From attractor indices to single-centered indices

Boris Pioline

SORBONNE

 UNIVERSITÉWorkshop on Black Holes, BPS and Quantum Information Zoom@IST Lisbon, 22/09/2021
based on arXiv:2103.03205 with Guillaume Beaujard, Swapnamay Mondal, 2109.nnnnn with Pierre Descombes
and earlier work with Jan Manschot, Ashoke Sen and Sergei Alexandrov.

Introduction

- Precision counting of BPS black hole microstates is an important challenge, both for physics (probing the consistency of string theory as a model of quantum gravity) and for mathematics (uncovering new topological invariants of Calabi-Yau threefolds).
- The net number of BPS states with fixed electro-magnetic charge γ, called BPS index $\Omega(\gamma, z)$, is known exactly in most string backgrounds with $\mathcal{N} \geq 4$ supersymmetry in $3+1$ dimensions. This is not yet so in $\mathcal{N}=2$ vacua such as type II on a generic CY3.
- The main difficulty is that $\Omega(\gamma, z)$ depends on the moduli z in an intricate way, due to wall-crossing phenomena associated to BPS bound states with any number of constituents.

Introduction

- The attractor mechanism selects a particular value z_{γ} of the moduli, known as the attractor or self-stability chamber, where most multi-centered bound states (in particular, all two-centered bound states), have decayed.
- The attractor indices $\Omega_{\star}(\gamma)=\Omega\left(\gamma, z_{\gamma}\right)$ determine the index $\Omega(\gamma, z)$ for any z through the attractor flow tree formula. For D4-D2-D0 charges at large volume, they possess interesting (mock) modular properties. [Alexandrov Banerjee Manschot BP, 2016-19]
- In general, at the attractor point there often exist multi-centered scaling solutions, where the centers can become arbitrarily close to each other, which contribute to the attractor index $\Omega_{\star}(\gamma)$.

Introduction

- There is a conjectural prescription, known as the Coulomb branch formula, for subtracting the contributions of scaling solutions and extracting the so called single-centered index $\Omega_{\mathrm{S}}(\gamma)$ (aka pure-Higgs indices). However the latter does not have a first principle definition yet.
- After reviewing aspects of multi-centered solutions, I will present some recent progress in proving the Coulomb branch formula in the context of quiver quantum mechanics, using supersymmetric localization.

Single-centered black holes in $\mathcal{N}=2$ supergravity

- Recall that $\mathcal{N}=2$ supergravity admits supersymmetric, spherically symmetric solutions corresponding to a BPS black hole of charge γ, with metric

$$
d s^{2}=-e^{2 U(r)} \mathrm{d} t^{2}+e^{-2 U(r)}\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega_{2}^{2}\right)
$$

with suitable flux and radial profile for the vector multiplet scalars

$$
r^{2} \frac{\mathrm{~d} U}{\mathrm{~d} r}=e^{U}\left|Z_{\gamma}\right| \quad, \quad r^{2} \frac{\mathrm{~d} z^{a}}{\mathrm{~d} r}=2 e^{U} g^{a \bar{b}} \partial_{\bar{z}}\left|Z_{\gamma}\right|
$$

where $Z_{\gamma}(z)=e^{\mathcal{K} / 2}\left(q_{\Lambda} X^{\wedge}(z)-p^{\wedge} F_{\Lambda}(z)\right)$ is the central charge.

Single-centered black holes in $\mathcal{N}=2$ supergravity

- As $r \rightarrow 0$, the moduli $z(r)$ are attracted to a critical point z_{γ} of $\left|Z_{\gamma}\right|$, independent of the moduli z_{∞} at spatial infinity. The geometry interpolates from $\mathbb{R}^{3,1}$ at $r=\infty$ to $A d S_{2} \times S^{2}$ at $r=0$.

Ferrara Kallosh Strominger 1995

- The Bekenstein-Hawking entropy is $S_{B H}=\pi\left|Z_{\gamma}\left(z_{\gamma}\right)\right|^{2}$, while the mass saturates the BPS bound, $\mathcal{M}=\left|Z_{\gamma}\left(z_{\infty}\right)\right|$.
- Since the solution is static, $\vec{\jmath}=0$ classically. This remains true quantum mechanically [Sen 2009].

Multi-centered black holes in $\mathcal{N}=2$ supergravity

- In addition, there may also exist multi-centered supersymmetric solutions. Near each center they reduce to the previous solution with charge γ_{i}. Near ∞ they look like a black hole of charge $\gamma=\sum_{i=1}^{n} \gamma_{i}$ and angular momentum $\vec{J}=\frac{1}{2} \sum_{i<j} \kappa_{i j} \frac{\vec{r}_{i j}}{r_{i j}}$, where $\kappa_{i j}=\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ is the Dirac pairing.
- The distances $r_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|$ are constrained by Denef's equations

$$
\forall i=1 \ldots n, \quad \sum_{j \neq i} \frac{\kappa_{i j}}{r_{i j}}=\zeta_{i}
$$

where $\zeta_{i}=R \operatorname{Im}\left[e^{-\mathrm{i} \varphi} Z_{\gamma_{i}}\left(z_{\infty}\right)\right]$ where $\varphi=\arg Z_{\gamma}\left(z_{\infty}\right)$ and $R>0$ (hence $\sum_{i} \zeta_{i}=0$). One should also check the absence of closed timelike curves.

- At the attractor point $z_{\infty}=z_{\gamma}, \zeta_{i}=-R \sum_{j} \kappa_{i j}$.

Multi-centered black holes in $\mathcal{N}=2$ supergravity

- If not empty, the space $\mathcal{M}_{n}\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right)$ of solutions mod translations has dimension $3 n-(n-1)-3=2 n-2$. It carries a symplectic two-form $\omega=\frac{1}{2} \sum_{i<j} \kappa_{i j} \sin \theta_{i j} \mathrm{~d} \theta_{i j} \mathrm{~d} \phi_{i j}$ such that $O(3)$ rotations are generated by the moment map \vec{J}.
de Boer El Showk Messamah van den Bleeken 2008
- For example, \mathcal{M}_{2} is empty when $\kappa_{12} \zeta_{1}<0$ (in particular at the attractor point $\left.\zeta_{1}=-R \kappa_{12}\right)$. If $\kappa_{12} \zeta_{1}>0, \mathcal{M}_{2}$ is a two-sphere with κ_{12} units of flux, corresponding to the dipole orientation. Wall-crossing takes place when $Z_{\gamma_{1}}$ and $Z_{\gamma_{2}}$ become aligned.
- Easy fact: If one can split the centers into two sets $S \cup \bar{S}$ such that $\kappa_{i j}>0$ for all $i \in S, j \in \bar{S}$, then \mathcal{M}_{n} is compact away from walls of marginal stability, and empty at the attractor point $\zeta_{i}=-R \sum_{j} \kappa_{i j}$.

Scaling solutions

In general, \mathcal{M}_{n} can be non-compact due to some scaling regions where the centers become arbitrarily close to each other.

- The simplest example occurs for $n=3$ and $\kappa_{12}, \kappa_{23}, \kappa_{31}$ of same sign (say positive) and satisfy the triangular inequalities

$$
\kappa_{12} \leq \kappa_{23}+\kappa_{31}, \quad \kappa_{23} \leq \kappa_{31}+\kappa_{12}, \quad \kappa_{31} \leq \kappa_{12}+\kappa_{23}
$$

There is a one-parameter family of solutions such that $r_{i j} \sim \lambda \kappa_{i j}+\mathcal{O}(\lambda)$ as $\lambda \rightarrow 0$, irrespective of the parameters ζ_{i}. In particular, such solutions continue to exist at the attractor point.

- Since $\vec{J}=\frac{1}{2} \sum_{i} \zeta_{i} \vec{r}_{i}$ and $\sum_{i} \zeta_{i}=0$, such solutions have $\vec{J} \simeq 0$ and become undistinguishable from single-centered black holes.

Existence of scaling solutions

- The existence of scaling solutions can be analyzed by setting $\zeta_{i}=0$ in Denef's equations. By exploiting the geometric inequalities on the edges of n-gons, one finds necessary conditions generalizing the ones above to any $n \geq 4$. [Beaujard Mondal BP 2021; Descombes and BP, to appear]
- In order to state the conditions, let us introduce a quiver Q with vertices $Q_{0}=\left\{v_{i}, i=1 \ldots n\right\}$ and with one arrow $v_{i} \rightarrow v_{j}$ whenever $\kappa_{i j}>0$. Let Q_{1} be the set of arrows and Q_{2} the set of simple oriented cycles. We define a cut as a subset $I \subset Q_{1}$ such that each cycle $C \in Q_{2}$ contains one and only one arrow.
- A necessary condition for existence of a scaling region where all n centers coalesce is that Q is strongly connected, and for any cut l,

$$
\sum_{(i \rightarrow j) \in I} \kappa_{i j} \leq \sum_{(i \rightarrow j) \notin I} \kappa_{i j}
$$

Existence of scaling solutions

- For example, for a cyclic quiver $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n} \rightarrow v_{1}$, this requires

$$
\kappa_{n 1} \leq \kappa_{12}+\kappa_{23}+\cdots+\kappa_{n-1, n}
$$

and cyclic permutations thereof. In that case, this follows trivially from $r_{i, i+1}=\lambda \kappa_{i, i+1}+\mathcal{O}\left(\lambda^{2}\right)$.

- In cases where the quiver admits a cut and a simple oriented cycle $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n} \rightarrow v_{1}$ running through all centers, the condition agrees with the conjecture in our work with Guillaume and Swapno:

$$
\sum_{i<j} \kappa_{i j} \geq 0 \quad \text { and cyclic perm. }
$$

Existence of scaling solutions

- In cases where no cuts exist (which happens when Q admits no R-charge), one has similar necessary conditions using a notion of weak cut.

- Remarkably, the same necessary conditions apply for the existence of multi-centered solutions at the attractor point, and for the existence of stable representations on the Higgs branch at the attractor point! [P. Descombes and BP, to appear]

Quantizing the space of multi-centered solutions

- In the absence of scaling regions, the centers become far separated as $R \rightarrow 0$, so we expect that the internal degrees of freedom of each black hole decouple from the configurational degrees of freedom.
- The latter are described classically by the BPS phase space $\left(\mathcal{M}_{n}, \omega\right)$. Quantum mechanically, they correspond to zero-modes of the Dirac operator for a charged particle on \mathcal{M}_{n} with flux $F=\omega$.
- Hence we expect that the total index can be written

$$
\Omega(\gamma, z) \stackrel{?}{=} \sum_{\gamma=\sum \gamma_{i}} g\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right) \prod_{i} \Omega_{\star}\left(\gamma_{i}\right)
$$

where $\Omega_{\star}\left(\gamma_{i}\right)$ are the attractor indices and $g\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right)$ is the index of the Dirac operator on $\left(\mathcal{M}_{n}, \omega\right)$. This is broadly correct but naive...

Quantizing the space of multi-centered solutions

- First, when some of the charges γ_{i} coincide, we must enforce Bose-Fermi statistics. As argued in [Manschot BP Sen 2010], one can use the simpler Boltzmann statistics, provided one replaces the BPS index by the rational index $\bar{\Omega}(\gamma, z)=\sum_{m \mid \gamma} \frac{1}{m^{2}} \Omega(\gamma / m, z)$. Hence a better guess is

$$
\bar{\Omega}(\gamma, z) \stackrel{?}{=} \sum_{\gamma=\sum \gamma_{i}} \frac{g\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)\right|} \prod_{i} \bar{\Omega}_{\star}\left(\gamma_{i}\right)
$$

- Second, in the presence of scaling regions, the phase space \mathcal{M}_{n} is non-compact and the Dirac operator is not self-adjoint (unless one specifies appropriate conditions at the boundary). Moreover it is unclear whether each center contributes $\bar{\Omega}_{\star}\left(\gamma_{i}\right)$ or $\bar{\Omega}_{S}\left(\gamma_{i}\right)$.

Flow tree formula

- One way to proceed is to insist that each center contributes $\bar{\Omega}_{\star}\left(\gamma_{i}\right)$. The prefactor $g\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right)$ then arises as a sequence of wall-crossings, leading to the attractor flow tree formula

$$
\bar{\Omega}(\gamma, z)=\sum_{\gamma=\sum \gamma_{i}} \frac{g_{\mathrm{tr}}\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)\right|} \prod_{i} \bar{\Omega}_{\star}\left(\gamma_{i}\right)
$$

where $g_{\mathrm{tr}}\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right)$ is given by a sum over stable flow trees:

$$
g_{\mathrm{tr}}\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right)=\sum_{T} \prod_{v \in V_{T}}\left\langle\gamma_{L(v)}, \gamma_{R(v)}\right\rangle
$$

corresponding to multi-centered solutions with nested structure:

Flow tree formula

- Each vertex v carries different ζ_{v}, obtained from the value at the parent vertex $\zeta_{p(v)}$ by evolving the attractor flow equations until it crosses the wall of marginal stability for $\gamma_{p(v)} \rightarrow \gamma_{L(p(v))}+\gamma_{R(p(v))}$. Up to rescaling, one has

$$
\zeta_{v}=\zeta_{p(v)}+\frac{\left\langle\gamma_{v},-\right\rangle}{\left\langle\gamma_{L(v)}, \gamma_{R(v)}\right\rangle} \zeta_{p(v)}\left(\gamma_{L(v)}\right)
$$

The flow tree contributes only if $\left\langle\gamma_{L(v)}, \gamma_{R(v)}\right\rangle \times \zeta_{v}\left(\gamma_{L(v)}\right)>0$ for all vertices [Manschot'10, Alexandrov BP '18; coulombHiggs Mathematica package]

- For this we need to assume that the flow never crosses fake walls where the central charges $Z_{\gamma_{R}}$ and $Z_{\gamma_{L}}$ are anti-aligned; moreover in case some of the γ_{i} 's coincide one needs to perturb ζ_{∞} at the root vertex to avoid non-primitive wall-crossings.
- This formula is now a mathematical theorem in the context of DT invariants for quivers. [Argüz Bousseau '21]

Coulomb branch formula

- The other way is to include only the bulk contribution to Dirac index $g\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right)$, but assign the boundary contributions to the indices carried by each center:

$$
\bar{\Omega}(\gamma, z)=\sum_{\gamma=\sum \gamma_{i}} \frac{g_{\mathrm{C}}\left(\left\{\gamma_{i}, \zeta_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)\right|} \prod_{i} \bar{\Omega}_{\mathrm{tot}}\left(\gamma_{i}\right)
$$

Manschot BP Sen 2011; CoulombHiggs Mathematica package where $\bar{\Omega}_{\text {tot }}\left(\gamma_{i}\right)$ includes contributions from single-centered black holes and scaling configurations thereof:

$$
\Omega_{\mathrm{tot}}(\alpha)=\Omega_{\mathrm{S}}(\alpha)+\sum_{m \geq 3} \sum_{\alpha=\sum_{i=1}^{m} \beta_{i}} H\left(\left\{\beta_{i}\right\}\right) \prod_{i=1}^{m} \Omega_{\mathrm{S}}\left(\beta_{i}\right)
$$

- The coefficient $H\left(\left\{\beta_{i}\right\}\right)$ comes from the boundary contribution to the Dirac index on the non-compact phase space $\mathcal{M}_{m}\left(\left\{\beta_{i}, \zeta_{i}\right\}\right)$
- Evaluating the Coulomb branch formula at z_{γ} allows to express $\Omega_{\star}(\gamma)$ in terms of $\Omega_{S}(\gamma)$.

Coulomb index

- The bulk contribution to the Dirac index can be computed by localization with respect to rotations J_{3}. The fixed points correspond to collinear configurations satisfying a 1D version of Denef's equations [Manschot BP Sen 2010]:

$$
\forall i=1 \ldots n, \quad \sum_{i+i} \frac{\kappa_{i j}}{\left|x_{i}-x_{j}\right|}=\zeta_{i}
$$

- Solutions (when they exist) are isolated, and labelled by the order σ in which centers appear along the axis. Each such solution contributes $\pm y^{2 J_{3}}$ to the equivariant Dirac index:

$$
g_{\mathrm{C}}\left(\left\{\gamma_{i}, \zeta_{i}\right\}, y\right)=\frac{(-1)^{n-1+\sum_{i<j} \kappa_{i j}}}{(y-1 / y)^{n-1}} \sum_{\sigma \in S_{n}} \epsilon(\sigma) y^{\sum_{i<j} \kappa_{\sigma(i) \sigma(j)}}
$$

- When \mathcal{M}_{n} is compact, this produces a symmetric Laurent coefficient with integer coefficients, with a smooth limit as $y \rightarrow 1$.

Coulomb index (continued)

- In presence of scaling regions, $g_{\mathrm{C}}\left(\left\{\gamma_{i}, \zeta_{i}\right\}, y\right)$ is singular in the limit $y \rightarrow 1$. We can repair this by adjusting $H\left(\left\{\beta_{i}\right\}, y\right)$. Since scaling solutions have $\vec{J} \sim 0$, we postulate that $H\left(\left\{\beta_{i}\right\}, y\right)$ introduces contributions $y^{2 J_{3}}$ with smallest possible J_{3}.

- Specifically, $H\left(\left\{\beta_{i}\right\}, y\right)$ is determined recursively by requiring
(1) i) $H\left(\left\{\beta_{i}\right\}, y\right)$ is invariant under $y \rightarrow 1 / y$
(2 ii) $H\left(\left\{\beta_{i}\right\}, y\right) \rightarrow 0$ as $y \rightarrow \infty$
(3) iii) in the expression for $\Omega(\gamma, z)$ in terms of single-centered invariants, the coefficient of the monomial $\Pi_{i} \Omega_{\mathrm{s}}\left(\beta_{i}\right)$ - denoted by $\hat{g}\left(\left\{\beta_{i}, \zeta_{i}\right\}, y\right)$ - is a symmetric Laurent polynomial in y.
- Since $H\left(\left\{\beta_{i}\right\}, y\right)$ does not depend on ζ, it can be evaluated at any point, e.g. at the attractor point.

Coulomb index (continued)

- As an example, for $n=3$ centers satisfying triangular inequalities, the Coulomb branch formula for $\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}$ at the attractor point gives

$$
\Omega_{\star}(\gamma)=\Omega_{\mathrm{S}}(\gamma)+\left[g_{\mathrm{C}}^{\star}+H\right] \Omega_{\mathrm{S}}\left(\gamma_{1}\right) \Omega_{\mathrm{S}}\left(\gamma_{2}\right) \Omega_{\mathrm{S}}\left(\gamma_{3}\right)
$$

where (assuming that $\kappa_{12}>\kappa_{23}, \kappa_{31}$ and $\kappa_{12}+\kappa_{23}+\kappa_{31}$ is even)

$$
g_{\mathrm{C}}^{\star}=\frac{y^{\kappa_{23}+\kappa_{31}-\kappa_{12}}+y^{-\kappa_{23}-\kappa_{31}+\kappa_{12}}}{(y-1 / y)^{2}}, \quad H=\frac{-2}{(y-1 / y)^{2}}
$$

such that $g_{\mathrm{C}}^{\star}+H$ is a symmetric Laurent polynomial, with a finite, integer limit $\frac{1}{4}\left(\kappa_{23}+\kappa_{31}-\kappa_{12}\right)^{2}$ as $y \rightarrow 1$.

- Our aim will be to derive this apparently ad hoc prescription in the framework of quiver quantum mechanics.

Quiver quantum mechanics

- Consider a SUSY quantum mechanics in $0+1$ dimensions, obtained by reducing $\mathcal{N}=1$ gauge theory in $3+1$ dimension, with matter content encoded in a quiver: each node $\ell=1 \ldots K$ represents a $U\left(N_{\ell}\right)$ vector multiplet (VM), each arrow $k \rightarrow \ell$ represents a chiral multiplet (CM) $\Phi_{k, \ell}^{\alpha}$ in $\left(N_{\ell}, \bar{N}_{k}\right)$ representation of $U\left(N_{\ell}\right) \times U\left(N_{k}\right)$.
- In addition, one must specify Fayet-lliopoulos terms $\zeta_{\ell} \in \mathbb{R}$ and (in presence of closed oriented loops) a superpotential $W(\Phi)$. We assume that one can assign R-charge $R_{k \ell}$ to $\Phi_{k, \ell}^{\alpha}$ such that W has R-charge 2.
- The quantum mechanics admits two branches: the Higgs branch, where the gauge group $G=\prod_{\ell=1}^{K} U\left(N_{\ell}\right)$ is completely broken by vevs of chiral multiplet scalars, and the Coulomb branch where G is broken to its Cartan torus by vevs of vector multiplet scalars.

Quiver quantum mechanics: Higgs branch

- On the Higgs branch, VM are massive and can be integrated out. Classically, SUSY vacua $\mathcal{M}_{H}(\gamma, \zeta)$ correspond to solutions of the F-term and D-term equations modulo the action of G,

$$
\begin{array}{r}
\forall \ell: \sum_{\gamma_{\ell k}>0} \Phi_{\ell k}^{*} T^{a} \Phi_{\ell k}-\sum_{\gamma_{k \ell}>0} \Phi_{k \ell}^{*} T^{a} \Phi_{k \ell}=\zeta_{\ell} \operatorname{Tr}\left(T^{a}\right) \\
\forall k, \ell, \alpha: \partial_{\Phi_{k \ell, \alpha}} W=0
\end{array}
$$

- Mathematically, \mathcal{M}_{H} is the moduli space $\mathcal{M}_{H}(\gamma, \zeta)$ of stable quiver representations with dimension vector $\gamma=\left(N_{1}, \ldots, N_{K}\right)$ and stability condition ζ.

Quiver quantum mechanics: Higgs branch

- BPS states correspond to Dolbeault cohomology classes of degree (p, q) on in $\mathcal{M}_{H}(\gamma, \zeta)$, counted by the Hodge polynomial

$$
\Omega(\gamma, y, t, \zeta)=\sum_{p, q=0}^{2 d} h_{p, q}\left(\mathcal{M}_{H}(\gamma, \zeta)\right)(-y)^{p+q-d} t^{p-q}
$$

The fugacity y keeps track of angular momentum J_{3}^{L}, while t is conjugate to J_{3}^{R} inside R-symmetry group $S U(2)_{L} \times S U(2)_{R}$.

- The refined BPS index is the special value at $t=1 / y$, known as $\chi_{y^{2}}$-genus. When Dolbeault cohomology is supported in degree $p=q$, it coincides with the Poincaré polynomial. In either case, it reduces to the Euler number in the unrefined limit $y \rightarrow 1$.

Quiver quantum mechanics: Coulomb branch

- On the Coulomb branch, after integrating out CM and off-diagonal VM, the remaining VM scalars \vec{r}_{i} for the Cartan torus satisfy Denef's equations for $n=\sum_{\ell=1}^{K} N_{\ell}$ centers,

$$
\forall i=1 \ldots n, \quad \sum_{j \neq i} \frac{\kappa_{i j}}{r_{i j}}=\zeta_{i}
$$

where $\kappa_{i j}$ is the (signed) number of arrows $k \rightarrow \ell$ whenever $i \in U(k), j \in U(\ell)$ (or zero when $k=\ell$).

- When the phase space has no scaling regions, the distances $r_{i j}$ are bounded from below and it is legitimate to integrate out the CM and off-diagonal VM. The equivariant Dirac index of $\left(\mathcal{M}_{n}, \omega\right)$ is then expected to agree with the $\chi_{y^{2}}$-genus of the Higgs branch.
- In the presence of scaling solutions, one may hope to restore agreement for appropriate values of single-centered indices $\Omega_{\mathrm{S}}(\gamma)$.

Manschot BP Sen 2012, Lee Wang Yi 2012

Witten index from localization

- Using supersymmetric localization, one may reduce the functional integral computing the Witten index (i.e. the $\chi_{y^{2}}$-genus of the Higgs branch) to a finite dimensional integral. For Abelian quivers,

$$
\Omega(\gamma, \zeta)=\int\left(\frac{\beta^{2}}{8 \pi^{3}} \mathrm{~d} u \mathrm{~d} \bar{u} \mathrm{~d} D\right)_{\text {Benini Eager Hori Tachikawa 2013: Hori Kim Yi } 2}^{n-1} g(u, D) \operatorname{det} h(u, D) e^{-\beta S(D, \zeta)}
$$

where $u_{i}=\frac{\beta}{2 \pi}\left(A_{i}-i x_{i}\right)$ are the complexified gauge fields (subject to $\sum_{i} u_{i}=0$), D_{i} are the auxiliary fields with action

$$
S(D)=\frac{1}{2 e^{2}} \sum_{i=1}^{n} D_{i}^{2}-\mathrm{i} \sum_{i=1}^{n} \zeta_{i} D_{i}
$$

and det $h(u, D)$ comes from saturating fermionic zero-modes.

Witten index from localization

- $g(u, D)$ is a one-loop fluctuation determinant (with $y=e^{\mathrm{i} \pi z}$):

$$
g(u, D)=(\sin \pi z)^{n-1} \prod_{i \rightarrow j}\left[\prod_{m \in \mathbb{Z}} \frac{\left(m+\bar{u}_{i}-\bar{u}_{j}^{\prime}+\frac{1}{2} R_{i j} \bar{z}\right)\left(m+u_{i}-u_{j}^{\prime}+\left(\frac{1}{2} R_{i j}-1\right) z\right)}{\left|m+u_{i}-u_{j}^{\prime}+\frac{1}{2} R_{i j} z\right|^{2}-\frac{i \beta^{2}}{4 \pi^{2}}\left(D_{i}-D_{j}^{\prime}\right)}\right]^{\kappa_{i j}}
$$

- Upon using the key identity

$$
\partial_{\bar{u}_{i}} g(u, D)=-\frac{\mathrm{i} \beta^{2}}{4 \pi^{2}} h_{i j}(u, D) D^{j} g(u, D)
$$

the integral over u, \bar{u} can be cast into a contour integral in the u-plane, and the integral over D evaluated by computing the residue at $D=0$. This leads to the Jeffrey-Kirwan residue formula for the index. [Hori Kim Yi 2014]

- Instead, we shall perform the integral using saddle point methods, which are exact as $e \rightarrow 0, \beta \rightarrow \infty$.

Witten index from localization

- The infinite product can be evaluated explicitly, leading to

$$
\begin{gathered}
\frac{g(u, D)}{g(u, 0)}=\prod_{i \rightarrow j}\left[\frac{\cosh \beta \Sigma_{i j}-\cos \beta V_{i j}}{\cosh \left(\beta \sqrt{\sum_{i j}^{2}-\mathrm{i} D_{i j}}\right)-\cos \beta V_{i j}}\right]^{\kappa_{i j}} \\
g(u, 0)=\prod_{i \rightarrow j}\left[\frac{\sin \pi\left(u_{j}-u_{i}\right)}{\sin \pi\left(u_{i}-u_{j}-z\right)}\right]^{\kappa_{i j}}
\end{gathered}
$$

where $u_{i}-u_{j}+\frac{R_{i j}}{2} z=\frac{\beta}{2 \pi}\left(V_{i j}-i \Sigma_{i j}\right)$ and $D_{i j}=D_{i}-D_{j}$.

- In the limit where $\beta|\Sigma| \gg 1$ and $|D| \leq|\Sigma|^{2}$, the ratio simplifies to

$$
\frac{g(u, D)}{g(u, 0)} \sim \prod_{i \rightarrow j}\left[e^{-\beta \sqrt{\Sigma_{i j}^{2}-\mathrm{i} D_{i j}}+\beta\left|\Sigma_{i j}\right|}\right]^{\kappa_{i j}} \sim e^{\frac{i}{2} \sum_{i \rightarrow j} \frac{\kappa_{i j} \mid D_{i j}}{\Sigma_{i j}}}
$$

Witten index from localization

- Plugging back into the integral yields

$$
\Omega(\gamma, \zeta)=\int\left(\frac{\beta^{2}}{8 \pi^{3}} \mathrm{~d} u \mathrm{~d} \bar{u} \mathrm{~d} D\right)^{n-1} g(u, 0) \operatorname{det} h(u, D) e^{-\beta S(D, \Sigma, \zeta)}
$$

with a Σ-dependent action,

$$
S(D, \Sigma, \zeta)=\frac{1}{2 e^{2}} \sum_{i=1}^{n} D_{i}^{2}-\mathrm{i} \sum_{i=1}^{n} \zeta_{i} D_{i}-\frac{\mathrm{i}}{2} \sum_{i \rightarrow j} \kappa_{i j} \frac{D_{i j}}{\left|\Sigma_{i j}\right|},
$$

- The integral over D is Gaussian, dominated by a saddle point at

$$
D_{i}^{\star}=-\mathrm{i} e^{2}\left(\zeta_{i}-\sum_{j \neq i} \frac{\kappa_{i j}}{2\left|\Sigma_{i j}\right|}\right)
$$

where $\Sigma_{i j}=\Sigma_{i}-\Sigma_{j}-\frac{\pi \operatorname{Im} z}{\beta} R_{i j}$ with $\Sigma_{i}=-\frac{2 \pi}{\beta} \operatorname{Im} u_{i}$.

Witten index from localization

- After integrating over D, the integral over $\Sigma_{i} \sim \operatorname{Im} u_{i}$ is dominated by configurations such that $D_{i}^{\star}(\Sigma)=0$. This produces a deformation of the 1D Denef equations:

$$
\begin{equation*}
\forall i=1 \ldots n, \quad \sum_{j \neq i} \frac{\kappa_{i j}}{\left|\Sigma_{i}-\Sigma_{j}-\frac{\pi \operatorname{Im} z}{\beta} R_{i j}\right|}=\zeta_{i} \tag{*}
\end{equation*}
$$

- Denoting by S the set of solutions for $\operatorname{Im} u$, the Gaussian integral around S cancels (up to a crucial sign) the factor of det h in the measure, and one is left with the integral over $\operatorname{Re} u_{i} \in[0,1]$,

$$
\Omega(\gamma, \zeta)=\sum_{s \in S} \int_{[0,1]^{e}} \operatorname{sgn}\left(\operatorname{det} \partial_{i} \partial_{j} \mathcal{W}\right) g\left(u_{i}(s), 0\right) \frac{\mathrm{d}^{n-1} \operatorname{Re}(u)}{(1 / y-y)^{n-1}}
$$

where \mathcal{W} has critical points at solutions of $(*)$,

$$
\mathcal{W}=-\frac{1}{2} \sum_{i<j} \kappa_{i j} \operatorname{sgn}\left(\Sigma_{j}-\Sigma_{i}-\frac{\pi \operatorname{Im} z}{\beta} R_{j i}\right) \log \left|\Sigma_{i}-\Sigma_{j}-\frac{\pi \operatorname{Im} z}{\beta} R_{i j}\right|-\sum_{i} \zeta_{i} \Sigma_{i}
$$

Witten index from localization

- For quivers without oriented loops, the R-charge $R_{i j}$ can be reabsorbed in Σ_{i}, and one recovers the standard 1D equations.
- In the limit $\beta \rightarrow \infty$, the prefactor $g\left(u_{i}(s), 0\right)$ becomes independent of Reu and reduces to the standard angular momentum $y^{2 J_{3}(s)}$,

$$
\prod_{i \rightarrow j}\left[\frac{\sin \pi\left(u_{j}-u_{i}\right)}{\sin \pi\left(u_{i}-u_{j}-z\right)}\right]^{\kappa_{i j}} \longrightarrow(-1)^{\sum_{i<j} \kappa_{i j}} e^{\mathrm{i} \pi z \sum_{i<j} \kappa_{i j} \operatorname{sgn}\left(\Sigma_{i}-\Sigma_{j}\right)}
$$

This reproduces the MPS prescription for the Coulomb index !
Ohta Sasai 2015; Beaujard Mondal BP 2021

Witten index from localization

- For quivers with loops, there are two classes of solutions to (*), differing by their behavior as $\beta \rightarrow \infty$.
(1) In the first class, the solution reduces to the usual solution of undeformed Denef equations and the same result applies. This produces the bulk part g_{c} of the equivariant Dirac index.
(2) In the second class, $\beta|\Sigma|$ stays of order $\operatorname{Im} z$ and one cannot neglect the deformation, but one can set $\zeta_{i}=0$. This produces the sum $\Omega_{\text {tot }}=\Omega_{S}+H \prod \Omega_{S}$ of the single-centered index and the boundary part H of the equivariant Dirac index.
- Unfortunately, it does not appear to be possible to disentangle the two separate contributions in $\Omega_{\text {tot }}=\Omega_{S}+H \prod \Omega_{S}$.

Single-centered invariants vs. stacky invariants

- For cyclic quivers, we can instead split $\Omega_{\text {tot }}=\Omega_{\text {equal }}+\Omega_{\text {unequal }}$ depending whether the signs $\sigma_{\ell}=\operatorname{sgn}\left(\Sigma_{\ell}-\Sigma_{\ell+1}-\frac{\pi \operatorname{Imz}}{\beta} R_{\ell}\right)$ for scaling collinear solutions are all equal or distinct.
- Curiously, $\Omega_{\text {equal }}$ agrees with the stacky invariant $\mathcal{I}(\gamma)$ of the moduli space of quiver representations for trivial stability, $\zeta_{i}=0$! When triangular inequalities are violated, $\Omega_{\text {equal }}$ and $\Omega_{\text {unequal }}$ are non-zero but cancel in the sum.
- Since both H and the 'unequal' contributions grow polynomially as $\kappa_{i j} \rightarrow \infty$, while $\Omega_{\mathrm{S}}(\gamma)$ grows exponentially, one has $\Omega_{\mathrm{S}}(\gamma) \sim \mathcal{I}(\gamma)$ to exponential accuracy.

Conclusion

- We have outlined a derivation of the Coulomb branch formula in the context of quiver quantum mechanics. Some subtleties remain to be understood for non-Abelian quivers with loops.
- A first principle definition of the single-center/pure Higgs invariant $\Omega_{\mathrm{S}}(\gamma)$ remains an outstanding problem. With Ashoke and Jan, we conjectured that $\Omega_{\mathrm{S}}(\gamma, y, t)$ is independent of y (i.e. supported in middle cohomology), which is a powerful prediction on the structure of the cohomology of quiver moduli spaces.
- The Coulomb branch formula and attractor flow formulae should hold more generally for DT invariants on compact Calabi-Yau threefolds. Can one compute $\Omega_{\mathrm{S}}(\gamma)$ and $\Omega_{\star}(\gamma)$ for some class of charges, and perform precision tests of holography ?
- Tune in for Jan's talk tomorrow for more on this.

Conclusion

Thank you for your attention!

