large class of 4D, N = 2 field theories, and the spectrum of BPS
black holes in N = 2 string vacua, at least in certain sectors.

Douglas Moore ’96, Fiol ’00, Alim Cecotti Cordova Espahbodi Rastogi Vafa ’11

E.g. for SU(2) SYM, BPS states of charge (2N1,N2 − N1) are in
1-1 correspondence with harmonic forms on the moduli space of
the Kronecker quiver with m = 2 arrows:

N1 N2
//
//

For N1 = N2 = 1,m = 2, the moduli space is P1 supports two
harmonic forms, corresponding to the massive W-bosons.
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Introduction III
This can be traced to the fact that the quantum mechanics of BPS
charged particles in D = 3 + 1,N = 2 field/string theories is
described by a 0 + 1-dimensional supersymmetric gauge theory
with product gauge group, whose Higgs branch coincides with
quiver moduli spaceMQ(ζ) of stable representations.
The same D = 0 + 1 gauge theory also has a Coulomb branch,
which can be interpreted as the phase spaceMn of a system of n
BPS particles in R3, with Coulomb and Lorentz interactions.

E.g. for the Kronecker quiver with m arrows, the Coulomb branch
isM2 = (S2,m cos θdθdφ), supporting m harmonic spinors.
Using physics intuition about the dynamics of BPS particles and
black holes, one can learn new facts about the cohomology of
quiver moduli spaces.
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Introduction IV

In particular, the Joyce-Song or Kontsevich-Soibelman
wall-crossing formulae, which govern the jump in the Euler
number (or more generally, Poincaré polynomial) ofMQ(γ, ζ)
when the stability condition is varied, can be derived by quantizing
the BPS phase spaceMn and using localization.

de Boer at al ’08; Manschot BP Sen ’10

More generally, the Coulomb branch formula expresses the
Poincaré polynomial ofMQ(γ, ζ) for any stability condition ζ in
terms of new quiver indices, which are independent of ζ.
Physically they should count single centered black holes, but their
mathematical definition has remained mysterious.

Manschot BP Sen ’11-14; Lee Wang Yi ’12-13
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Introduction V

In this talk, I want to explain the flow tree formula, which instead
expresses the Poincaré polynomial ofMQ(γ, ζ) in terms of
attractor indices. Like the quiver invariants, the attractor indices
are independent of ζ, but they have a clear mathematical
definition.

The physics intuition behind the flow tree formula is split attractor
flow conjecture, which represents bound states of n black holes as
hierarchies of two-particle bound states. This conjecture was
originally made by Denef in the context of N = 2 supergravity, but
it can be formulated purely in the framework of quiver moduli, and
leads to a mathematical precise statement.
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Quiver quantum mechanics I

Pointlike particles in N = 2 field theories and string vacua on R3,1

carry electromagnetic charges γ ∈ Γ in a lattice equipped with a
symplectic pairing 〈γ, γ′〉 ∈ Z known as the DSZ product.

BPS particles of charge γ have mass M = |Zγ(u)|, where the
central charge Zγ(u) is linear in γ, but depends on the moduli u.
BPS bound states are counted (with sign) by the BPS index

Ω(γ,u) = TrH′1(γ,u)(−1)2J3 ∈ Z ,

In N = 2 field theories, the refined index Ω(γ, y ,u) defined with
insertion of y2(J3+I3) is also protected. [Gaiotto Moore Neitzke ’10]
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Quiver quantum mechanics II
The index may jump on walls of marginal stability, where

W (γL, γR) = {u / arg ZγL(u) = arg ZγR (u)}

such that γ = MLγL + MRγR for some positive integers ML,MR.
The jump is due to the (dis)appearance of BPS bound states of
constituents with charges γi = ML,iγL + MR,iγR in the positive cone
spanned by γL, γR.

Cecotti Vafa 1992; Seiberg Witten 1994

(0,−1)

(2n,1)

(2n+2,−1)

u

(2,−1)

(2,0)
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Quiver quantum mechanics III
The quantum mechanics of n non-relativistic particles with
charges {γi}ni=1 is described by N = 4 quiver quantum
mechanics: if all γi ’s are distinct, this is a 0+1-dimensional gauge
theory with n Abelian vector multiplets ~ri and chiral multiplets φij,α,
α = 1, . . . 〈γi , γj〉 with charge (1,−1) under U(1)i ×U(1)j , for all i , j
such that 〈γi , γj〉 > 0.
If some of the charges coincide, e.g. if {γi} consists of N1 copies
of α1, . . . , NK copies of αK with all αj distinct, then the gauge
group is

∏
j=1...K U(Nj) and the chiral multiplets φij,k , α = 1, . . . , αij

are in the representation (Ni , N̄j) whenever αij ≡ 〈αi , αj〉 > 0.
The Fayet-Iliopoulos parameters depend on the moduli u via
ζi = 2 Im

[
e−iψZαi (u)

]
where ψ = arg Z∑

i Niαi
(u) such that∑

i Niζi = 0.
If the quiver has oriented loops, there is also a gauge invariant
superpotentialW(φ).
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Quiver quantum mechanics IV

Classically, the space of vacua consists of
the Higgs branch, where all ~ri coincide and G is broken to U(1);
the Coulomb branch, where all φij,α vanish, ~r i are diagonal matrices
and G is broken to U(1)K ;
possibly mixed branches.

Quantum mechanically, the wave function spreads over both
branches. At small string coupling gs, it is mostly supported on the
Higgs branch, while at strong gs, it is mainly supported on the
Coulomb branch. [Denef ’02]

BPS states on the Higgs branch are described by harmonic forms
on quiver moduli spaces. They should admit an alternative
Coulomb branch description in terms of multi-centered black hole
bound states.
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Higgs branch and quiver moduli I

The space of SUSY vacua on the Higgs branch is the set
MQ(γ, ζ) of gauge-inequivalent solutions of the F- and D-term
equations

∀i :

αij>0∑
j;α=1

φ†ij,α φij,α −
−αij>0∑
j;α=1

φ†ji,α φji,α = ζi INi×Ni [D]

∀i , j , α : ∂φij,αW = 0 [F]

Equivalently,MQ(γ, ζ) is the moduli space of quiver
representations with potential, i.e. the space of stable solutions of
the F-term equations, modulo the complexified gauge group∏

i GL(Ni ,C).
Here ’stable’ means that µ(γ′) < µ(γ) for any proper
subrepresentation, where γ = (N1, . . .NK ) is the charge vector
and µ(γ) = (

∑
c`N`)/

∑
N` is the slope. [King 94; Reineke 03]
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Higgs branch and quiver moduli II
BPS states on the Higgs branch correspond to harmonic forms on
MQ(ζ), in 1-1 correspondence with Dolbeault cohomology
classes in Hp,q(MQ(γ, ζ),Z). The form degree 2JL

3 = p + q − d is
identified with the Cartan of SO(3), while 2JR

3 = p − q is the
Cartan of SU(2)R.
It is convenient to package the Hodge numbers hp,q into the Hodge
‘polynomial’, a symmetric Laurent polynomial in y , t :

gQ(ζ; y , t) =
2d∑

p,q=0

hp,q(MQ(γ, ζ)) (−y)p+q−d tp−q

This reduces to the Poincaré polynomial for t = 1; to the
Hirzebruch polynomial, or χy2-genus, for t = 1/y ; to the Euler
number for y = t = 1.

B. Pioline (LPTHE) Quivers and attractor indices Warsaw, 25/9/2018 14 / 37



Higgs branch and quiver moduli III

The Poincaré polynomial gQ(γ, ζ; y ,1) can be computed – at least
for primitive charge vector, and no loop – by counting points over
finite fields and using the Weil conjectures, proven by Deligne.

Reineke ’02

The Hirzebruch polynomial gQ(γ, ζ; y ,1/y) can be computed
using localization, in terms of as a Jeffrey-Kirwan residue.

Benini Eager Hori Tachikawa ’13; Hori Kim Yi ’14
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Coulomb branch and multi-centered black holes I

On the Coulomb branch, after integrating out the massive chiral
multiplets, supersymmetric vacua are solutions of Denef’s
equations

∀i :
∑
j 6=i

αij

|~ri −~rj |
= ζi(u) (αij := 〈αi , αj〉)

The same equations describe multi-centered supersymmetric
solutions in N = 2 supergravity !

Denef 2000, Denef Bates 2003
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Coulomb branch and multi-centered black holes II

For fixed charges αi and moduli u, the space of solutions modulo
overall translations is a symplectic manifoldMn({αi , ζi}) of
dimension 2n − 2, carrying a symplectic action of SO(3):

ω = 1
2

∑
i<j

αij sin θij dθij ∧ dφij , ~J = 1
2

∑
i<j

αij
~rij
|rij |

de Boer El Showk Messamah Van den Bleeken 2008

Given a symplectic manifold, geometric quantization produces a
Hilbert space H, the space of harmonic spinors for the Dirac
operator D coupled to ω. The Coulomb index
gC({αi , ζi}, y) ≡ Tr(−y)2J3 in the SUSY quantum mechanics is
equal to the equivariant index of (D, ω). [Manschot BP Sen ’11]
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The Coulomb index from localization I

At least when the quiver has no loop and ζ is generic,Mn is
compact. SinceMn admits a U(1) action, the equivariant index
can be computed by localization. [Atiyah Bott, Berline Vergne]

For any n, the fixed points of the action of J3 are collinear
multi-centered configurations along the z-axis:

α1 α3α2

z-axis

∀i ,
∑
j 6=i

αij

|zi − zj |
= ζi , J3 =

1
2

∑
i<j

αij sign(zj − zi) .

These fixed points are isolated, and classified by permutations σ:

gC({αi , ζi}, y) = (−1)
∑

i<j αij +n−1

(y−y−1)n−1

∑
σ

s(σ) y
∑

i<j ασ(i)σ(j) , s(σ) ∈ Z
MPS ’10
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The Coulomb index from localization II
E.g. for n = 2,M2 = S2, J3 = α12 cos θ:

gC({αi , ζi}, y) =
(−1)α12+1

y − 1/y

(
y+α12︸ ︷︷ ︸ − y−α12︸ ︷︷ ︸

North pole South pole

)
y→1−→ ±α12

E.g. for n = 3 with α12 > α23, there are 4 collinear configurations:

gC({αi , ζi}, y) = (−1)α13+α23+α12

(y−1/y)2 ×[
yα13+α23+α12︸ ︷︷ ︸ − y−α13−α23+α12︸ ︷︷ ︸ − yα13+α23−α12︸ ︷︷ ︸ + y−α13−α23−α12︸ ︷︷ ︸

(123) (312) (213) (321)

]
y→1−→ ±〈α1, α2〉 〈α1 + α2, α3〉
For any n, one can compute s(σ) by replacing αij by λαij
whenever |i − j | > 1 and studying the jumps as λ is varied from
λ = 0 (nearest neighbor interactions) to λ = 1 [MPS ’13]
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The Coulomb branch formula I

For Abelian quivers without loops, the Coulomb index turns out to
coincide with the Hodge polynomial of the moduli space of stable
quiver representations, known from Reineke’s formula:

gQ(γ, ζ; y , t) = gC({αi , ζi}, y)

In this case the elementary constituents carry charge αi and no
internal degrees of freedom, Ω(αi) = 1.
For non-Abelian quivers, one must take into account that some of
the centers are indistinguishable, and apply Bose-Fermi statistics.
Equivalently, one can apply Boltzmann statistics, provided one
includes constituents with charge vector rαi , r ≥ 1, each of them
weighted with the rational index [Joyce Song ’08; MPS’ 10]

Ω̄(γ, y) :=
∑

d |γ

1
d

y − 1/y
yd − y−d Ω(γ/d , yd )
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The Coulomb branch formula II
For non-Abelian quivers with no loop, one can show that
Reineke’s formula agrees with the Coulomb branch formula

ḡQ(γ, ζ; y , t) =
∑

γ=
∑
γi

gC({γi , ci}; y)

|Aut({γi})|
∏

i

Ω̄(γi , y)

where Ω̄(γ) = 0 unless γ = rαi is a multiple of the vectors αi
attached to the nodes, in which case Ω(rαi) = δr ,1, ci = rζi .
This effectively reduces the original non-Abelian quiver to a
combination of Abelian quivers. E.g. for the Kronecker quiver with
m arrows, dimension vector γ = (N1,N2) = (2,1),

gQ[2 m−→ 1] =
gQ[1 2m−→ 1]

2(y + 1/y)
+

1
2

gQ[1 m−→ 1 m←− 1]

corresponding to bound states {2γ1, γ2} and {γ1, γ1, γ2}. [MPS ’11]
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The Coulomb branch formula III
In presence of loops, this relation breaks down. The Coulomb
index gC({γi , ci}; y) computed by localization is no longer a
symmetric Laurent polynomial, but a rational function, due to the
fact that the phase spaceMn is in general non compact.
E.g., consider the 3-node quiver

1

23

a
��

c

FF

boo

0 < a < b + c
0 < b < c + a
0 < c < a + b

For any ζ, there exist scaling solutions of Denef’s equations

a
r12
− c

r13
= ζ1,

b
r23
− a

r12
= ζ2 ,

c
r31
− b

r23
= ζ3,

with r12 ∼ a ε, r23 ∼ b ε, r13 ∼ c ε as ε→ 0.
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The Coulomb branch formula IV
The formula can be repaired by

allowing constituents with charge α =
∑

niαi supported on nodes
linked by a closed loop,
weighting each constituent by

Ωtot(α; y) =ΩS(α; y)

+
∑

{βi∈Γ},{mi∈Z}
mi≥1,

∑
i miβi =α

H({βi}; {mi}; y)
∏

i

ΩS(βi ; ymi )

where ΩS(α; y) are new quiver invariants counting single centered
solutions, and H({βi}; {mi}; y) are rational functions taking into
account scaling solutions. Both are independent of the stability
conditions.

MPS ’13, ’14
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The Coulomb branch formula V

H({βi}; {mi}; y) is fixed recursively by the minimal modification
hypothesis.

H is symmetric under y → 1/y ,
H vanishes at y → 0,
the coefficient of

∏
i ΩS(βi ; ymi ) in the expression for Ω(

∑
i miβi ; y)

is a Laurent polynomial in y .

The formula is implemented in MATHEMATICA: CoulombHiggs.m
Since they are supposed to count single centered, spherically
symmetric black holes, the quiver invariants ΩS(α, y) are
conjectured to be independent of y (though they can depend on t).
Moreover, they typically grow exponentially with the entries of the
adjacency. E.g. ΩS(α1 + α2 + α3) ∼ 2a+b+c for the Abelian 3-node
quiver. [Denef Moore ’07]
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The flow tree formula I

Rather than computing the Coulomb index ofMn by localization,
one may instead apply the split attractor flow conjecture, which
posits that all BPS states can be constructed from nested
two-particle bound states:

5

γ1

γ

γ

γ4

γ
3

2

Denef ’00; Denef Green Raugas ’01; Denef Moore’07
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The flow tree formula II

Along each edge flowing into a vertex γ →
γL + γR, the moduli flow as in a spherically
black hole, ∂r ua = gab̄∂ūb |Zγ(u)|, until they
hit the wall of marginal stability for the decay
ImZγLZ̄γR (u1) = 0, and bifurcate into two flows
with charges γL and γR.

In order for the bound state to exist, one requires at each vertex

〈γL(v), γR(v)〉 Im
[
ZγL(v)

Z̄γR(v)
(up(v))

]
> 0 & Re

[
ZγL(v)

Z̄γR(v)
(uv )

]
> 0

In the limit where quiver quantum mechanics is valid, the second
condition is automatic.
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The flow tree formula III
Remarkably, the first condition can be checked in terms of
asymptotic stability parameters ci = ImZγi Z̄

∑
γi

(u∞), without
integrating the flow along each edge ! It suffices to apply the
discrete attractor flow [Alexandrov BP ’18]

cv ,i = cp(v),i −
〈γv , γi〉
〈γv , γL(v)〉

n∑
j=1

mj
L(v)cp(v),j

where mj
v are the components of γv =

∑n
i=1 mi

vγi . This ensures∑
mi

L(v)cv ,i =
∑

mi
R(v)cv ,i = 0 for each of the two subquivers.
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The flow tree formula IV
At the leaves of the tree, the attractor flow reaches the attractor
point zγi such that no further splittings are allowed. An analogue
of the point zγ which makes sense in the context of quiver moduli
is the attractor stability condition

ζi(γ) = −
K∑

j=1

αijNj , γ =
K∑

i=1

Niαi

We denote the Hodge polynomial at this point, or attractor index,
by Ω?(γ, y , t) = gQ(γ, ζ(γ); y , t), and its rational counterpart by
Ω̄?(γ, y , t).
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The flow tree formula V
The flow tree formula then states

gQ(γ, ζ, y , t) =
∑

γ=
∑n

i=1 γi

gtr({γi , ci}, y)

|Aut{γi}|

n∏
i=1

Ω̄∗(γi , y , t)

where the sum over {γi} runs over unordered decompositions of γ
into sums of positive vectors γi ∈ Λ+, and gtr is the tree index

gtr({γi , ci}, y) =
∑

T∈Tn({γi})

∆(T )κ(T )

∆(T ) =
1

2n−1

∏
v∈VT

[
sgn (

∑
i

mi
L(v)cv ,i) + sgn(γL(v)R(v))

]
.

κ(T ) ≡ (−1)n−1
∏

v∈VT

κ(γL(v)R(v)) , κ(x) = (−1)x yx − y−x

y − y−1
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The flow tree formula VI
The formula tree flow is consistent with the wall-crossing formula
across walls of marginal stability. Since it trivially holds in the
attractor chamber, it must hold everywhere.
It appears to have additional discontinuities across fake walls
associated to the inner bound states, but these cancel after
summing over trees, due to κ(γ12)κ(γ1+2,3) + cycl = 0.

Unlike the Coulomb index gC , the tree index gtr is always a
symmetric Laurent polynomial in y (away from walls of marginal
stability), whether or not the quiver has loops. The price to pay is
that the attractor indices Ω̄∗(γi , y , t) are in general y , t-dependent.
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The flow tree formula VII

Similarly to the Coulomb index, one may decompose gtr as a sum

gtr({γi , ci}, y) =
n!(−1)n−1+

∑
i<j γij

(y − y−1)n−1 Sym
[
Ftr({γi , ci}) y

∑
i<j γij

]
where the partial tree index Ftr({γi , ci}) is defined by

Ftr({γi , ci}) =
∑

T∈T pl
n ({γi})

∆(T ),

Here the sum runs over the set of planar flow trees with n leaves
carrying ordered charges γ1, . . . , γn.
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The flow tree formula VIII

The partial tree index satisfies the obvious recursion

Ftr({γi , ci}) =
1
2

n−1∑
`=1

(
sgn(S`)− sgn(Γn`)

)
× Ftr({γi , c

(`)
i }

`
i=1) Ftr({γi , c

(`)
i }

n
i=`+1),

where c(`)
i = ci − βni

Γn`
S` and

Sk =
k∑

i=1

ci , βk` =
k∑

i=1

γi`, Γk` =
k∑

i=1

∑̀
j=1

γij

Due to appearance of c(`)
i , this produces signs with arguments

which are linear in ci but polynomial in γij .
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The flow tree formula IX

The partial index also satisfies another, less obvious recursion,

Ftr({γi , ci}) = F (0)
n ({ci})

−
∑

n1+···+nm=n
nk≥1, m<n

Ftr({γ′k , c′k}mk=1)
m∏

k=1

F (?)
nk

(γjk−1+1, . . . , γjk ),

where the sum runs over ordered partitions of n with m parts,

j0 = 0, jk = n1 + · · ·+ nk , γ′k = γjk−1+1 + · · ·+ γjk .

F (0)
n ({ci}) =

1
2n−1

n−1∏
i=1

sgn(Si), F (?)
n ({γi}) =

1
2n−1

n−1∏
i=1

sgn(Γni).

There are no longer any fake walls, and all arguments of sign are
linear in γij . Trick: sgn(x1 + x2) [sgnx1 + sgnx2] = 1 + sgnx1 sgnx2.
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Conclusion I

We now have two different ways of expressing the Poincaré
polynomial of quiver moduli in terms of invariants which do not
depend on stability conditions:

the quiver invariants ΩS(γ, t), which count single centered black
holes and are y -independent, but are defined only recursively.
Useful for holography !
the attractor indices Ω∗(γ, y , t), which have a clear mathematical
definition but count both single centered black holes and scaling
solutions. Useful for modularity !

For quivers without loops, the two invariants are identical and
trivial: Ω∗(γ, y , t) = ΩS(γ) = 1 if γ is a basis vector, 0 otherwise.
For quivers with loops, the two invariants differ, and can be related
by evaluating the Coulomb branch formula at the attractor point. It
would be interesting to find ways to compute them directly.
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Thank you for your attention !
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