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Introduction

A central goal for any theory of quantum gravity is to provide a
microscopic explanation of the thermodynamical entropy of black
holes in General Relativity [Bekenstein’72, Hawking’74]

SBH = A
4GN SBH

?
= logΩ

As shown by [Strominger Vafa’96,. . . ], String Theory provides a
quantitative description in the case of BPS black holes in vacua
with extended SUSY: at weak string coupling, black hole
micro-states arise as bound states of D-branes wrapped on cycles
of the internal manifold.
Besides confirming the consistency of string theory as a theory of
quantum gravity, this has opened up many fruitful connections
with mathematics.
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BPS indices and Donaldson-Thomas invariants

In the context of type IIA strings compactified on a Calabi-Yau
three-fold X , BPS states are described mathematically by stable
objects in the derived category of coherent sheaves C = DbCohX .
The Chern character γ = (ch0, ch1, ch2, ch3) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.
The problem becomes a question in Donaldson-Thomas theory:
for fixed γ ∈ K (X ), compute the generalized DT invariant Ωz(γ)
counting (semi)stable objects of class γ, and determine its growth
as |γ| → ∞.
Importantly, Ωz(γ) depends on the moduli of X , or more generally
on a choice of Bridgeland stability condition σ ∈ Stab C. In
particular, it can jump on real-codimension one loci known as
walls of marginal stability. The jump is governed by a universal
wall-crossing formula [Joyce Song’08, Kontsevich Soibelman’08].
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Wall-crossing and black hole bound states

Walls correspond to loci where the decay γ →
∑

i γi is
energetically possible. Since mi = |Z (γi)|, this is possible only
when the phases of all Z (γi) are aligned.
In the simplest ’primitive’ case γ → γ1 + γ2, the jump is

∆Ωσ(γ1 + γ2) = ⟨γ1, γ2⟩Ωσ(γ1) Ωσ(γ2)

easily reproduced from the SUSY quantum mechanics of the
electron-monopole problem (more on this later).

More generally, the jump can involve an arbitrary number of
constituents. The dynamics is complicated, but the index is
computable using localization [Manschot BP Sen’10].
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Modularity of D4-D2-D0 indices I

Viewing Type IIA string theory as the reduction of M-theory on a
circle, allows to make very non-trivial physical predictions about
generalized DT invariants. E.g. the GW/DT relation of [MNOP’03].
In particular, D4-D2-D0 black holes turn out to be black strings in
disguise, obtained by wrapping an M5-brane on a divisor D. This
indicates that suitable generating series of rank 0 DT invariants
should have specific modular properties [Maldacena Strominger Witten’97].
This gives very good control on their asymptotic growth, and
allows to test agreement with the BH prediction Ωz(γ) ≃ eSBH(γ).
More precisely, D4-D2-D0 indices occur as Fourier coefficients in
the elliptic genus I(τ, za) = Tr(−1)F qL0−

cL
24 e2πiqaza

of the
two-dimensional superconformal field theory with (0,4) SUSY.
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Modularity of D4-D2-D0 indices II

Using the spectral flow symmetry, the elliptic genus has a theta
series decomposition

I =
∑

µ∈Λ∗/Λ

hp,µ(τ)Θ(τ, za)

where Λ∗/Λ is the finite discriminant group associated to
Λ = (H4(X ,Z), κab := κabcpc), and

hp,µ(τ) :=
∑

n

Ω̄(0,p, µ,n)qn−χ(D)
24 + 1

2µ
2− 1

2 pµ

If the SCFT has a discrete spectrum, hp,µ(τ) must be a
vector-valued, weakly holomorphic modular form in the (dual) Weil
representation attached to Λ.
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Modularity of D4-D2-D0 indices III

When D is very ample and irreducible, there are no walls
extending to large volume, so the choice of chamber is irrelevant.
The central charges are given by [Maldacena Strominger Witten’97]{

cL = p3 + c2(TX ) · p = χ(D) ,

cR = p3 + 1
2c2(TX ) · p = 6χ(OD)

Cardy’s formula predicts a growth Ω(0,p, β, n → ∞) ∼ e2π
√

p3 n in
perfect agreement with Bekenstein-Hawking formula !

Moreover, since the space of vector-valued weakly holomorphic
modular form has finite dimension, the full series is completely
determined by its polar coefficients, with n + 1

2µ
2 − 1

2pµ < χ(D)
24 .
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Mock modularity of rank 0 DT invariants

When D is reducible, the generating series hpa,µa(τ) in a suitable
("large volume attractor") chamber is expected to be a mock
modular form of higher depth [Alexandrov BP Manschot’16-20])
Namely, there exists explicit, universal non-holomorphic theta
series Θn({pi}, τ, τ̄) such that (ignoring the µ’s for simplicity)

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

transforms as a modular form. The completed series satisfy the
holomorphic anomaly equation,

∂τ̄ ĥp(τ, τ̄) =
∑

p=
∑n≥2

i=1 pi

Θ̂n({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)
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Crash course on indefinite theta series

Θn and Θ̂n belongs to the class of indefinite theta series

ϑΦ,q(τ, τ̄) = τ−λ
2

∑
k∈Λ+q

Φ
(√

2τ2k
)

e−iπτQ(k)

where (Λ,Q) is an even lattice of signature (r ,d − r), q ∈ Λ∗/Λ,
λ ∈ R. The series converges if f (x) ≡ Φ(x)e

π
2 Q(x) ∈ L1(Λ⊗ R).

Theorem (Vignéras, 1978): {ϑΦ,q,q ∈ Λ∗/Λ} transforms as a
vector-valued modular form of weight (λ+ d

2 ,0) provided
R(x)f ,R(∂x)f ∈ L2(Λ⊗ R) for any polynomial R(x) of degree ≤ 2[
∂2

x + 2π(x∂x − λ)
]
Φ = 0 [*]

The relevant lattice for Θn and Θ̂n is Λ = H2(X ,Z)⊕(n−1), with
signature (r ,d − r) = (n − 1)(1,b2(X )− 1).
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Indefinite theta series

Example 1 (Siegel): Φ = eπQ(x+), where x+ is the projection of x
on a fixed plane of dimension r , satisfies [*] with λ = −n. ϑΦ is
then the usual (non-holomorphic) Siegel-Narain theta series.
Example 2 (Zwegers): In signature (1,d − 1), choose C,C′ two
vectors such that Q(C),Q(C′), (C,C′) > 0, then

Φ̂(x) = Erf
(

(C,x)
√
π√

Q(C)

)
− Erf

(
(C′,x)

√
π√

Q(C′)

)
-2 -1 1 2

x

-1.0

-0.5

0.5

1.0

Erf(x)

satisfies [*] with λ = 0. As |x | → ∞, or if Q(C) = Q(C′) = 0,

Φ̂(x) → Φ(x) := sgn(C, x)− sgn(C′, x)

The theta series Θ2({p1,p2}), Θ̂2({p1,p2}) fall in this class. The
generalization to n ≥ 3 involves generalized error functions.
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Generalized error functions I

Extend the representations

E1(x) =

∫
R

e−π(x−x ′)2
sign(x ′) dx ′ = Erf(x

√
π),

M1(x) =
i
π

∫
R−ix

e−πz2−2πiz dz
z

= − sign(x) Erfc(|x |
√
π),

to x ∈ Rr , M ∈ Rr×r [Alexandrov Banerjee Manschot BP’16, Nazaroglu’16]

Er (M,x) =

∫
Rr

dr ze−π(x−z)T (x−z)
r∏

i=1

sign
(
MT z

)
i
,

Mr (M;x) =

(
i
π

)r

| detM|−1
∫
Rr−ix

dr z
e−πzT z−2πizT x∏r

i=1
(
M−1z

)
i
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Generalized error functions II

Both Er and Mr are annihilated by Vignéras operator ∂2
x + 2πx∂x.

Er (M,x) is a C∞ function of x, which asymptotes to∏r
i=1 sgn(MT x)i as |x| → ∞

Mr (M,x) is a C∞ function away from the hyperplanes
(M−1x)i = 0, exponentially suppressed as |x| → ∞
Both Er and Mr are invariant under rescaling the columns of M by
arbitrary positive factors or permuting them, and under rotating
(M,x) 7→ (O M,O x) by O ∈ O(r).
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Generalized error functions III

For any collection V = (v1, . . . ,vr ) of r vectors in Rd with fixed
quadratic form Q of signature (r ,d − r), such that the Gram matrix
VTQV is positive definite, define the boosted error functions

ΦE
r (Q, {vi},x) = Er (BQV,BQx)

ΦM
r (Q, {vi},x) = Mr (BQV,BQx)

where B is an orthonormal basis of ⟨V⟩, BQBT = 1.
ΦE

r (Q,V,x) is a C∞ function of x which asymptotes to sgn(VTQx)
as |x| → ∞. ΦM

r (Q,V,x) is exponentially suppressed as |x| → ∞.
ΦE

r can be expressed in terms of ΦM
r , and vice-versa,

ΦE
r (Q, {vi},x) =

∑
I⊂{1,...r}

ΦM
|I|(Q, {vi}i∈I ,x)

∏
j /∈I

sign(vj⊥IQx),

where vj⊥I is the projection of vj orthogonal to the vectors vi∈I .
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Multi-black hole quantum mechanics I

Consider the Lagrangian with 4 real supercharges

L =
n∑

i=1

mi

2

(
˙⃗x2
i + D2

i + 2iλ̄i λ̇i

)
+

n∑
i=1

(−UiDi+A⃗i · ˙⃗xi)+
n∑

i,j=1

∇⃗iUj ·λ̄i σ⃗λj

where
Ui = −1

2
(
∑
j ̸=i

γij

|x⃗i − x⃗j |
− ci), ∇⃗iUj =

1
2
(∇⃗i × A⃗j + ∇⃗j × A⃗i).

Eliminating the auxiliary fields Di , one generates a potential

V =
n∑

i=1

U2
i

2mi
.
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Multi-black hole quantum mechanics II

Supersymmetric ground states satisfy Denef’s equations:∑
j ̸=i

γij

|x⃗i − x⃗j |
= ci

These are the same equations which determine the relative
positions of the centers in stationary BPS solutions of N = 2
supergravity, provided ci = 2Im(e−iϕZ (γi)), ϕ = arg(Z (γ)).
The moduli space

Mn({γi , ci}) =
{
(x⃗i) ∈ R3n, ∀i

∑
j ̸=i

γij
|⃗xi−x⃗j |

= ci
}/

R3

carries a natural SO(3)-invariant symplectic structure,

ω =
1
4

∑
i<j

ϵabc
γij

r3
ij

xa
ij dxb

ij ∧ dxc
ij , J⃗ =

1
2

∑
i<j

γij
x⃗ij

rij
,
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Witten index from localization I

The Witten index localizes on time-independent configurations
[Girardello Imimbo Mukhi’83]

In =

∫ n−1∏
i=1

d3x⃗i dλ̄i dλi dDi

4π2β
e−β(

∑n
i=1(iUi Di+

∑
i,j(

1
2 Mij Di Dj+∇⃗j Ui λ̄i σ⃗λj)

where Mij = miδij −
mi mj
mtot

is the reduced mass matrix.

Integrating out the fermions produces

∫ n−1∏
i=1

dλ̄i dλi e−β
∑n−1

i,j=1 ∇⃗j Ui λ̄i σ⃗λj = (β2)n−1 det(∇⃗jUi ⊗ σ⃗),
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Witten index from localization II

Key observation: The bosonic configuration space R3n−3 is
foliated by the phase spaces Mn({γi ,ui}) with ui ∈ Rn−1. The flat
integration measure on R3n−3 combines with the fermionic
determinant to produce the Liouville measure on Mn, times flat
measure on Rn−1,

n−1∏
i=1

d3x⃗i det(∇⃗iUj ⊗ σ⃗) =
(−1)n−1

2n−1(n − 1)!

(
n−1∏
i=1

dui

)
ωn−1,

Proof: follows from det(Q + iM) = pf
(

M Q
−Q M

)
.

For n = 2, this boils down to r2drdΩ2 ×− κ2

4r4 = 1
2κdρ × 1

2κdΩ2.
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Witten index from localization III

Integrating over Di , we get

In =
√

det β
8πM

∫ n−1∏
i=1

dui Vol({γi ,ui})e−β
8 (ui−ci )M

−1
ij (uj−cj )

where Vol({γi ,ui}) = (−1)
∑

i<j γij−n+1

(2π)n−1(n−1)!

∫
Mn({γi ,ui}) ω

n−1.

The refined index is expected to be given by a similar formula,
replacing the symplectic volume with the equivariant Dirac index,

In =
√

det β
8πM

∫ n−1∏
i=1

dui Ind({γi ,ui}, y)e−β
8 (ui−ci )M

−1
ij (uj−cj )

At zero temperature, this is dominated by ui = ci , hence reduces
to Ind({γi , ci}, y) counting supersymmetric bound states.
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Witten index from localization IV

Both Vol({γi ,ui}) and Ind({γi ,ui}, y) are locally constant functions
of ui , away from walls of marginal stability. Thus the Witten index
is a linear combination of generalized error functions !

Moreover, both are computable using Duistermaat-Heckman /
Atiyah-Bott localization with respect to U(1) ⊂ SO(3). [Manschot BP

Sen’11]:

Ind({γ, c}; y) =
(−1)

∑
i<j γij−n+1

(y − 1/y)n−1

∑
σ∈Sn

Fn({γσ(i), cσ(i)}) y
∑

i<j γσ(i)σ(j)

Vol({γi , ci}) = lim
y→1

Ind({γ, c}; y)
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Two-body electron-monopole problem I

Consider a non-relativistic particle of electric charge q = 1
2⟨γ1, γ2⟩

in the field of a Dirac monopole of unit magnetic charge:

H =
1

2m
(p⃗ − qA⃗)2 − q

2m
B⃗ · σ⃗ ⊗ (12 − σ3) +

1
2m

(
ϑ− q

r

)2

∇⃗ ∧ A⃗ = B⃗ =
r⃗
r3 , m =

|Zγ1 ||Zγ2 |
|Zγ1 |+|Zγ2 |

, ϑ2

2m = |Zγ1 |+ |Zγ2 | − |Zγ1+γ2 |

� � � � �

�

�

�

�
� θ >�

� � � � �

�

�

�

�
� θ <�

B. Pioline (LPTHE, Paris) Black holes and error functions Montpellier, 18/09/25 20 / 32



Two-body electron-monopole problem II

H describes two bosonic degrees of freedom with helicity h = 0,
and one helicity h = ±1/2 fermionic doublet with gyromagnetic
ratio g = 4.

D’Hoker Vinet 1985; Denef 2002; Avery Michelson 2007;Lee Yi 2011

H commutes with 4 supercharges – here Π⃗ = p⃗ − qA⃗:

Q4 =
1√
2m

(
0 −i

(
ϑ− q

r

)
+ σ⃗ · Π⃗

i
(
ϑ− q

r

)
+ σ⃗ · Π⃗ 0

)

Qa =
1√
2m

(
0 −

(
ϑ− q

r

)
σ⃗ − iΠ⃗ + Π⃗ ∧ σ⃗

−
(
ϑ− q

r

)
σ⃗ + iΠ⃗ + Π⃗ ∧ σ⃗ 0

)
.

{Qm,Qn} = 2H δmn
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Two-body electron-monopole problem III

Going to a basis of monopole spherical harmonics, the
Schrödinger equation with energy E = k2/(2m) becomes[

−1
r
∂2

r r +
ν2 − q2 − 1

4
r2 +

(
ϑ− q

r

)2
]
Ψ(r) = k2Ψ ,

where
ν = j +

1
2
+ h , j = |q|+ h + ℓ , ℓ ∈ N .

Supersymmetric bound states exist for qϑ > 0, h = −1/2, ℓ = 0,
and form a multiplet of spin j = |q| − 1

2 , with 2j + 1 = |⟨γ1, γ2⟩|.
Denef 2002
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Two-body electron-monopole problem IV

The S-matrix for partial waves is similar to that of H-atom,

Sν(k) =
Γ

(
1
2 + ν + i qϑ√

k2−ϑ2

)
Γ

(
1
2 + ν − i qϑ√

k2−ϑ2

) = e2iδν(k).

BP, arXiv:1501.01643

The contribution of the continuum to Tr(−1)F e−2πRH is thus

∑
h=02,± 1

2

(−1)2h
∞∑
ℓ=0

∞∫
k=ϑ

dk ∂k

2πi
log

Γ

(
|q|+ ℓ+ 2h + 1 + i qϑ√

k2−ϑ2

)
Γ

(
|q|+ ℓ+ 2h + 1 − i qϑ√

k2−ϑ2

) e−πRk2
m
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Two-body electron-monopole problem V

Terms with ℓ > 0 cancel, leaving the contribution from ℓ = 0 only:

Tr(−1)F e−2πRH =− |2q|Θ(qϑ)− 2qϑ
π

∞∫
k=|ϑ|

dk
k
√

k2 − ϑ2
e−πRk2

m

=− 2|q|Θ(qϑ) + |q| sgn(qϑ)Erfc

(
|ϑ|
√

πR
m

)

=− |q| − q Erf

(
ϑ

√
πR
m

)
.
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Two-body electron-monopole problem VI

Using localization, this is easily reproduced:

I2 = −βκ2

4π

∫ ∞

0

r2dr
r4

∫ ∞

−∞
dD e−β(− i

2 D(κ
r −c)+m

2 D2)

= −κ2
(

β
8πm

) 1
2
∫ ∞

0
dρ e− β

8m (κρ−c)2

= −κ2

2

(
β

8πm

) 1
2
∫ ∞

−∞
dρ(1 + sign ρ) e− β

8m (κρ−c)2

=− κ

2

[
sign(κ) + E1

(
c
√

β
8πm

)]
with ρ = 1/r .
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BPS index from localization I

When Mn({γi ,ui}) is compact, its equivariant volume or Dirac
index is computable by localization with respect to U(1) ⊂ SO(3).
Fixed points are collinear configurations subject to∑

j ̸=i

γij
|zi−zj | = ci ,

i.e. critical points of W = −
∑

i<j γij log |zj − zi | −
∑

i cizi .
Solutions are classified by the ordering of the centers along the
z-axis, weighted by sign det ∂2W :

IndC({γ, c}; y) = (−1)
∑

i<j γij−n+1

(y−1/y)n−1

∑
σ∈Sn

FC,n({γσ(i), cσ(i)}) y
∑

i<j γσ(i)σ(j)
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BPS index from localization II

When Mn({γi ,ui}) is not compact, i.e. in the presence of scaling
solutions, there are additional boundary contributions which
ensure that Ind({γ, c}; y) is a symmetric Laurent polynomial in y .
Alternatively, use the flow tree formula.

Indtree({γ, c}; y) = (−1)
∑

i<j γij−n+1

(y−1/y)n−1

∑
σ∈Sn

Ftree,n({γσ(i), cσ(i)}) y
∑

i<j γσ(i)σ(j)

where Ftree,n({γi , ci}) counts planar attractor flow trees. E.g.

Ftree,2 =
1
2

[
sgn(c1) + sgn(γ12)]

Ftree,3 =
1
4
[(sgn(c1) + sgn(γ12)) (sgn(c1 + c2) + sgn(γ23))

−
(
sgn(γ2+3,1) + sgn(γ12)

) (
sgn(γ3,1+2) + sgn(γ23)

)]
,
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BPS index from localization III

Using this, we find e.g. the partial Witten index for 3 centers

J3 =
1
4

[
E2

(√
m1m3

m2(m1+m2+m3)
; c2m1−c1m2√

m1m2(m1+m2)
, c3√m1+2,3

)
− sgn(γ1,2+3) sgn(γ1+2,3)

−
[
E1
( c3√m1+2,3

)
− sgn(γ1+2,3)

]
sgn(γ12)

+
[
E1
( c1√m1,2+3

)
− sgn(γ2+3,1)

]
sgn(γ23)

]
.

where m1+2,3 = m3(m1+m2)
(m1+m2+m3)

, γ1+2,3 = γ1 + γ2.

I3(β, y) is obtained by rescaling m 7→ 8πm/β, multiplying by
yγ12+γ23+γ13/(y − 1/y)2 and summing over permutations.
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BPS index from localization IV

Setting β = 2πτ2, this matches the error functions appearing in the
’instanton generating potential’, which plays the role of Witten
index in 4D [Alexandrov Moore Neizke BP’14]

G =
∞∑

n=1

1
2π

√
τ2

e−
∑

i Scl
pi ϑp,µ(Φ

tot
n ,−1)

[
n∏

i=1

∑
pi ,µi

hpi ,µi

]

For one-parameter models, or more generally for collinear
magnetic charges, the same error functions evaluated at the large
volume attractor point appear in the modular completion of hp,µ. In
general however, the x-arguments differ by a rescaling, e.g a

factor
√

(p3)(p1p2p)
(p1p2)(p2p2)

in the 2 body case.
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BPS index from localization V

At the large volume attractor point, only contributions from the
continuum of scattering states remain:

J ∗
3 =

1
4

(
M2

(√
m1m3

m2(m1+m2+m3)
;−

√
τ2(m2γ1,2+3−m1γ2,1+3)√

m1m2(m1+m2)
,−

√
τ2γ1+2,3√m1+2,3

)
+ M1

(√
τ2γ1+2,3√m1+2,3

) (
sgn

(
m2γ1,2+3 − m1γ2,1+3

)
− sgn (γ12)

)
+ M1

(√
τ2γ1,2+3√m1,2+3

) (
sgn

(
m2γ1+2,3 − m3γ1+3,2

)
− sgn (γ23)

))
.

with β = 2πτ2.
For collinear magnetic charges (e.g. in one-parameter models),
the coefficients of M1 vanish, leaving only the contribution from
genuine 3-body scattering.
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Summary and open problems I

Using localization, we managed to evaluate the Witten index of the
quantum mechanics of n dyons, including both bound state and
continuum contributions. Compare with the unsolvable n-body
problem in Newtonian gravity !
Our derivation reproduces the non-holomorphic terms in the
modular completion of the generating series of D4-D2-D0
invariants, that were predicted earlier using indirect arguments.
Some details still need to be clarified, e.g. the η-deformation
needed to resolve the ambiguity in sign(0), Kronecker delta
contributions supported on walls, a proper derivation of the refined
index, etc.
Currently the modular completion has mainly been tested in
one-modulus examples. It would be interesting to study examples
with two moduli, e.g. genus-one fibrations or K3 fibrations.
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Thanks for your attention !
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