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Introduction

@ A central goal for any theory of quantum gravity is to provide a
microscopic explanation of the thermodynamical entropy of black
holes in General Relativity [Bekenstein'72, Hawking'74]

A
SBH = 4Gy ‘: SBH ; IogQ

@ As shown by [strominger Vata'9s,. .. ], String Theory provides a
quantitative description in the case of BPS black holes in vacua
with extended SUSY: at weak string coupling, black hole
micro-states arise as bound states of D-branes wrapped on cycles
of the internal manifold.

@ Besides confirming the consistency of string theory as a theory of
quantum gravity, this has opened up many fruitful connections
with mathematics.
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BPS indices and Donaldson-Thomas invariants

@ In the context of type IlA strings compactified on a Calabi-Yau
three-fold X, BPS states are described mathematically by stable
objects in the derived category of coherent sheaves C = D°CohX.
The Chern character v = (chg, chy, cho, ch3) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.

@ The problem becomes a question in Donaldson-Thomas theory:
for fixed v € K(X), compute the generalized DT invariant Q(v)
counting (semi)stable objects of class v, and determine its growth
as |y| — oo.

@ Importantly, Q,(v) depends on the moduli of X, or more generally
on a choice of Bridgeland stability condition o € StabC. In
particular, it can jump on real-codimension one loci known as
walls of marginal stability. The jump is governed by a universal
wall-crossing formula [Joyce Song'08, Kontsevich Soibelman’08].
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Wall-crossing and black hole bound states

@ Walls correspond to loci where the decay v — ;v is
energetically possible. Since m; = |Z(~;)|, this is possible only
when the phases of all Z(~;) are aligned.

@ In the simplest ’primitive’ case v — 1 + 72, the jump is

AQy (71 +72) = (71572) Qo (1) Qo (72)

easily reproduced from the SUSY quantum mechanics of the
electron-monopole problem (more on this later).

@ More generally, the jump can involve an arbitrary number of
constituents. The dynamics is complicated, but the index is
computable using localization Manschot BP Sen’10].
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Modularity of D4-D2-D0 indices |

@ Viewing Type lIA string theory as the reduction of M-theory on a
circle, allows to make very non-trivial physical predictions about
generalized DT invariants. E.g. the GW/DT relation of junoro3).

@ In particular, D4-D2-D0 black holes turn out to be black strings in
disguise, obtained by wrapping an M5-brane on a divisor D. This
indicates that suitable generating series of rank 0 DT invariants
should have specific modular properties [Maldacena Strominger Witten'97].
This gives very good control on their asymptotic growth, and
allows to test agreement with the BH prediction Q,(v) ~ eS84(7),

@ More precisely, D4-D2-D0 indices occur as Fourier coefficients in
the elliptic genus Z(r, z8) = Tr(—1)F gto—2: g27i%2” of the
two-dimensional superconformal field theory with (0,4) SUSY.
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Modularity of D4-D2-D0 indices Il

@ Using the spectral flow symmetry, the elliptic genus has a theta
series decomposition

> hpu(r)O(r, 2

neN* /N

where A*/A is the finite discriminant group associated to
= (Ha(X,Z), kab := Kabcp®), and

_x(D) 1,2 1

hpu ZQ O » Ps s N 25 tak T aPp

o If the SCFT has a discrete spectrum, hp ,(7) must be a
vector-valued, weakly holomorphic modular form in the (dual) Weil
representation attached to A.
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Modularity of D4-D2-D0 indices Il

@ When D is very ample and irreducible, there are no walls
extending to large volume, so the choice of chamber is irrelevant.
The central charges are given by [Maldacena Strominger Witten’97]

= P+ c(TX) p=x(D).
cr= P+ 1ca(TX) - p =6x(Op)

Cardy'’s formula predicts a growth Q(0,p, 3,n — o0) ~ €™ P1in
perfect agreement with Bekenstein-Hawking formula !

@ Moreover, since the space of vector-valued weakly holomorphic
modular form has finite dimension, the full series is completely

determined by its polar coefficients, with n + zpu < X£4).
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Mock modularity of rank O DT invariants

@ When D is reducible, the generating series hpa ,,(7) in a suitable
("large volume attractor") chamber is expected to be a mock
modular form of higher depth jAlexandrov BP Manschot'16-20))

@ Namely, there exists explicit, universal non-holomorphic theta
series ©p({pi}, T, T) such that (ignoring the p’s for simplicity)

ho(r,7) = ho(r) + Y ©n({pi}, 7, 7) th,

P=2i5"Pi

transforms as a modular form. The completed series satisfy the
holomorphic anomaly equation,
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Crash course on indefinite theta series

@ ©,and 6, belongs to the class of indefinite theta series

Vo q(T,7) =17, - Z o (@k) —imrQ(k)
keh+q
where (A, Q) is an even lattice of signature (r,d —r), g € A*/A,
A € R. The series converges if f(x) = ®(x)ez29¥) e L{(A @ R).
@ Theorem (Vignéras, 1978): {V¢ ¢, q € A*/A} transforms as a
vector-valued modular form of weight (A + g, 0) provided
e R(x)f, R(0x)f € Lr(A ® R) for any polynomial R(x) of degree < 2
o [02+2m(x0x —\)|®=0["
@ The relevant lattice for ©, and ©, is A = H2(X, Z)®("=1) with
signature (r,d —r) = (n—1)(1,b2(X) — 1).
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Indefinite theta series

@ Example 1 (Siegel): ® = e7@+) where x, is the projection of x
on a fixed plane of dimension r, satisfies [*] with A = —n. ¥4 is
then the usual (non-holomorphic) Siegel-Narain theta series.

@ Example 2 (Zwegers): In signature (1,d — 1), choose C, C’ two
vectors such that Q(C), Q(C'),(C, C’) > 0, then

D(x) — Cxvm ) _ (€ )V
o)< 5 (0 ) - (1925

_—

satisfies [*] with A = 0. As |x| — oo, or if Q(C) = Q(C') :O
CTJ(X) — ®(x) := sgn(C, x) — sgn(C’, x)

@ The theta series ©2({p1, p2}), @2({p1,p2}) fall in this class. The
generalization to n > 3 involves generalized error functions.
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Generalized error functions |

@ Extend the representations

Ei(x) = / e "XV sign(x') dx’ = Erf(Xy/70),
R
i —nz2-2riz dz .
Mi(x) = — e — = —sign(x) Erfc(|x|\/7),
R—ix z

™

to x € R", M € R™" [Alexandrov Banerjee Manschot BP’16, Nazaroglu'16]

i

,
E(M,X) = /R 2o 020D [T ign (M72) |
i=1

efﬂ'ZT2727TiZTX

i r
M (M;x) = [ — d t./\/l_1/ dz—————
F (M X) <7r> | det M| o Ty (MT2),
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Generalized error functions |l

@ Both E, and M, are annihilated by Vignéras operator 92 + 2wxdx.
@ E,(M,Xx) is a C* function of x, which asymptotes to
[T, sgn(MTx); as |x| — oo
@ M,(M,x) is a C> function away from the hyperplanes
(M~'x); = 0, exponentially suppressed as |X| — oo
@ Both E, and M, are invariant under rescaling the columns of M by

arbitrary positive factors or permuting them, and under rotating
(M, X) — (OM,O0x) by O € O(r).
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Generalized error functions |l

@ For any collection V = (v4,...,V,) of r vectors in R? with fixed
quadratic form Q of signature (r, d — r), such that the Gram matrix
VT QV is positive definite, define the boosted error functions

or(Q,{vi},x) = E(BQV,BOx)
OM(Q,{vi},x) = M(BQV,BOx)

where B is an orthonormal basis of (V), BOBT = 1.

@ ®E(Q,V,x) is a C* function of x which asymptotes to sgn(V7 QOx)
as [x| — co. ®M(Q,V, x) is exponentially suppressed as x| — cc.

° ¢>‘,E can be expressed in terms of d>ﬂ”, and vice-versa,

(DrE(Q, {vi}, x) = Z \Z|(Q {Vi}iez, X HSIgn Vj179X),

Ic{1,..r} JET

where v;, 7 is the projection of v; orthogonal to the vectors vic7.
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Multi-black hole quantum mechanics |

@ Consider the Lagrangian with 4 real supercharges

L= Zm,<az+oz+2lm)+z —U;Di+A;- x,+ZVU/>\,a>\/
ij=1

where 1

@ Eliminating the auxiliary fields D;, one generates a potential

_ZZm,
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Multi-black hole quantum mechanics II

@ Supersymmetric ground states satisfy Denef’s equations:

2 IX,

j#i

These are the same equations which determine the relative
positions of the centers in stationary BPS solutions of N' = 2
supergravity, provided ¢; = 2lm(e~'*Z(,)), ¢ = arg(Z(7))-

@ The moduli space

Mn({i,6}) = {(X) € B, Vi 3 2 = 6} /RS

j#i

carries a natural SO(3)-invariant symplectic structure,

Xu
Zﬁabc 3x dx /\dx,j, = 27’/ -
' ’I

i<j i<j
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Witten index from localization |

@ The Witten index localizes on time-independent configurations
[Girardello Imimbo Mukhi’83]

T H dSX’ d; dA; dD —B(CL (UiD+3; (3 M DiDj+V UiXig )
n- - 423 '

where Mj; = m;5; — 70 is the reduced mass matrix.

@ Integrating out the fermions produces

-1 . - .
/ [T ahian e X0 VbR — (382)0 det(VU; @ ),
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Witten index from localization Il

@ Key observation: The bosonic configuration space R3"3 is
foliated by the phase spaces M,({~;, u;}) with u; € R"~". The flat
integration measure on R3"3 combines with the fermionic
determinant to produce the Liouville measure on My, times flat
measure on R 1,

n— n—1
H d®X; det(V; Ued)= 2”(—:(1n)—11)| (H du;) w1,

@ For n = 2, this boils down to r2drdQ, x — fz Srdp x 3rdQy.
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Witten index from localization Il

@ Integrating over D;, we get

n—1
- M/ 1T dui Vol({i, ui}) e 5 Ui=e)M;(y—c)
i—1

—1)2i<j

where Vol({5:, u}) = (G St @

@ The refined index is expected to be given by a similar formula,
replacing the symplectic volume with the equivariant Dirac index,

M/Hdu, Ind({~;, Ui}, y) e~ 8 UMy (U=

@ At zero temperature, this is dominated by u; = ¢;, hence reduces
to Ind({~;, ¢i}, y) counting supersymmetric bound states.
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Witten index from localization IV

@ Both Vol({~;, u;}) and Ind({~j, u;j}, y) are locally constant functions
of u;, away from walls of marginal stability. Thus the Witten index
is a linear combination of generalized error functions !

@ Moreover, both are computable using Duistermaat-Heckman /
Atiyah-Bott localization with respect to U(1) € SO(83). [Manschot BP
Sen'11]:

(_1)Zi<,‘7ij*n+1 SN
™ ol oty Goty}) y 7000
_ 1 n\ o (i)s “o(i)
=1yt =

Vol({vi, ¢i}) = Jim Ind({v, c}; )

Ind({v,c}; y) =

B. Pioline (LPTHE, Paris) Black holes and error functions Montpellier, 18/09/25 19/32



Two-body electron-monopole problem |

@ Consider a non-relativistic particle of electric charge q = %(71 ,Y2)
in the field of a Dirac monopole of unit magnetic charge:

LS S« - 1 q\?2
H=_(p— qh)3 - B-U®(12—03)+%<19—7>

= i 5 T 12,1125 92
— - J— 1 2 L A— —
VANA=B= 5, m=z 07 om = 14nl +12e] = 1444
q6>0 q6<0
4 4
3 3
2 2
1 1
2 4 6 8 0 2 4 6 8
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Two-body electron-monopole problem Il

@ H describes two bosonic degrees of freedom with helicity h = 0,
and one helicity h = £1/2 fermionic doublet with gyromagnetic
ratio g = 4.

D’Hoker Vinet 1985; Denef 2002; Avery Michelson 2007;Lee Yi 2011

@ H commutes with 4 supercharges — here M= p— qﬁ:

O ] 0 —i(W -9 +7-T
CTm\i(w—9) 441 0

o | 0 ~W-DF—iN+MNnd
T Vam\ - (W -9 F+ifi+Miag 0 '

{Qma Qn} =2H 5mn
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Two-body electron-monopole problem Il

@ Going to a basis of monopole spherical harmonics, the
Schrédinger equation with energy E = k?/(2m) becomes

1.5 I/Z—qz—% g\?2
[ 8,-/’+T+<19— )

—_— —_— p— 2
. . V(r)= kv,

where 1
u:j+§+h, j=1q|+h+(,0eN.

@ Supersymmetric bound states exist for g >0, h=—-1/2,¢ =0,
and form a multiplet of spin j = |q| — %, with 2j + 1 = [{y1,72)|.

Denef 2002
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Two-body electron-monopole problem [V

@ The S-matrix for partial waves is similar to that of H-atom,

r( +uti ‘7‘9 >
Su(k) = ETL = o),

=€

r (; +v—i— 2 >
Vke—92 ;
BP, arXiv:1501.01643

@ The contribution of the continuum to Tr(—1)F e~27"" is thus

g esenirvigel)

2hz/dk8k
hoZi1 =0, 7 2r <|Q|+€+2h+1—i\/kq;9702>
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Two-body electron-monopole problem V

@ Terms with ¢ > 0 cancel, leaving the contribution from £ = 0 only:

_ mRK?

o 9
Tr(—1)F e72mAH = _ |12q| ©(q) — q / k\/kzi

k=[9|

= —2|q| ©(q9) + |q| sgn(qV) Erfec ('19‘ ﬁ)
— |ql - gErf (0 ﬁ) :
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Two-body electron-monopole problem VI

@ Using localization, this is easily reproduced:

/ r2dr/ dDeB( iD(5-c)+2D0?)

K z [ B ()2
=—7 (sfm)z/ dp(1 + sign p) e am (500

- g [sign(n) + E (c \/;Eﬂ

with p =1/r.

Montpellier, 18/09/25
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BPS index from localization |

@ When M,({~j, uj}) is compact, its equivariant volume or Dirac
index is computable by localization with respect to U(1) ¢ SO(3).
Fixed points are collinear configurations subject to

E Vi A
Z-z] — i

J#

i.e. critical points of W = —3_,_;vjlog |z — zj| — 3_; Ciz;.
@ Solutions are classified by the ordering of the centers along the
z-axis, weighted by sign det 92 W:

Z, vji—n+1 o '
Indc({7.c}; y) = W 3" Fonl{o(): Cotiy ) y =<1 17070

oe€Sy
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BPS index from localization Il

@ When M;,({~;, uj}) is not compact, i.e. in the presence of scaling
solutions, there are additional boundary contributions which
ensure that Ind({v, ¢}; y) is a symmetric Laurent polynomial in y.

@ Alternatively, use the flow tree formula.
Z, yjj—n+1 o i
Indyee ({7, C}; ¥) = ((},1% Z Fiee,n({7o(i)> Co(i) })yZK’ Yelal)

o€Sh

where Fye. n({7i, ¢i}) counts planar attractor flow trees. E.g.

1
Fuce = 5 S9N(01) + 5GN(712)]

Firee 3 = % [(sgn(cy) + sgn(v12)) (sgn(cy + c2) + sgn(v23))
— (sgn(y243,1) + 59n(712)) (89N(73,142) + 8gn(723))] ;
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BPS index from localization Ill

@ Using this, we find e.g. the partial Witten index for 3 centers

J3 :1{E2( _ Mmmg . _ CoM—CiMp 3 )

4 Ma(My+Ma+m3)" . /mymp(my+mp)’ V/Mi+2,3
— sgn(71,243) SGN(7142,3)
— [Ef(om2) — s9n(v1423)] sgn(v12)

+ [E( m1,2+a) — sgn(y243,1)] sgn(723)}.

9%
IS

mz(my+m
where my 25 = % Y423 =71+ 72

@ 73(p,y) is obtained by rescaling m — 8xm/ 3, multiplying by
yrztizstie /(y — 1 /y)? and summing over permutations.
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BPS index from localization IV

@ Setting § = 2772, this matches the error functions appearing in the
‘instanton generating potential’, which plays the role of Witten
index in 4D jAlexandrov Moore Neizke BP'14]

s 1 _ _Scl
G= e Zi%hig, (O, — h
— 27'('\/’7'72 p;u n H Z Pis 14

i=1 Pj, i

@ For one-parameter models, or more generally for collinear
magnetic charges, the same error functions evaluated at the large
volume attractor point appear in the modular completion of hp . In
general however, the x-arguments differ by a rescaling, e.g a

factor m’% in the 2 body case.
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BPS index from localization V

@ At the large volume attractor point, only contributions from the
continuum of scattering states remain:

Tr = 1 M / myms ﬁ(m271,2+3—m172,1+3) /271423
3 4 2 Ma(My+ M+ mg) ! \/myma(my+my) T V/Mig23

My () (s (mrs240 = M) = 50 (1)

+ M, (%3) (sgn (M2v142.3 — M371132) —SgN (’723))>'

with 5 = 277s.

@ For collinear magnetic charges (e.g. in one-parameter models),
the coefficients of My vanish, leaving only the contribution from
genuine 3-body scattering.
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Summary and open problems |

@ Using localization, we managed to evaluate the Witten index of the
quantum mechanics of n dyons, including both bound state and
continuum contributions. Compare with the unsolvable n-body
problem in Newtonian gravity !

@ Our derivation reproduces the non-holomorphic terms in the
modular completion of the generating series of D4-D2-D0
invariants, that were predicted earlier using indirect arguments.

@ Some details still need to be clarified, e.g. the n-deformation
needed to resolve the ambiguity in sign(0), Kronecker delta
contributions supported on walls, a proper derivation of the refined
index, etc.

@ Currently the modular completion has mainly been tested in

one-modulus examples. It would be interesting to study examples
with two moduli, e.g. genus-one fibrations or K3 fibrations.
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Thanks for attention !
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