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Congratulations Albert !

Almost 50 years ago, jointly with Belavin, Polyakov and Tyupkin,
Albert Schwarz discovered instantons in Yang-Mills theories. This
revolutionized our understanding of gauge theories and paved the
way for the mid 90’s breakthroughs in controlling non-perturbative
dynamics of supersymmetric gauge theories and string theories.

I first met Albert at the workshop “D-branes, vector bundles and
bound states” at IHES in June 1999. This led to a joint paper on
Morita equivalence and T-duality, which is mostly forgotten.
Albert’s work was quite influential on me and many other
researchers working at the juncture between high energy
theoretical physics and mathematics. In some ways, he
epitomizes the idea of "Physical Mathematics".
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Today’s talk

Today, I will discuss some mathematical relations between various
enumerative invariants of a Calabi-Yau threefold X , which were
(by and large) discovered by thinking about non-perturbative
aspects of type II strings compactified on X .

This includes the spectrum of BPS states as well as instanton
corrections to the low energy effective action, which turn out to be
closely connected.
One of the main physical motivations is to understand the
microscopic origin of the Bekenstein-Hawking entropy of black
holes. This requires controlling the behavior of these enumerative
invariants at large degree. When present, modular symmetries
give excellent control on their growth.
This is loosely connected to Albert’s work with Maxim and Vadim
Vologodsky (2006), and later with Johannes Walcher (2013-17).
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Gromov-Witten invariants

Let X be a smooth, projective CY threefold. The Gromov-Witten
invariants n(g)

β count genus g curves Σ with [Σ] = β ∈ H2(X ,Z).
More precisely, they are integrals over the moduli space of stable
maps Mg,n → X . They depend only on the symplectic structure of
X and take rational values.

Physically, they determine certain protected couplings in the low
energy effective action, of the form Fg(t)R2W 2g−2, depending only
on the complexified Kähler moduli t and receiving worldsheet
instanton corrections: Fg(t) =

∑
β n(g)

β e2πit ·β

Antoniadis Gava Narain Taylor’93

Mirror symmetry allows to compute F0 and F1. Holomorphic
anomaly equations along with boundary conditions near the
discriminant locus and MUM points allow to determine them up to
a certain genus gint (= 51 for the quintic threefold X5).

Bershadsky Cecotti Ooguri Vafa’93; Huang Klemm Quackenbush’06
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Gopakumar-Vafa invariants

While GW invariants take rational values, the Gopakumar-Vafa
invariants GV (g)

β defined by

∞∑
g=0

λ2g−2Fg(t) =
∞∑

g=0

∞∑
k=1

∑
β

GV (g)
β

k

(
2 sin kλ

2

)2g−2
e2πikt ·β

take integer values. For g = 0, GV (0)
β =

∑
k |β

1
k3 n(0)

β/k . Moreover,
they vanish if g is large enough for fixed β. [Ionel Parker’13]

GV (0)
β counts BPS bound states of D2-branes with charge β, and

arbitrary number of D0-branes, while GV (g≥1)
β keep track of their

angular momentum (more on this below).
The formula above arises by a one-loop computation of the
effective action in a constant graviphoton background W ∝ λ à la
Euler-Heisenberg. [Gopakumar Vafa’98]
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GV invariants and 5D black holes

Viewing type II string theory as M-theory on a circle, D2-branes lift
to M2-branes wrapped on curve inside X , yielding BPS black
holes in R1,4. These carry in general angular momentum (jL, jR).

Keeping track of m = jzL only, the number of states is

Ω(β,m) =

gmax(β)∑
g=0

(
2g + 2

g + 1 + m

)
GV (g)

β

Amazingly, it appears that Ω(β,m) ∼ e2π
√

β3−m2 for large β,m
keeping m2/β3 fixed, in agreement with the Bekenstein-Hawking
entropy of 5D black holes ! [Klemm Marino Tavanfar’07].

The GV invariants GV (g)
β can be defined rigorously using perverse

cohomology on the moduli stack of stable sheaves, with some
choice of orientation [Maulik Toda’16], but the relation to
Gromov-Witten invariants is still mysterious.
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GV invariants and D6-brane bound states

Instead of considering M/X × S1 × R4, one may take
M/X × TN × R, where TN is a unit charge Taub-NUT space. This
descends to a D6-brane on X × R3,1.

D6-D2-D0 bound states of charge (1,0, β, n) are described
mathematically by stable pairs E : OX

s→ F where F is a pure
1-dimensional sheaf with ch1 F = β and χ(F ) = n and s has
zero-dimensional kernel. The Pandharipande Thomas invariant
PT (β,n) is the Euler characteristic of the corresponding moduli
space (weighted by Behrend’s function).
Since TN is locally R4, one expects the same low energy effective
action as in flat space. This suggests a relation of the form

∑
β,n

PT (β,n)e2πit ·βqn ≃ exp

 ∞∑
g=0

λ2g−2Fg(t)


Dijkgraaf Vafa Verlinde’06
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GV invariants and D6-brane bound states

More precisely, PT invariants are related to GV invariants by [Maulik

Nekrasov Okounkov Pandharipande’06]

∑
β,n

PT (β,n)e2πit ·βqn =
∏
β,g,ℓ

(
1 − (−q)g−ℓ−1e2πit ·β

)(−1)g+ℓ

(
2g − 2

ℓ

)
N(g)
β

For n close to the Castelnuovo bound n ≥ 1 − gmax(β), this
reduces to PT (β,n) =

∑gmax(β)
g=1

( 2g−2
g−1−n

)
GV (g)

β

The Donaldson-Thomas invariant DT (β,n) is a variant of PT
invariant treating D0-branes differently,∑

β,n

DT (β,n)e2πit ·βqn = M(−q)χX
∑
β,n

PT (β,n)e2πit ·βqn

where M(q) =
∏

k (1 − qk )−k is the Mac-Mahon function.
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Generalized Donaldson-Thomas invariants

More generally, D6-D4-D2-D0 bound states are described by
stable objects in the bounded derived category of coherent
sheaves DbCoh(X ) [Kontsevich’95, Douglas’01]. Objects E ∈ C are

bounded complexes E = (. . .
d−2
→ E−1 d−1

→ E0 d0
→ E1 d1

→ . . . )

Stable objects are counted by the generalized Donaldson-Thomas
invariant Ω̄σ(γ), where γ ∈ Knum(X ) ∼ Z2b2(X)+2 and σ = (Z ,A) is
a Bridgeland stability condition. In particular, ∀E ∈ A,
(i) ImZ (E) ≥ 0 and (ii) ImZ (E) = 0 ⇒ ReZ (E) < 0.
The space of stability conditions Stab C is a complex manifold of
dimension dimKnum(X ) = 2b2(X ) + 2, unless it is empty.
For X a a projective CY3, stability conditions are only known to
exist only for the quintic threefold X5 and a couple of other
examples [Li’18, Koseki’20, Liu’21]
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Generalized Donaldson-Thomas invariants

Ω̄σ(γ) is roughly the weighted Euler number of the moduli stack of
semi-stable objects Mσ(γ), where semi-stability means
argZ (E ′) ≤ argZ (E) for any subobject E ′ ⊂ E .

Ω̄σ(γ) takes rational values, but conjecturally
Ωσ(γ) :=

∑
k |γ

µ(k)
k2 Ω̄σ(γ/k) is integer.

Ωσ(γ) may jump on co-dimension 1 walls in Stab C where some
the central charge Z (γ′) of a subobject E ′ ⊂ E of charge γ′

becomes aligned with Z (γ). The jump is governed by a universal
wall-crossing formula [Joyce Song’08, Kontsevich Soibelman’08]
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D4-D2-D0 indices as rank 0 DT invariants

The main interest in this talk will be rank 0 DT invariants
Ω(0,p, β, n) counting D4-D2-D0 brane bound states supported on
a divisor D with class [D] = p ∈ H4(X ,Z).

Viewing IIA=M/S1, they arise from M5-branes wrapped on D × S1.
In the limit where S1 is much larger than X , they are described by
a two-dimensional superconformal field theory with (0,4) SUSY.
DT invariants Ω(0,p, β, n) (in suitable chamber) arise as Fourier
coefficients of the elliptic genus.
When D is very ample, the central charges are

cL = p3 + c2(X ) · p = χ(D) , cR = p3 +
1
2

c2(X ) · p

Cardy’s formula predicts a growth Ω(0,p, β, n → ∞) ∼ e2π
√

p3 n in
perfect agreement with Bekenstein-Hawking formula [Maldacena

Strominger Witten’97].
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Mock modularity of rank 0 DT invariants

When p is primitive, there are no walls extending to large volume,
so the choice of chamber is moot. The generating series

hpa,µa(τ) :=
∑

n

Ω(0,pa, µa,n) qn+ 1
2µaκabµb− 1

2 paµa−χ(D)
24

should be a vector-valued, weakly holomorphic modular form of
weight w = −1

2b2(X )− 1 in the Weil representation of the lattice
Λ∗ = H4(X ,Z) with quadratic form κabcpc . Note that µ ∈ Λ/Λ∗, and
n is bounded from below by the Bogomolov-Gieseker inequality

In general, we predict that the generating series of DT invariants
Ω∗(0,p, β, n) at the large volume attractor point ta = κabµb + iλpa,
λ → ∞ is a weakly holomorphic mock modular form of depth
k − 1, where k is the largest integer such that p/k is primitive.
[Alexandrov BP Manschot’16-20]
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Mock modularity of rank 0 DT invariants

Specifically, there exists explicit non-holomorphic theta series
Θn({pi}, τ, τ̄) such that

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

transforms as a modular form of weight −1
2b2(Y)− 1. Moreover

the completion satisfies an explicit holomorphic anomaly equation,

∂τ̄ ĥp(τ, τ̄) =
∑

p=
∑n≥2

i=1 pi

Θ̂n({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)

The derivation relies on the study of instanton corrections to the
low energy effective action after compactifying on a circle, and
implementing SL(2,Z) symmetry manifest from IIA/S1 = M/T 2.
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Mock modularity of rank 0 DT invariants

When X is K3-fibered, modularity is known to hold for vertical
D4-brane charge, using the relation to Noether-Lefschetz
invariants. In that case, no modular anomaly due to
κabcpapbpc = 0. [Bouchard Creutzig Diaconescu Doran Quigley Sheshmani’16]

For non-compact CY threefolds of the form X = KS where S is a
Fano surface, rank 0 DT invariants reduce to Vafa-Witten
invariants. They coincide with DT invariants for the moduli space
of certain quivers with potential. Modularity holds for rank r = 1 by
Goettsche’s formula. Mock modularity holds for S = P2, r = 2,3
by results of [Klyachko’91, Yoshioka’94, Manschot]

In general however, the origin of this (mock) modularity is
completely obscure.
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Mock modularity of rank 0 DT invariants

Our aim is to test this prediction for CY threefolds with Picard rank
1, by computing the first few coefficients in the q expansion and
determine the putative (mock) modular form.

This was first attempted by [Gaiotto Strominger Yin ’06-07] for the quintic
threefold X5 and a few other hypergeometric models. They were
able to guess the first few terms for primitive D4-brane charge,
and find a unique modular completion.
We shall compute many terms rigorously, obtaining high precision
tests of modularity, and generalize to two units of D4-brane charge
for some models.

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23
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From rank 1 to rank 0 DT invariants

In a series of papers, [Soheyla Fezbakhsh and Richard Thomas’20-22] have
related rank r DT invariants (including r = 0, counting D4-D2-D0
bound states) to rank 1 DT invariants, hence to GV invariants.

The key idea is to use wall-crossing in a family of weak stability
conditions parametrized by b + it ∈ H, with central charge

Zb,t(E) =
i
6

t3 chb
0(E)− 1

2
t2 chb

1(E)− it chb
2(E) + 0 chb

3(E)

with chb
k (E) =

∫
Y H3−ke−bH ch(E). The heart Ab is generated by

length-two complexes E d→ F with chb
1(E) > 0, chb

1(F) ≤ 0.
The JS wall-crossing formula holds for this family, even though
they are not genuine stability conditions. In fact, tilt-stability
provide the first step in constructing genuine stability conditions
near the large volume point [Bayer Macri Toda’11]
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Rank 0 DT invariants from GV invariants

Tilt stability agrees with Gieseker stability at large volume, but the
chamber structure is much simpler: walls are straight lines in the
plane spanned by (b,w = 1

2b2 + 1
6 t2), with w > 1

2b2.

νb,w (E) = ch2 .H−w ch0 .H3

ch1 .H2−b ch0 .H3

ϖ(E) =
(
ch1 .H2

ch0 .H3 ,
ch2 .H
ch0 .H3

)
ϖ̃(E) =

(
2 ch2 .H
ch1 .H2 ,

3 ch3
ch1 .H2

)

Importantly, for any νb,w -semistable object E there is a conjectural
inequality on Chern classes Ci :=

∫
Y chi(E).H3−i [Bayer Macri Toda’11;

Bayer Macri Stellari’16]

(C2
1 − 2C0C2)w + (3C0C3 − C1C2)b + (2C2

2 − 3C1C3) ≥ 0
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Rank 0 DT invariants from GV invariants

By studying wall-crossing between the empty chamber provided
by BMT bound and large volume, [Feyzbakhsh Thomas’20-22] show that
D4-D2-D0 indices can be computed from rank 1 DT or PT
invariants, which are in turn related to GV invariants.

In particular for (β,n) large enough, the PT invariant counting
tilt-stable objects of class (−1,0, β, n) is given by [Feyzbakhsh’22]

PT (β,n) = (−1)⟨D6(1),γ⟩+1⟨D6(1), γ⟩Ω(γ)

with D6(1) := OY(H)[1] and γ = (0,H, β, n). By tensoring with
OX (mH) for m ≥ m0(β,n) large enough,

Ω(γ) = (−1)⟨D6(1−m),γ⟩+1
⟨D6(1−m),γ⟩

PT (β′,n′)

{
β′ = β + mH
n′ = n − mβ.H − H3

2 m(m + 1)
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A new explicit formula (S. Feyzbakhsh’23)

Unfortunately, the required values of β′,n′ are prohibitively large.
But one can still control walls for lower values of m.

Let (Y,H) be a smooth polarised CY threefold with Pic(Y) = Z.H
satisfying the BMT conjecture.
Fix m ∈ Z, β ∈ H2(Y,Z) and define x = β.H

H3 , α = − 3m
2β.H

f (x) :=



x + 1
2 if 0 < x < 1√

2x + 1
4 if 1 < x < 15

8
2
3x + 3

4 if 15
8 ≤ x < 9

4
1
3x + 3

2 if 9
4 ≤ x < 3

1
2x + 1 if 3 ≤ x

1

2
1

15

8

9

4
3 4

x

2

3

4

α
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A new explicit formula (S. Feyzbakhsh’23)

Theorem (wall-crossing for class (−1,0, β,−m):
If f (x) < α then the stable pair invariant PT (β,m) equals∑

(m′, β′)

(−1)χm′,β′χm′,β′PT (β′,m′) Ω
(

0, H, H2

2 − β′ + β , H3

6 + m′ − m − β′.H
)
,

where χm′,β′ = β.H + β′.H + m − m′ − H3

6 − 1
12c2(Y).H.

The sum runs over (β′,m′) ∈ H2(Y,Z)⊕ H0(Y,Z) such that

0 ≤ β′.H ≤H3

2 + 3mH3

2β.H + β.H

− (β′.H)2

2H3 − β′.H
2 ≤ m′ ≤ (β.H−β′.H)2

2H3 + β.H+β′.H
2 + m

In particular, β′.H < β.H.

Corollary (Castelnuovo bound): PT (β,m) = 0 unless

m ≥ − (β.H)2

2H3 − β.H
2
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Modularity for one-modulus compact CY

Using Soheyla’s formula and known GV invariants, we could
compute a large number of coefficients in the generating series of
Abelian (=unit D4-brane charge) rank 0 DT invariants in
one-parameter hypergeometric threefolds, including the quintic X5.

In all cases (except X4,2,X3,2,2,X2,2,2,2 where current knowledge of
GV invariants is insufficient), we could find a linear combination of
the following vv modular forms matching all computed coeffs:

Ea
4 Eb

6
η4κ+c2

Dℓ(ϑ(κ)
µ ) with ϑ(κ)

µ =
∑

k∈Z+µ
κ
+ 1

2

q
1
2κk2

where D = q∂q − w
12E2, and 4a + 6b + 2ℓ− 2κ− 1

2c2 = −2.
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Modularity for one-modulus compact CY

Y χY κ c2(TY) χ(OD) n1 C1
X5(15) −200 5 50 5 7 0
X6(14,2) −204 3 42 4 4 0
X8(14,4) −296 2 44 4 4 0
X10(13,2,5) −288 1 34 3 2 0
X4,3(15,2) −156 6 48 5 9 0
X4,4(14,22) −144 4 40 4 6 1
X6,2(15,3) −256 4 52 5 7 0
X6,4(13,22,3) −156 2 32 3 3 0
X6,6(12,22,32) −120 1 22 2 1 0
X3,3(16) −144 9 54 6 14 1
X4,2(16) −176 8 56 6 15 1
X3,2,2(17) −144 12 60 7 21 1
X2,2,2,2(18) −128 16 64 8 33 3
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Modular predictions for the quintic threefold

Using Soheyla’s formula we can compute many terms

h1,0 = q−
55
24

(
5 − 800q + 58500q2 + 5817125q3 + 75474060100q4

+28096675153255q5 + 3756542229485475q6

+277591744202815875q7 + 13610985014709888750q8 + . . .
)
,

h1,±1 = q−
55
24+

3
5

(
0 + 8625q − 1138500q2 + 3777474000q3

+ 3102750380125q4 + 577727215123000q5 + . . .
)

h1,±2 = q−
55
24+

2
5

(
0 + 0q − 1218500q2 + 441969250q3 + 953712511250q4

+ 217571250023750q5 + 22258695264509625q6 + . . .
)
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Modular predictions for the quintic threefold

The space of vv modular forms has dimension 7. Remarkably, all
terms above are reproduced by [Gaiotto Strominger Yin’06]

hµ = 1
η70

[
−222887E8

4+1093010E5
4 E2

6+177095E2
4 E4

6
35831808

+
25(458287E6

4 E6+967810E3
4 E3

6+66895E5
6)

53747712 D

+
25(155587E7

4+1054810E4
4 E2

6+282595E4E4
6)

8957952 D2
]
ϑ(5)
µ ,

For other models, Gaiotto et al were not so lucky, e.g. for X10 they
predicted

h1,0
?
= q−

35
24

(
3 − 576q + 271704q2 + 206401533q3 + · · ·

)
whereas the correct result turns out to be

h1,0
!
=

203E4
4+445E4E2

6
216 η35 = q−

35
24

(
3 − 575q + 271955q2 + · · ·

)
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Mock modularity for non-Abelian D4-D2-D0 indices

Let us consider D4-D2-D0 indices with N = 2 units of D4-brane
charge. In that case, {h2,µ, µ ∈ Z/(2κZ)} should transform as a vv
mock modular form with modular completion

ĥ2,µ(τ, τ̄) = h2,µ(τ) +
κ−1∑

µ1,µ2=0

δ
(κ)
µ1+µ2−µ Θ

(κ)
µ2−µ1+κ h1,µ1 h1,µ2

where
Θ(κ)

µ = (−1)µ
8π

∑
k∈2κZ+µ

|k |β
(
τ2k2

κ

)
e−πiτ

2κ k2
,

and β(x2) = 2|x |−1e−πx2 − 2πErfc(
√
π|x |) such that

∂τ̄Θ
(κ)
µ = (−1)µ

√
κ

16πiτ3/2
2

∑
k∈2κZ+µ

e−πiτ̄
2κ k2
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Mock modularity for non-Abelian D4-D2-D0 indices

Suppose there exists a holomorphic function g(κ)
µ such that

Θ
(κ)
µ + g(κ)

µ transforms as a vv modular form. Then

h̃2,µ(τ, τ̄) = h2,µ(τ)−
κ−1∑

µ1,µ2=0

δ
(κ)
µ1+µ2−µ g(κ)

µ2−µ1+κ h1,µ1 h1,µ2

will be an ordinary weak holomorphic vv modular form, hence
uniquely determined by its polar part.

For κ = 1, the series Θ
(1)
µ is the same one appearing in the

modular completion of the generating series of Hurwitz class
numbers [Hirzebruch Zagier 1973], or rank 2 Vafa-Witten invariants on P2

[Yoshioka’93; Bringmann Manschot’10]

H0(τ) =− 1
12 + 1

2q + q2 + 4
3q3 + 3

2q4 + . . .

H1(τ) = q
3
4

(
1
3 + q + q2 + 2q3 + q4 + . . .

)
Thus we can choose g(1)

µ = Hµ(τ).
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Mock modularity for non-Abelian D4-D2-D0 indices

Y χY κ c2 χ(O2D) n2 C2
X5(15) −200 5 50 15 36 1
X6(14,2) −204 3 42 11 19 1
X8(14,4) −296 2 44 10 14 1
X10(13,2,5) −288 1 34 7 7 0
X4,3(15,2) −156 6 48 16 42 0
X4,4(14,22) −144 4 40 12 25 1
X6,2(15,3) −256 4 52 14 30 1
X6,4(13,22,3) −156 2 32 8 11 1
X6,6(12,22,32) −120 1 5 2 5 0
X3,3(16) −144 9 54 21 78 3
X4,2(16) −176 8 56 20 69 3
X3,2,2(17) −144 12 60 26 117 0
X2,2,2,2(18) −128 16 64 32 185 4
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Mock modularity for non-Abelian D4-D2-D0 indices

For X10, we computed the 7 polar terms + 4 non-polar terms and
found a unique mock modular form reproducing this data:

h2,µ =
5397523E12

4 +70149738E9
4 E2

6−12112656E6
4 E4

6−61127530E3
4 E6

6−2307075E8
6

46438023168η100 ϑ(1,2)
µ

+
−10826123E10

4 E6−14574207E7
4 E3

6+20196255E4
4 E5

6+5204075E4E7
6

1934917632η100 Dϑ(1,2)
µ

+ (−1)µ+1Hµ+1(τ)h1(τ)
2

with h1 =
203E4

4+445E4E2
6

216 η35 = q−
35
24 (3 − 575q + . . . ), leading to integer

DT invariants

h(int)
2,0 =q−

19
6

(
7 − 1728q + 203778q2 − 13717632q3 − 23922034036q4 + . . .

)
h(int)

2,1 =q−
35
12

(
−6 + 1430q − 1086092q2 + 208065204q3 + . . .

)

Similar results for X8. For other models including the quintic
threefold, the current knowledge of GV invariants insufficient.

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds IHES, 14/6/2024 28 / 33



Mock modularity for non-Abelian D4-D2-D0 indices

For X10, we computed the 7 polar terms + 4 non-polar terms and
found a unique mock modular form reproducing this data:

h2,µ =
5397523E12

4 +70149738E9
4 E2

6−12112656E6
4 E4

6−61127530E3
4 E6

6−2307075E8
6

46438023168η100 ϑ(1,2)
µ

+
−10826123E10

4 E6−14574207E7
4 E3

6+20196255E4
4 E5

6+5204075E4E7
6

1934917632η100 Dϑ(1,2)
µ

+ (−1)µ+1Hµ+1(τ)h1(τ)
2

with h1 =
203E4

4+445E4E2
6

216 η35 = q−
35
24 (3 − 575q + . . . ), leading to integer

DT invariants

h(int)
2,0 =q−

19
6

(
7 − 1728q + 203778q2 − 13717632q3 − 23922034036q4 + . . .

)
h(int)

2,1 =q−
35
12

(
−6 + 1430q − 1086092q2 + 208065204q3 + . . .

)
Similar results for X8. For other models including the quintic
threefold, the current knowledge of GV invariants insufficient.

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds IHES, 14/6/2024 28 / 33



Quantum geometry from stability and modularity

Conversely, we can use our knowledge of Abelian D4-D2-D0 invariants
to compute GV invariants and push the direct integration method to
higher genus !

Gopakumar-Vafa
invariants N(g)

β

Pandharipande-Thomas
invariants PT(β,n)

Rank 0 DT-invariants
hN,µ(τ)

Wall crossing

MNOP relation
new constraints on

holomorphic ambiguities

Modular
bootstrap

Direct integration

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

Y χY κ type ginteg gmod gavail

X5(15) −200 5 F 53 69 64
X6(14,2) −204 3 F 48 57 48
X8(14,4) −296 2 F 60 80 64
X10(13,2,5) −288 1 F 50 70 68
X4,3(15,2) −156 6 F 20 24 24
X6,4(13,22,3) −156 2 F 14 17 17
X6,6(12,22,32) −120 1 K 18 22 22
X4,4(14,22) −144 4 K 26 34 34
X3,3(16) −144 9 K 29 33 33
X4,2(16) −176 8 C 50 66 50
X6,2(15,3) −256 4 C 63 78 49
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A remark on the BMT inequality

Requiring the existence of empty chamber, the discriminant at
w = 1

2x2 must be positive:

8C0C3
2 + 6C3

1C3 + 9C2
0C2

3 − 3C2
1C2

2 − 18C0C1C2C3 ≥ 0

In terms of the electric and magnetic charges

p0 = C0/κ, p1 = C1/κ, q1 = −C2−
c2

24κ
C0, q0 = C3+

c2

24κ
C1

and ignoring the c2-dependent terms this becomes

8
9κp0q3

1 − 2
3κq0(p1)3 − (p0q0)

2 + 1
3(p

1q1)
2 − 2p0p1q0q1 ≤ 0

hence an empty chamber arises when single centered black hole
solutions are ruled out !
Can one understand the fulll BMT inequality physically, perhaps
on the B-model side ? Is there an improved version of BMT
incorporating c2-dependent corrections ?
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Some open questions

We provided overwhelming evidence that D4-D2-D0 indices
exhibit modular properties. Where does it come from
mathematically ? Can one construct some VOA acting on the
cohomology of moduli space of stable objects ?

Using modularity predictions and GV/DT/PT relations, we can
push Ψtop to higher genus, but not arbitrary large however. Can
one find other constraints or alternative methods ?
Higher rank DT invariants can also be computed in terms of GV
invariants. Do they define some higher rank version of topological
string theory ?
Modularity constraints were derived by thinking about Euclidean
D-brane instanton corrections to hypermultiplet moduli space near
infinite volume. Can one also include NS5-brane instantons ?
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Congratulations Albert Solomonivich !
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