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Modular integrals and BPS amplitudes |

@ In closed string theory, an interesting class of amplitudes are
given by a modular integral

dridm
A= / dp Fd+k7d (D(T) , dp= >
F To
e F =T\H : fundamental domain of the modular group I' = SL(2,Z)

on the Poincaré upper half plane #;

o Dgtkd) = 72(’/2 > q%pf q‘gp% : a theta series for an even self-dual
lattice of signature (d + k, d), known as Narain’s lattice partition
function;

e ®(7): an (almost, weakly) holomorphic modular form of weight
w = —k/2, known as the elliptic genus
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Modular integrals and BPS amplitudes Il

@ Such integrals arise in a variety of BPS-saturated amplitudes:
e Gauge thresholds, R? F2"~2 in Het/K3 x T2 at one-loop
Dixon Kaplunovsky Louis; Harvey Moore; Antoniadis Gava Narain Taylor
F* couplings in Het/ T9 at one-loop

Bachas Fabre Kiritsis Obers Vanhove
R* couplings in type /I/ T9 at one-loop (¢ = 1)
Green Vanhove; Kiritsis BP
R? couplings in type /I/K3 x T? at one-loop
Harvey Moore; Gregori Kiritsis Kounnas Obers Petropoulos BP
F# couplings in type I/ T*/Zy at tree-level

Obers BP
e V*R* couplings in D = 11 SUGRA/T¢ at two-loops
Green Vanhove Russo
@ These terms are strongly constrained by supersymmetry, and offer
precise tests of string dualities.
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Theta correspondances

@ From a mathematical point of view, modular integrals give a theta
correspondence

(0N F\H —-C — A: O(rd+k’d)\Gd+k7d - C

between modular forms on # and automorphic forms on the
Grassmannian Gy 4, or Narain moduli space

G... . __Od+tkd)
d+hd = O(d + k) x O(d)

@ Theta correspondences are one of the few general ways (together
with Langlands-Eisenstein series) to construct automorphic forms.

> (glja Bljv \//a)
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Unfolding trick

@ In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method:

/ > f\w:/ f
M Moo\
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@ E.gfor d =1, representing F(1 y=R>mnne" mRE|m—nr|/7p
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Unfolding trick, revisited

@ For higher dimensional lattices, the theta series I'y. x4 involves
several different orbits of SL(2,Z). The orbit decomposition breaks
manifest invariance under the automorphism group O(T g.«.q)-

@ | will present an alternative method for computing such modular
integrals, which keeps T-duality manifest at all stages. The method
is inspired by the Rankin-Selberg method commonly used in
number theory.

@ The result is typically expressed as a field theory amplitude with
an infinite number of BPS states running through the loops.

@ The method is in principle applicable to higher genus amplitudes,
though for the most part | will focus on genus one.
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Rankin-Selberg method |

@ Consider the completed non-holomorphic Eisenstein series

7.S
E*(ris)=C*(28) Y mhy=3¢@s) Y P
lcT +d|
'YGFOO\F (C,d):1
where ¢*(s) = n=/2I'(s/2) ((s) = ¢*(1 — 8).
@ E*(r;s) is convergent for Re(s) > 1, and has a meromorphic

continuation to all s, invariant under s — 1 — s, with simple poles
at s = 0, 1 with constant residue:

E'(ri9) = gy + & (1= ogém e (7)) + O(s = 1).
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Rankin-Selberg method (cont.)

@ For any cusp form F(7), consider the Rankin-Selberg transform

R*(F.s) = /f 4y E*(r:5) F(7)

@ By the unfolding trick, R*(F, s) is proportional to the Mellin
transform of the constant term Fy(72) f 172471 F(r),

R*(F; 5) =C*(25) /S dyu 7 F(r)
—(*(2s) /O ¥ dra 752 Fo(ma).
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Rankin-Selberg method (cont.)

@ The RS transform is in fact proportional to the L-function
L(s) =, ann° associated to F.

@ It inherits the meromorphicity and functional relations of E*, e.g.
R*(F;8) =R*(F;1—25s).

@ Since the residue of E*(7; s) at s = 0, 1 is constant, the residue of
R*(F; s) at s =1 is proportional to the modular integral of F,

Ress—1R*(F;s) = ;/ du F
f
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Rankin-Selberg-Zagier method |

@ This was extended by Zagier to the case where F(©) is of
power-like growth F(O(7) ~ (75) at the cusp: the renormalized
integral

R.N./fd,uF(T): im [/ITduF(T)—@(T)}

2) = Cas, § an 2 +an|0972
o

a#1 =
is related to the Mellin transform of the (regularized) constant term
R*(F; s) 28)/ drp 75~ 2 (F(O) —<p> ,
via

N. / du F(1) = 2Resg—1R*(F;s)+ ¢
F
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Rankin-Selberg-Zagier method Il

@ The scheme dependent correction § depends only on the leading
behavior p(72),

0 = 2Ress—1[¢"(28) hr(s) + ¢*(2s = 1) hr(1 = )] - &(T),

where hr(s) = fOT dro p(12) 752
@ The Rankin-Selberg transform R*(F; s) can be understood as the
renormalized integral

R*(F; S) = R.N. /}_d:u F(T) 8*(3; 7_)

@ According to this prescription, R.N. [-du&*(r;s) =0!
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Epstein series from modular integrals

@ The RSZ method applies immediately to integrals with ¢ = 1:

R*(Ig,q4:8) = ¢(*(2s) / dm T;er/z*z Z e~ 72 (P, +PR)
0

p3—P2%=0
I(s+9 -1
= (*(2s) (S+§1)5\C}(g, B;s+9—1)
T2

where £9(g, B; s) is the constrained Epstein series

£N@.Bs)= > M, M =pf+ph
(m;,n")ez?9\(0,0)
m;n'=0
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Epstein series and BPS state sums |

@ Thisis identified as a sum over all BPS states of momentum m;
and winding n', with mass
M2 = (m,- + B,-knk)g’j(mj + Bj,n’) =+ nig,-/-r/

subject to the BPS condition m;n’ = 0. Invariance under O(Fgq)is
manifest.

@ The constrained Epstein Zeta series £J(g, B; s) converges
absolutely for s + % —1 > 1. The RSZ method shows that it
admits a meromorphic continuation in the s-plane satisfying

55*(5) N r(s) C*(ZS— d+2) ge(s) _ 55*(0'— 1_ 5)7

with a simple pole at s = 0,9 — 1,4, 1 (double poles if d = 2).
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Epstein series and BPS state sums |l

@ Theresidue at s = g produces the modular integral of interest:

rd/2—-1
RN. /f A1 Tg.a(g. B)=(7T§/2_1)83 (9.Bizd—1)

rigorously proving an old conjecture of Obers and myself (1999).
@ For d = 2, the BPS constraint can be solved, leading to

EF (T, U;s) =2E*(T;s) E*(U; s)
hence to Dixon-Kaplunovsky-Louis famous result (1989)

8rel

[ (alT.0) - ) du = og (m T, Us [n(T) n(U)\4)
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Relation with other constructions

@ The differential equations

0 = [Aso(d,a) — 2 Asiz) + 3 d(d — 2)] Ia.a)(9, B)
0=[Asie) — 3S(s—1)] EX(r; ),

imply that 5\‘}*(3) is an eigenmode of the Laplace-Beltrami
operator on the Grassmannian Gy 4 with eigenvalue s(s —d + 1),
and more generally, of all O(d, d) invariant differential operators.
° 53*(g, B; s) is proportional to the Langlands-Eisenstein series of
O(d, d) with infinitesimal character p — 2sa;.
@ The residue at s = % is the minimal theta series, attached to the
minimal representation of SO(d, d) (functional dimension 2d — 3).

Ginzburg Rallis Soudry; Kazhdan BP Waldron; Green Vanhove Miller
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Modular integrals with unphysical tachyons |

@ For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon.

@ In mathematical terms, ®(7) € (C[Eg, E4, Eg,1/A]is a almost,
weakly holomorphic modular form with weight w = —k/2 < 0.

@ The RSZ method fails, however the unfolding trick could still work
provided ®(7) can be represented as a uniformly convergent
Poincaré series with seed f(7) is invariantunder ', : 7 — 7 + n,

o(r)= >  fDlwy

YET NI

@ Convergence requires f(1) < 721_% as o — 0. The choice
f(r) = 1/q" works for w > 2 but fails for w < 2.
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Various Poincaré series representations |

@ One option is to insert a non-holomorphic convergence factor a la
. s—%
Hecke-Kronecker, i.e. choose f(17) =7, * "

s_w
(ctr+d)™"r, *?
E(s,k,w) =3 2
(sww)=3 >, o gEew
(c.d)=1 Selberg;Goldfeld Sarnak:; Pribitkin

ar+b

—2mir ct+d

@ This converges absolutely for Re(s) > 1, but the analytic
continuation to s = % is tricky, and leads to holomorphic
anomalies.

@ Moreover, E(s, k, w) is not an eigenmode of the Laplacian, rather

[Aw+ 3 5(1 —8) + § w(w +2)] E(s,r,w) =275 (s — §) E(s+1, 5, W)
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Niebur-Poincaré series |

@ We shall use another regularization which does not require
analytic continuation and preserves the action of the Laplacian:
the Niebur-Poincaré series

,7:(3 K: W Z MSW K;Tz) 27‘(’1!{7’1 |ny
'YEF o\l Niebur; Hejhal; Bruinier Ono Bringmann...
where M; »(y) is proportional to a Whittaker function, so that

[Ay+ 3 s(1—58)+ 3 w(w+2)] F(s,k,w)=0
@ The seed f(7) = Msw(—kTo) €27 gatisfies

I'(2s)

Re(s)— R q
2 I'(s+ %)

(7)o 3 2072 () ~

—K

hence F(s, k, w) converges absolutely for Re(s) > 1.
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Niebur-Poincaré series |l

@ Under raising and lowering operators,

; iw ,
Dy=1 (37 - 272> , Dy, = —17'('7'2287——,

the NP series transforms as
Dy - F(s,k, W) =2k(s+ 5) F(S, 5, W+ 2),

l(s— %) F(s, kW —2).

Dw'./l_"(s,/‘i,W): 8k

@ Under Hecke operators,
Ho  F(s,m,w)= > d'"YF(s kK /d? w).
d|(k,k")

@ The construction generalizes straightforwardly to congruence
subgroups of SL(2,7Z): one NP series F,(s, x, w) for each cusp.

B. Pioline (CERN & LPTHE) Rankin-Selberg methods String Math 2013 19/36



Niebur-Poincaré series Il

@ For s =1— %, relevant for weakly holomorphic modular forms, the
seed simplifies to

f(r) = (2 — w) ( g i i) >

@ Forw < 0,thevalue s=1— Z liesin the convergence domain,
but 7(1 — 7, s, w) is in general NOT holomorphic, but rather a
weakly harmonic Maass form,

P = Z amq™ +me VYo (1 — w,4rmm) g™
m=—k
@ For any such form, D& = 72" where W = > m>1 bmq™ is @
holomorphic cusp form of weight 2 — w, the shadow of the Mock
modular form &~ =35> anq™.
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Niebur-Poincaré series |V

e If |w| is small enough, the negative frequency coefficients by,
vanish and @ is in fact a weakly holomorphic modular form:

w | FO -3, 1,w) | F(1 - 5,1,2—w)
0 j+24 EZEs/A
-2 3lE4Eg/A E4(j — 240)
—4 51EZ/A Eg(j + 204)
-6 7' Eg/A E2(j — 480)
-8 9l E4/A E4Eg(j + 264)
-10 111d_q9 (mess)
—-12 131/A EZEs(j + 24)
—14 151 4y (mess)
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Niebur-Poincaré series V

@ Theorem (Bruinier) : any weakly holomorphic modular form of
weight w < 0 with polarpart ® =5_ o amq™ + O(1) can be
represented as a linear combination of Niebur-Poincaré series

1
[ — amF(1 =% mw)+a,dyo
r(2—w) K;KO m7(1=72 )+ a0 dw.

(The same holds for congruence subgroups of SL(2,7Z), provided
the polar parts at all cusps match)
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Niebur-Poincaré series VI

B. Pioline (CERN & LPTHE)

weakly almg

st harmonic
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Unfolding the modular integral

@ Using Bruinier’s thm, any modular integral can be expressed as a
linear combination of

Tyika(8, k) = RN, / A Tarro(G. B, Y) F(s. 5, —)
].'
@ Using the unfolding trick, one arrives at the BPS state sum

Tokd(S, k) =(4mk)' "2 I(s + 29tk _ 1)

_g_2dtk

i
XZ o F4 (S—Z,S+2d+k . 2S; p2) ('DL) '

BPS
Bruinier; Angelantonj Florakis BP
where Y"pps = >, 6(PF — PR — 4x). This converges absolutely for
Re(s) > 22K and can be analytically continued to Re(s) > 1 with
a simple pole at s = 24k,
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Unfolding the modular integral

@ The result is manifestly O(I" 4.« ¢) invariant, and requires no
choice of chamber in Narain modular space. Singularities on
G+ k,q arise when pf = 0 for some lattice vector.

@ For the relevant values s = 1 — g + n, the result can be written
using elementary functions, e.g.

Bekalt + £ -2+ 5 Y [ioo (B) 4301 (&)

BPS
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One example

@ Consider Het/ T2 x K3 at Z, orbifold point with gauge group
broken to Eg x E7 x SU(2). The gauge threshold for E7 is

1 E,E,Es— E3
AE7: 12 duFZZ*

Expressing the elliptic genus as a linear combination

E,E Es— E3
%:}“(2,1,0)—6}'(1,1,0)—864

one arrives at

A —Z[H—pﬁlo (
Ez — 4 g

BPS

)} ~72log (4r e T2 Uy [n(T)n(U)I*)

lpr\)‘;gr\)
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Fourier expansion |

@ The Fourier expansion in Ty (or Us) is obtained by solving the BPS
constraint. E.g. for x = 1, all solutions to myn' + myn® =1 are

{m1:b+dM,n1:—c <a b
d V=

. \SL(2,Z), mecZ
my=a+cM, n? = Cd)6 \SL(2,z),me

@ After Poisson resumming over M, the sum over ~ reproduces a
sum of Niebur-Poincaré series in U,

7O (s,1) =225""4rl (s — H)TI7SE(U; 9)

+Y 2/ K ] (2n|N|T5) e 27Nt [F(s,|N|, 0; U) + cc]
N0
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Fourier expansion Il

@ For s = 1, relevant for weakly holomorphic modular forms, one
recovers the usual Borcherds products

Tpo(1,1) =2 + Z%WMUU+m+m
N>0

log| [T(1 = a7 at))* ™2
M,N

0
19~

@ For s =1+ n, relevant for almost holomorphic modular forms,

Top(nt+1,1) = COru) Z

i Hw)Fm+1J,2nU)

N2n+1

exhibiting Obers-Kiritsis generalized holomorphic prepotentials.
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Rankin-Selberg method at higher genus |

@ String amplitudes at genus h < 3 take the form

dQ

= dup I, d(Q dup = ———F—
Ap /fh pth Lavk,an ®(2) , dun (detime]F

where Fj, is a fundamental domain of the action of I = Sp(2h, Z)
on Siegel’s upper half plane H, = Sp(2h)/U(h), and () is a
Siegel modular form of weight —k/2.

@ For h > 3, the integral is restricted to the Schottky locus and we
cannot say much.

@ We would like to generalize the previous methods to the case
where ¢(Q) is a almost holomorphic modular form with poles
inside Fp, such as 1/x1¢. As afirst step, take k =0, » = 1.
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Rankin-Selberg method at higher genus |l

@ The genus h analog of £*(s; 7) is the non-holomorphic
Siegel-Eisenstein series

[h/2]
En(si) =¢r(2s) [ ¢*4s—-2) > [y
j=1 YEM\I

where rm:{(g‘ AEE,)}, Q| = | detImQ).

@ The sum converges absolutely for Re(s) > (h+ 1)/2 and can be
meromorphically continued to the full s plane. The analytic
continuation is invariant under s — % — 5, and has a simple pole

at s = M1 with constant residue r, = 1 H,[-i/f] *(2j+1)
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Rankin-Selberg method at higher genus |l

@ For any cusp form F(Q), the Rankin-Selberg transform can be
computed by unfolding the integration domain against the sum,

Ri(F; ) = /f dyin F(Q) E1(9. )

[h/2]
~c(2) [ tas—2) [ af[0 " Ro(92)

e GL(h,Z)\Ps

where Py, is the space of positive definite real matrices, and
Fo(Q2) = fo dQ4 F(Q) is the constant term of F.

h+1

@ Theresidue at s = is proportional to the average of F,

Res h+-1 R;(F, S) =Ip F.
=2 Fh
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Rankin-Selberg method at higher genus IV

@ The Siegel-Narain theta series is not a cusp form, instead its
zero-th Fourier mode is

0 —7Tr(M?
(.80 =942 3 e

(me ,nie)e72d, m(* nif) =0
where
M8 = (i + Byn**)g(m] + Byn'®) + n' gyn/®
Terms with Rk(m¢", n'®) < h do not decay rapid ly at Q, — cc.

@ The Siegel-Eisenstein series £;(£2, s) similarly has non-decaying
constant term of the form e~T(7%) with Rk(T) < h.
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Rankin-Selberg method at higher genus V

@ The regularized Rankin-Selberg transform is obtained by
subtracting non-suppressed terms, and yields a 2-loop field theory
amplitude, with BPS states running in the loops,

Rh(rd,d,h;S):/ _ 8 5 ) e M)
Ph |Q |h+1—s—§ BPS

hii-d

—Th(s = 259) 3" [detm?| 2
BPS
1 h—1
S= Y )=t r(s -4

BPS (me,niB)ez4d, k=1

mﬁ“‘ nB)=0,det M2 0

@ The modular integral of I'y 4 5, is then proportional to the residue of
Rn(Fa,g,n8)ats=(h+1)/2, up to a scheme dependent term 4.
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Rankin-Selberg method at higher genus VI

@ For h = d = 2, either by computing the BPS sum, or by unfolding
the Siegel-Narain theta series, one finds

R5(M2.2,8) =2¢*(2s)¢*(2s — 1)(*(2s — 2)
X [EX(T;25 — 1) + & (U; 25 — 1)]

hence Ap = 2C*(2) [E5(T; 2) + £5(U; 2)]

proving the conjecture by Obers and BP (1999).
@ Forh=d =3,

R3(Faa:8) =C*(28) ¢*(25 = 1) ¢*(25 — 2) ¢*(25 - 3)
65590 (25 — 1) + £550F (25 - 1))
hence
AF = 20°(2)*(4) [£559°9(3) + €559 3))
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Conclusion - Outlook

@ Modular integrals can be efficiently computed using Rankin-
Selberg type methods. The result is expressed as a field theory
amplitude with BPS states running in the loop.

@ T-duality and singularities from enhanced gauge symmetry are
manifest. Instanton expansions can be obtained in some cases by
solving the BPS constraint.

@ The RSZ method also works at higher genus, at least forg =2,3 .
For computing modular integrals with ¢ # 1 it will be important to
develop Poincaré series representations for Siegel modular forms
with poles at Humbert divisors, such as 1/®4¢.

@ Non-BPS amplitudes where ¢ is not almost weakly holomorphic
are challenging !
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