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Modular integrals and BPS amplitudes I

.

In closed string theory, an interesting class of amplitudes are
given by a modular integral

A =

∫
F

dµΓd+k ,d Φ(τ) , dµ =
dτ1dτ2

τ2
2

• F = Γ\H : fundamental domain of the modular group Γ = SL(2,Z)
on the Poincaré upper half plane H;

• Γ(d+k,d) = τ
d/2
2

∑
q

1
2 p2

L q̄
1
2 p2

R : a theta series for an even self-dual
lattice of signature (d + k ,d), known as Narain’s lattice partition
function;

• Φ(τ) : an (almost, weakly) holomorphic modular form of weight
w = −k/2, known as the elliptic genus
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Modular integrals and BPS amplitudes II

Such integrals arise in a variety of BPS-saturated amplitudes:
• Gauge thresholds, R2F 2h−2 in Het/K 3× T 2 at one-loop

Dixon Kaplunovsky Louis; Harvey Moore; Antoniadis Gava Narain Taylor

• F 4 couplings in Het/T d at one-loop
Bachas Fabre Kiritsis Obers Vanhove

• R4 couplings in type II/T d at one-loop (Φ = 1)
Green Vanhove; Kiritsis BP

• R2 couplings in type II/K 3× T 2 at one-loop
Harvey Moore; Gregori Kiritsis Kounnas Obers Petropoulos BP

• F 4 couplings in type II/T 4/ZN at tree-level
Obers BP

• ∇4R4 couplings in D = 11 SUGRA/T d at two-loops
Green Vanhove Russo

These terms are strongly constrained by supersymmetry, and offer
precise tests of string dualities.
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Theta correspondances

From a mathematical point of view, modular integrals give a theta
correspondence

Φ : Γ\H → C −→ A : O(Γd+k ,d )\Gd+k ,d → C

between modular forms on H and automorphic forms on the
Grassmannian Gd+k ,d , or Narain moduli space

Gd+k ,d =
O(d + k ,d)

O(d + k)×O(d)
3 (gij ,Bij ,Y a

i )

Theta correspondences are one of the few general ways (together
with Langlands-Eisenstein series) to construct automorphic forms.
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Unfolding trick

In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method:

∫
Γ\H

∑
γ∈Γ∞\Γ

f |0γ =

∫
Γ∞\H

f

f |wγ(τ) = (cτ + d)−w f
(

aτ+b
cτ+d

)
E.g for d = 1, representing Γ(1,1) = R

∑
m,n e−πR2|m−nτ |2/τ2 ,∫

F
Γ1,1 =R

∫
F

dµ+ R
∫
S

dµ
∑
m 6=0

e−πR2m2/τ2

=
π

3
R +

π

3
R−1
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Unfolding trick, revisited

For higher dimensional lattices, the theta series Γd+k ,d involves
several different orbits of SL(2,Z). The orbit decomposition breaks
manifest invariance under the automorphism group O(Γd+k ,d ).
I will present an alternative method for computing such modular
integrals, which keeps T-duality manifest at all stages. The method
is inspired by the Rankin-Selberg method commonly used in
number theory.
The result is typically expressed as a field theory amplitude with
an infinite number of BPS states running through the loops.
The method is in principle applicable to higher genus amplitudes,
though for the most part I will focus on genus one.
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Rankin-Selberg method I

Consider the completed non-holomorphic Eisenstein series

E?(τ ; s) =ζ?(2s)
∑

γ∈Γ∞\Γ

τ s
2 |γ = 1

2 ζ
?(2s)

∑
(c,d)=1

τ s
2

|c τ + d |2s

where ζ?(s) ≡ π−s/2 Γ (s/2) ζ(s) = ζ?(1− s).
E?(τ ; s) is convergent for Re(s) > 1, and has a meromorphic
continuation to all s, invariant under s 7→ 1− s, with simple poles
at s = 0,1 with constant residue:

E?(τ ; s) =
1

2(s − 1)
+ 1

2

(
γ − log(4π τ2 |η(τ)|4)

)
+O(s − 1) ,
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Rankin-Selberg method (cont.)

For any cusp form F (τ), consider the Rankin-Selberg transform

R?(F , s) =

∫
F

dµE?(τ ; s) F (τ)

By the unfolding trick, R?(F , s) is proportional to the Mellin
transform of the constant term F0(τ2) =

∫ 1/2
−1/2 dτ1 F (τ),

R?(F ; s) =ζ?(2s)

∫
S

dµ τ s
2 F (τ)

=ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2 F0(τ2) ,
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Rankin-Selberg method (cont.)

The RS transform is in fact proportional to the L-function
L(s) =

∑
n ann−s associated to F .

It inherits the meromorphicity and functional relations of E?, e.g.
R?(F ; s) = R?(F ; 1− s).
Since the residue of E?(τ ; s) at s = 0,1 is constant, the residue of
R?(F ; s) at s = 1 is proportional to the modular integral of F ,

Ress=1R?(F ; s) = 1
2

∫
F

dµF
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Rankin-Selberg-Zagier method I

This was extended by Zagier to the case where F (0) is of
power-like growth F (0)(τ) ∼ ϕ(τ2) at the cusp: the renormalized
integral

R.N.
∫
F

dµF (τ) = lim
T →∞

[∫
FT

dµF (τ)− ϕ̂(T )

]

ϕ(τ2) =
∑
α

cατα2 , ϕ̂(T ) =
∑
α6=1

cα
τα2

α− 1
+
∑
α=1

cα log τ2

is related to the Mellin transform of the (regularized) constant term

R?(F ; s) = ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2

(
F (0) − ϕ

)
,

via
R.N.

∫
F

dµF (τ) = 2 Ress=1R?(F ; s) + δ
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Rankin-Selberg-Zagier method II

The scheme dependent correction δ depends only on the leading
behavior ϕ(τ2),

δ = 2 Ress=1 [ζ?(2s) hT (s) + ζ?(2s − 1) hT (1− s)]− ϕ̂(T ) ,

where hT (s) =
∫ T

0 dτ2 ϕ(τ2) τ s−2
2 .

The Rankin-Selberg transform R?(F ; s) can be understood as the
renormalized integral

R?(F ; s) = R.N.
∫
F

dµF (τ) E?(s; τ)

According to this prescription, R.N.
∫
F dµ E?(τ ; s) = 0 !
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Epstein series from modular integrals

The RSZ method applies immediately to integrals with Φ = 1:

R?(Γd ,d ; s) = ζ?(2s)

∫ ∞
0

dτ2 τ
s+d/2−2
2

∑
p2

L−P2
R=0

e−πτ2 (p2
L+p2

R)

= ζ?(2s)
Γ (s + d

2 − 1)

πs+
d
2−1

Ed
V (g,B; s + d

2 − 1)

where Ed
V (g,B; s) is the constrained Epstein series

Ed
V (g,B; s) ≡

∑
(mi ,ni )∈Z2d\(0,0)

mi ni =0

M−2s , M2 = p2
L + p2

R
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Epstein series and BPS state sums I

This is identified as a sum over all BPS states of momentum mi
and winding ni , with mass

M2 = (mi + Biknk )g ij(mj + Bjlnl) + nigijnj

subject to the BPS condition mini = 0. Invariance under O(Γd ,d ) is
manifest.
The constrained Epstein Zeta series Ed

V (g,B; s) converges
absolutely for s + d

2 − 1 > 1. The RSZ method shows that it
admits a meromorphic continuation in the s-plane satisfying

Ed?
V (s) = π−s Γ(s) ζ?(2s − d + 2) Ed

V (s) = Ed ?
V (d − 1− s) ,

with a simple pole at s = 0, d
2 − 1, d

2 ,1 (double poles if d = 2).
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Epstein series and BPS state sums II

The residue at s = d
2 produces the modular integral of interest:

R.N.
∫
F

dµΓd ,d (g,B) =
Γ(d/2− 1)

πd/2−1 Ed
V
(
g,B; 1

2 d − 1
)

rigorously proving an old conjecture of Obers and myself (1999).
For d = 2, the BPS constraint can be solved, leading to

E2?
V (T ,U; s) =2 E?(T ; s) E?(U; s)

hence to Dixon-Kaplunovsky-Louis famous result (1989)∫
F

(
Γ2,2(T ,U)− τ2

)
dµ = − log

(
8πe1−γ

3
√

3
T2 U2 |η(T ) η(U)|4

)
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Relation with other constructions

The differential equations

0 =
[
∆SO(d ,d) − 2 ∆SL(2) + 1

4 d(d − 2)
]
Γ(d ,d)(g,B)

0 =
[
∆SL(2) − 1

2 s(s − 1)
]

E?(τ ; s) ,

imply that Ed?
V (s) is an eigenmode of the Laplace-Beltrami

operator on the Grassmannian Gd ,d with eigenvalue s(s − d + 1),
and more generally, of all O(d ,d) invariant differential operators.
Ed?

V (g,B; s) is proportional to the Langlands-Eisenstein series of
O(d ,d) with infinitesimal character ρ− 2sα1.
The residue at s = d

2 is the minimal theta series, attached to the
minimal representation of SO(d ,d) (functional dimension 2d − 3).

Ginzburg Rallis Soudry; Kazhdan BP Waldron; Green Vanhove Miller
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Modular integrals with unphysical tachyons I

For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon.
In mathematical terms, Φ(τ) ∈ C[Ê2,E4,E6,1/∆] is a almost,
weakly holomorphic modular form with weight w = −k/2 ≤ 0.
The RSZ method fails, however the unfolding trick could still work
provided Φ(τ) can be represented as a uniformly convergent
Poincaré series with seed f (τ) is invariant under Γ∞ : τ → τ + n,

Φ(τ) =
∑

γ∈Γ∞\Γ

f (τ)|wγ

Convergence requires f (τ)� τ
1−w

2
2 as τ2 → 0. The choice

f (τ) = 1/qκ works for w > 2 but fails for w ≤ 2.
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Various Poincaré series representations I

One option is to insert a non-holomorphic convergence factor à la
Hecke-Kronecker, i.e. choose f (τ) = τ

s−w
2

2 q−κ

E(s, κ,w) ≡ 1
2

∑
(c,d)=1

(cτ + d)−w τ
s−w

2
2

|cτ + d |2s−w e−2πiκ aτ+b
cτ+d

Selberg;Goldfeld Sarnak; Pribitkin

This converges absolutely for Re(s) > 1, but the analytic
continuation to s = w

2 is tricky, and leads to holomorphic
anomalies.
Moreover, E(s, κ,w) is not an eigenmode of the Laplacian, rather[

∆w + 1
2 s(1− s) + 1

8 w(w + 2)
]

E(s, κ,w) = 2πκ (s − w
2 ) E(s+1, κ,w)
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Niebur-Poincaré series I

We shall use another regularization which does not require
analytic continuation and preserves the action of the Laplacian:
the Niebur-Poincaré series

F(s, κ,w) = 1
2

∑
γ∈Γ∞\Γ

Ms,w (−κτ2) e−2πiκτ1 |w γ
Niebur; Hejhal; Bruinier Ono Bringmann...

whereMs,w (y) is proportional to a Whittaker function, so that[
∆w + 1

2 s(1− s) + 1
8 w(w + 2)

]
F(s, κ,w) = 0

The seed f (τ) =Ms,w (−κτ2) e−2πiκτ1 satisfies

f (τ) ∼τ2→0 τ
Re(s)−w

2
2 e−2πiκτ1 f (τ) ∼τ2→∞

Γ (2s)

Γ (s + w
2 )

q−κ

hence F(s, κ,w) converges absolutely for Re(s) > 1.
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Niebur-Poincaré series II
Under raising and lowering operators,

Dw = i
π

(
∂τ −

iw
2τ2

)
, D̄w = −iπ τ2

2∂τ̄ ,

the NP series transforms as

Dw · F(s, κ,w) = 2κ (s + w
2 )F(s, κ,w + 2) ,

D̄w · F(s, κ,w) =
1

8κ
(s − w

2 )F(s, κ,w − 2) .

Under Hecke operators,

Hκ′ · F(s, κ,w) =
∑

d |(κ,κ′)

d1−w F(s, κκ′/d2,w) .

The construction generalizes straightforwardly to congruence
subgroups of SL(2,Z): one NP series Fa(s, κ,w) for each cusp.
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Niebur-Poincaré series III
For s = 1− w

2 , relevant for weakly holomorphic modular forms, the
seed simplifies to

f (τ) = Γ (2− w)

(
q−κ − q̄κ

−w∑
`=0

(4πκτ2)`

`!

)
For w < 0, the value s = 1− w

2 lies in the convergence domain,
but F(1− w

2 , κ,w) is in general NOT holomorphic, but rather a
weakly harmonic Maass form,

Φ =
∞∑

m=−κ
am qm +

∞∑
m=1

mw−1 b̄m Γ (1− w ,4πmτ2) q−m

For any such form, D̄Φ = τ2−w
2 Ψ̄ where Ψ =

∑
m≥1 bmqm is a

holomorphic cusp form of weight 2− w , the shadow of the Mock
modular form Φ− =

∑∞
m=−κ am qm.
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Niebur-Poincaré series IV
If |w | is small enough, the negative frequency coefficients b̄m
vanish and Φ is in fact a weakly holomorphic modular form:

w F(1− w
2 ,1,w) F(1− w

2 ,1,2− w)

0 j + 24 E2
4 E6/∆

−2 3! E4E6/∆ E4(j − 240)

−4 5! E2
4/∆ E6(j + 204)

−6 7! E6/∆ E2
4 (j − 480)

−8 9! E4/∆ E4E6(j + 264)

−10 11! Φ−10 (mess)

−12 13!/∆ E2
4 E6(j + 24)

−14 15! Φ−14 (mess)
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Niebur-Poincaré series V

Theorem (Bruinier) : any weakly holomorphic modular form of
weight w ≤ 0 with polar part Φ =

∑
−κ≤m<0 am qm +O(1) can be

represented as a linear combination of Niebur-Poincaré series

Φ =
1

Γ (2− w)

∑
−κ≤m<0

am F(1− w
2 ,m,w) + a′0 δw ,0

(The same holds for congruence subgroups of SL(2,Z), provided
the polar parts at all cusps match)
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Niebur-Poincaré series VI

-

6

-�

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

w

s

2 4−2−4

1

2

3

DD̄

j + 24 E2
4 E6/∆

E4E6/∆

E2
4/∆

weakly almost harmonic

s =
w

2
: wea

kly
ho

l. (g
ho

st)
wea

kly
alm

os
t h

ol.

s
=
− w

2 : τ 2−w2
×

anti-hol. (shadow)

s
=

1−
w

2 : weakly harmonic

Figure: Phase diagram for the Niebur-Poincaré series F(s, κ,w) for
integer values of ( w

2 , s) with s ≥ 1. For low negative values of w ,
F(s, κ,w) reduces to an ordinary weak almost holomorphic Maass form,
see Table ??.
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Unfolding the modular integral

Using Bruinier’s thm, any modular integral can be expressed as a
linear combination of

Id+k ,d (s, κ) = R.N.
∫
F

dµΓd+k ,d (G,B,Y )F(s, κ,−k
2 )

Using the unfolding trick, one arrives at the BPS state sum

Id+k ,d (s, κ) =(4πκ)1− d
2 Γ (s + 2d+k

4 − 1)

×
∑
BPS

2F1

(
s − k

4 , s + 2d+k
4 − 1 ; 2s ; 4κ

p2
L

) (p2
L

4κ

)1−s− 2d+k
4

Bruinier; Angelantonj Florakis BP

where
∑

BPS ≡
∑

p δ(p2
L − p2

R − 4κ). This converges absolutely for
Re(s) > 2d+k

4 and can be analytically continued to Re(s) > 1 with
a simple pole at s = 2d+k

4 .
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Unfolding the modular integral

The result is manifestly O(Γd+k ,d ) invariant, and requires no
choice of chamber in Narain modular space. Singularities on
Gd+k ,d arise when p2

L = 0 for some lattice vector.
For the relevant values s = 1− w

2 + n, the result can be written
using elementary functions, e.g.

I2+k ,2(1 + k
4 , κ) =− Γ (2 + k

2 )
∑
BPS

log
(

p2
R

p2
L

)
+

k/2∑
`=1

1
`

(
p2

L
4κ

)−`
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One example

Consider Het/T 2 × K 3 at Z2 orbifold point with gauge group
broken to E8 × E7 × SU(2). The gauge threshold for E7 is

∆E7 = − 1
12

∫
F

dµΓ2,2
Ê2 E4 E6 − E3

4
∆

Expressing the elliptic genus as a linear combination

Ê2 E4 E6 − E3
4

∆
= F(2,1,0)− 6F(1,1,0)− 864

one arrives at

∆E7 =
∑
BPS

[
1 +

p2
R

4
log

(
p2

R

p2
L

)]
−72 log

(
4π e−γT2 U2 |η(T ) η(U)|4

)
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Fourier expansion I

The Fourier expansion in T1 (or U1) is obtained by solving the BPS
constraint. E.g. for κ = 1, all solutions to m1n1 + m2n2 = 1 are{

m1 = b + dM, n1 = −c
m2 = a + cM, n2 = d

, γ =

(
a b
c d

)
∈ Γ∞\SL(2,Z) ,m ∈ Z

After Poisson resumming over M, the sum over γ reproduces a
sum of Niebur-Poincaré series in U,

I(0)(s,1) =22s−1
√

4πΓ(s − 1
2)T 1−s

2 E(U; s)

+
∑
N 6=0

2
√

T2
|N| Ks−1

2
(2π|N|T2) e−2πiNT1 [F(s, |N|,0; U) + cc]
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Fourier expansion II

For s = 1, relevant for weakly holomorphic modular forms, one
recovers the usual Borcherds products

I2,2(1,1) =I(0)
2,2 +

∑
N>0

qN
T

N
H(U)

N · [j(U) + 24] + ccc

=I(0)
2,2 − log |

∏
M,N

(1− qM
T qN

U )c(MN)|2

For s = 1 + n, relevant for almost holomorphic modular forms,

I2,2(n+1,1) =
(−DT DU)n

2n+1n!

[∑
N>0

qN
T

N2n+1 H(U)
N · F(n + 1,1,−2n; U)

]
+. . .

exhibiting Obers-Kiritsis generalized holomorphic prepotentials.
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Rankin-Selberg method at higher genus I

String amplitudes at genus h ≤ 3 take the form

Ah =

∫
Fh

dµh Γd+k ,d ,h Φ(Ω) , dµh =
dΩ

[det ImΩ]h+1

where Fh is a fundamental domain of the action of Γ = Sp(2h,Z)
on Siegel’s upper half plane Hh = Sp(2h)/U(h), and Φ(Ω) is a
Siegel modular form of weight −k/2.
For h > 3, the integral is restricted to the Schottky locus and we
cannot say much.
We would like to generalize the previous methods to the case
where Φ(Ω) is a almost holomorphic modular form with poles
inside Fh, such as 1/χ10. As a first step, take k = 0, Φ = 1.
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Rankin-Selberg method at higher genus II
The genus h analog of E?(s; τ) is the non-holomorphic
Siegel-Eisenstein series

E?h (s; Ω) = ζ?(2s)

[h/2]∏
j=1

ζ?(4s − 2j)
∑

γ∈Γ∞\Γ

|Ω2|s|γ

where Γ∞ = {
(

A B
0 A−t

)
} , |Ω2| = |det ImΩ|.

The sum converges absolutely for Re(s) > (h + 1)/2 and can be
meromorphically continued to the full s plane. The analytic
continuation is invariant under s 7→ h+1

2 − s, and has a simple pole
at s = h+1

2 with constant residue rh = 1
2
∏[h/2]

j=1 ζ?(2j + 1)
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Rankin-Selberg method at higher genus III
For any cusp form F (Ω), the Rankin-Selberg transform can be
computed by unfolding the integration domain against the sum,

R?h(F ; s) =

∫
Fh

dµh F (Ω) E?h (Ω, s)

=ζ?(2s)

[h/2]∏
j=1

ζ?(4s − 2j)
∫

GL(h,Z)\Ph

dΩ2 |Ω2|s−h−1 F0(Ω2)

where Ph is the space of positive definite real matrices, and
F0(Ω2) =

∫ 1
0 dΩ1F (Ω) is the constant term of F .

The residue at s = h+1
2 is proportional to the average of F ,

Res
s=

h+1
2
R?h(F ; s) = rh

∫
Fh

F .
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Rankin-Selberg method at higher genus IV
The Siegel-Narain theta series is not a cusp form, instead its
zero-th Fourier mode is

Γ
(0)
d ,d ,h(g,B; Ω) = |Ω2|d/2

∑
(mα

i ,n
iα)∈Z2d ,m(α

i niβ)=0

e−πTr(M2Ω2)

where

M2;αβ = (mα
i + Biknkα)g ij(mβ

j + Bjlnlβ) + niαgijnjβ

Terms with Rk(mα
i ,n

iα) < h do not decay rapid ly at Ω2 →∞.
The Siegel-Eisenstein series E?h (Ω, s) similarly has non-decaying
constant term of the form e−Tr(T Ω2) with Rk(T ) < h.
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Rankin-Selberg method at higher genus V
The regularized Rankin-Selberg transform is obtained by
subtracting non-suppressed terms, and yields a 2-loop field theory
amplitude, with BPS states running in the loops,

Rh(Γd ,d ,h; s) =

∫
Ph

dΩ2

|Ω2|h+1−s−d
2

∑
BPS

e−πTr(M2Ω2)

=Γh(s − h−d
2 )

∑
BPS

[
det M2

]h+1−d
2 −s

∑
BPS

=
∑

(mαi ,n
iβ )∈Z4d ,

m(α
i niβ)=0,det M2 6=0

, Γh(s) = π
1
4 h(h−1)

h−1∏
k=1

Γ(s − k
2 )

The modular integral of Γd ,d ,h is then proportional to the residue of
Rh(Γd ,d ,h; s) at s = (h + 1)/2, up to a scheme dependent term δ.
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Rankin-Selberg method at higher genus VI
For h = d = 2, either by computing the BPS sum, or by unfolding
the Siegel-Narain theta series, one finds

R?2(Γ2,2, s) =2ζ?(2s)ζ?(2s − 1)ζ?(2s − 2)

× [E?1 (T ; 2s − 1) + E?1 (U; 2s − 1)]

hence
A2 = 2ζ?(2) [E?1 (T ; 2) + E?1 (U; 2)]

proving the conjecture by Obers and BP (1999).
For h = d = 3,

R?3(Γ3,3; s) =ζ?(2s) ζ?(2s − 1) ζ?(2s − 2) ζ?(2s − 3)[
E?,SO(3,3)

S (2s − 1) + E?,SO(3,3)
C (2s − 1)

]
hence

Ad=3
3 = 2ζ?(2)ζ?(4)

[
E?,SO(3,3)

S (3) + E?,SO(3,3)
C (3)

]
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Conclusion - Outlook

Modular integrals can be efficiently computed using Rankin-
Selberg type methods. The result is expressed as a field theory
amplitude with BPS states running in the loop.
T-duality and singularities from enhanced gauge symmetry are
manifest. Instanton expansions can be obtained in some cases by
solving the BPS constraint.
The RSZ method also works at higher genus, at least for g = 2,3 .
For computing modular integrals with Φ 6= 1 it will be important to
develop Poincaré series representations for Siegel modular forms
with poles at Humbert divisors, such as 1/Φ10.
Non-BPS amplitudes where Φ is not almost weakly holomorphic
are challenging !

B. Pioline (CERN & LPTHE) Rankin-Selberg methods String Math 2013 35 / 36



String Math 2016

Mark on your calendars:

String Math 2016

Collège de France, Paris

June 27-July 2nd, 2016

B. Pioline (CERN & LPTHE) Rankin-Selberg methods String Math 2013 36 / 36


	Modular integrals with trivial elliptic genus
	Modular integrals with non-trivial elliptic genus
	Rankin-Selberg method at higher genus

