Unfolding Methods for String Amplitudes

Boris Pioline

CERN \& LPTHE

NBI, June 14, 2012
based on work with C. Angelantonj and I. Florakis (and old work with N. Obers) arXiv:1110.5318,1203.0566, (hep-th/9903113)

Modular integrals and BPS amplitudes I

- In the low energy effective action of string theory, an interesting class of terms (known as BPS-saturated coupling, topological amplitude or F-term) are given by a modular integral

$$
\mathcal{A}=\int_{\mathcal{F}} \mathrm{d} \mu \Gamma_{(d+k, d)} \Phi(\tau)
$$

- $\mathcal{F}=\Gamma \backslash \mathcal{H}$: fundamental domain of the modular group $\Gamma=S L(2, \mathbb{Z})$ on the Poincaré UHP \mathcal{H};
- $\mathrm{d} \mu=\mathrm{d} \tau_{1} \mathrm{~d} \tau_{2} / \tau_{2}^{2}$ is the Γ-invariant measure;
- $\Gamma_{(d+k, d)}=\tau_{2}^{d / 2} \sum q^{\frac{1}{2} p_{L}^{2}} \bar{q}^{\frac{1}{2} p_{R}^{2}}$: the partition function of an even self-dual (Narain) lattice of signature $(d+k, d)$;
- $\Phi(\tau)$: an (almost, weak) holomorphic modular form of weight $w=-k / 2$, known as the elliptic genus

Modular integrals and BPS amplitudes II

- Such amplitudes arise in a variety of examples:
- Gauge thresholds, $R^{2} F^{2 h-2}$ in Het $/ K 3 \times T^{2}$ at one-loop

Dixon Kaplunovsky Louis; Harvey Moore

- F^{4} couplings in Het / T^{d} at one-loop

Bachas Fabre Kiritsis Obers Vanhove

- R^{4} couplings in type $I / / T^{d}$ at one-loop $(\Phi=1)$

Green Vanhove; Kiritsis BP

- R^{2} couplings in type $I I / K 3 \times T^{2}$ at one-loop (")

Harvey Moore; Gregori Kiritsis Kounnas Obers Petropoulos BP

- F^{4} couplings in type $I I / T^{4} / \mathbb{Z}_{N}$ at tree-level (")

Obers BP

- $\nabla^{4} R^{4}$ couplings in M / T^{d} at two-loops (")

Green Vanhove Russo

- These amplitudes are strongly constrained by supersymmetry, and offer precise tests of string dualities.

Modular integrals and BPS amplitudes III

- When \mathcal{A} arises at one-loop, and upon choosing \mathcal{F} as the standard 'keyhole' domain, τ_{2} can be interpreted as the Schwinger parameter, while τ_{1} is a Lagrange multiplier enforcing the level-matching constraint $p_{L}^{2}-p_{R}^{2}=N$.

Theta correspondances

- From the mathematical point of view, modular integrals give a theta correspondence

$$
\Phi: \Gamma \backslash \mathcal{H} \rightarrow \mathbb{C} \quad \leftrightarrow \quad \mathcal{A}: O\left(\Gamma_{d+k, d}\right) \backslash G_{d+k, d} \rightarrow \mathbb{C}
$$

between modular forms on \mathcal{H} and automorphic forms on the Grassmannian $G_{d+k, d}$, or Narain moduli space

$$
G_{d+k, d}=\frac{O(d+k, d)}{O(d+k) \times O(d)} \ni\left(g_{i j}, B_{i j}, Y_{i}^{a}\right)
$$

Theta correspondances

- From the mathematical point of view, modular integrals give a theta correspondence

$$
\Phi: \Gamma \backslash \mathcal{H} \rightarrow \mathbb{C} \quad \leftrightarrow \quad \mathcal{A}: O\left(\Gamma_{d+k, d}\right) \backslash G_{d+k, d} \rightarrow \mathbb{C}
$$

between modular forms on \mathcal{H} and automorphic forms on the Grassmannian $G_{d+k, d}$, or Narain moduli space

$$
G_{d+k, d}=\frac{O(d+k, d)}{O(d+k) \times O(d)} \ni\left(g_{i j}, B_{i j}, Y_{i}^{a}\right)
$$

- Indeed, $S L(2) \times O(d+k, d)$ forms a dual pair in $S p(d+k, d)$, and the lattice partition function is invariant under $\Gamma \times O\left(\Gamma_{d+k, d}\right)$.

Unfolding trick

- In the physics literature, the time-honored way to evaluate such integrals has been the unfolding trick or orbit method where the domain of integration \mathcal{F} is unfolded by grouping the terms in the theta series into orbits.

Unfolding trick

- In the physics literature, the time-honored way to evaluate such integrals has been the unfolding trick or orbit method where the domain of integration \mathcal{F} is unfolded by grouping the terms in the theta series into orbits.
- E.g for $d=1$, representing $\Gamma_{(1,1)}=R \sum_{m, n} e^{-\pi R^{2}|m-n \tau|^{2} / \tau_{2}}$,

$$
\begin{aligned}
\int_{\mathcal{F}} \Gamma_{(1,1)} & =R \int_{\mathcal{F}} \mathrm{d} \mu+R \int_{\mathcal{S}} \sum_{m \neq 0} e^{-\pi R^{2} m^{2} / \tau_{2}} \\
& =\frac{\pi}{3} R+\frac{\pi}{3} R^{-1}
\end{aligned}
$$

where $\mathcal{S}=\mathcal{H} / \Gamma_{\infty}$ is the strip $\left\{-\frac{1}{2} \leq \tau_{1} \leq \frac{1}{2}, \tau_{2}>0\right\}$.

Unfolding trick

- For $d=2$, a (lengthy) landmark computation shows

$$
\begin{aligned}
\int_{\mathcal{F}}\left(\Gamma_{(2,2)}(T, U)-\tau_{2}\right) d \mu & =\int_{\mathcal{F}}+\int_{\mathcal{S}}+\int_{\mathcal{H}} \\
& =(\text { mess }) \\
& =-\log \left(\frac{8 \pi e^{1-\gamma}}{3 \sqrt{3}} T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)
\end{aligned}
$$

Dixon Kaplunovsky Louis
where T, U parametrize the Grassmannian $G_{2,2}=\mathcal{H}_{T} \times \mathcal{H}_{U} / \mathbb{Z}_{2}$.

Unfolding trick

- For $d=2$, a (lengthy) landmark computation shows

$$
\begin{aligned}
\int_{\mathcal{F}}\left(\Gamma_{(2,2)}(T, U)-\tau_{2}\right) d \mu & =\int_{\mathcal{F}}+\int_{\mathcal{S}}+\int_{\mathcal{H}} \\
& =(\text { mess }) \\
& =-\log \left(\frac{8 \pi e^{1-\gamma}}{3 \sqrt{3}} T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)
\end{aligned}
$$

Dixon Kaplunovsky Louis
where T, \cup parametrize the Grassmannian $G_{2,2}=\mathcal{H}_{T} \times \mathcal{H}_{U} / \mathbb{Z}_{2}$.

- The final result is invariant under T-duality, but intermediate steps do not make T-duality manifest. We shall present a method that preserves T-duality at all steps.

Outline

(1) Introduction
(2) Rankin-Selberg method for lattice integrals
(3) Modular integrals with unphysical tachyons

4 Black hole counting from genus 2 modular integral

Outline

(1) Introduction
(2) Rankin-Selberg method for lattice integrals

(3) Modular integrals with unphysical tachyons

4 Black hole counting from genus 2 modular integral
B. Pioline (CERN \& LPTHE)

Rankin-Selberg method I

- Our method is an extension of the Rankin-Selberg method commonly used in number theory. It relies on the (completed, non-holomorphic) Eisenstein series

$$
\begin{aligned}
E^{\star}(\tau ; s) & \equiv \zeta^{\star}(2 s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}[\operatorname{Im}(\gamma \cdot \tau)]^{s} \\
& =\frac{1}{2} \zeta^{\star}(2 s) \sum_{(c, d)=1} \frac{\tau_{2}^{s}}{|c \tau+d|^{2 s}}
\end{aligned}
$$

where $\zeta^{\star}(s) \equiv \pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\zeta^{\star}(1-s)$ is the completed zeta function with simple poles at $s=1,0$

- $E^{\star}(\tau ; s)=E^{\star}(\tau ; 1-s)$ is analytic in s away from $s=0,1$,

$$
E^{\star}(\tau ; s)=\frac{1}{2(s-1)}+\frac{1}{2}\left(\gamma-\log \left(4 \pi \tau_{2}|\eta(\tau)|^{4}\right)\right)+\mathcal{O}(s-1)
$$

Rankin-Selberg method (cont.)

- If $F(\tau)$ is a modular function of rapid decay at the cusp, the Rankin-Selberg transform

$$
\mathcal{R}^{\star}(F, s) \equiv \int_{\mathcal{F}} \mathrm{d} \mu E^{\star}(\tau ; s) F(\tau)
$$

can be computed by the same unfolding trick,

$$
\begin{aligned}
\mathcal{R}^{\star}(F ; s) & =\zeta^{\star}(2 s) \int_{\mathcal{S}} \frac{\mathrm{d} \tau_{1} \mathrm{~d} \tau_{2}}{\tau_{2}^{2-s}} F(\tau) \\
& =\zeta^{\star}(2 s) \int_{0}^{\infty} \mathrm{d} \tau_{2} \tau_{2}^{s-2} F_{0}\left(\tau_{2}\right)
\end{aligned}
$$

Thus $\mathcal{R}^{\star}(F, s)$ is proportional to the Mellin transform of the constant term $F_{0}\left(\tau_{2}\right)=\int_{-1 / 2}^{1 / 2} \mathrm{~d} \tau_{1} F(\tau)$

Rankin-Selberg method (cont.)

- The analyticity and functional relation for $E^{\star}(s)$ implies similar properties for $\mathcal{R}^{\star}(F ; s)$. For $F=f . g$ product of two cusp forms, this is used e.g. to show the analyticity and functional relation of the L-function $L(s)=\sum_{n} a_{n} b_{n} n^{-s} \propto \mathcal{R}^{\star}(F ; s)$.
- For us, the main point is that, since the residue of E^{\star} at $s=0,1$ is constant, the residue of $\mathcal{R}^{\star}(F ; s)$ at $s=0$ is proportional to the modular integral of F,

$$
\text { Res }\left.\mathcal{R}^{\star}(F ; s)\right|_{s=1}=\frac{1}{2} \int_{\mathcal{F}} \mathrm{d} \mu F=-\left.\operatorname{Res} \mathcal{R}^{\star}(F ; s)\right|_{s=0}
$$

Rankin-Selberg-Zagier method I

- This was extended by Zagier to the case where F is of moderate growth $F(\tau) \sim \phi\left(\tau_{2}\right)$ at the cusp ($\phi\left(\tau_{2}\right)$ at most a power).
- To regulate the infrared divergence, one may introduce a hard cut-off \mathcal{T}. The unfolding trick generalizes into

$$
\left.\int_{\mathcal{F} ; \tau_{2} \leq \mathcal{T}} \sum_{\gamma \in \Gamma / \Gamma_{\infty}} f\right|_{\gamma}=\int_{\mathcal{S} ; \tau_{2} \leq \mathcal{T}} f+\left.\int_{\mathcal{S} ; \tau_{2}>\mathcal{T}} \sum_{\gamma \in \Gamma / \Gamma_{\infty}, \gamma \neq 1} f\right|_{\gamma}
$$

where $\left.f\right|_{\gamma}(\tau)=f(\gamma \cdot \tau)$.

Rankin-Selberg-Zagier method II

- Defining the renormalized modular integral

$$
\text { R.N. } \int_{\mathcal{F}} \mathrm{d} \mu F(\tau) \equiv \lim _{\mathcal{T} \rightarrow \infty}\left[\int_{\mathcal{F}_{\mathcal{T}}} \mathrm{d} \mu F(\tau)-\hat{\varphi}(\mathcal{T})\right]
$$

where $\hat{\varphi}$ is the anti-derivative of φ (i.e. $d \hat{\varphi} / d \mathcal{T}=\varphi(\mathcal{T}) / \mathcal{T}^{2}$), one finds that it is again related to the (regularized) Mellin transform of the constant term

$$
\mathcal{R}^{\star}(F ; s)=\zeta^{\star}(2 s) \int_{0}^{\infty} \mathrm{d} \tau_{2} \tau_{2}^{s-2}\left(F_{0}-\varphi\right)
$$

via

$$
\text { R.N. } \int_{\mathcal{F}} \mathrm{d} \mu F(\tau)=2 \operatorname{Res}\left[\mathcal{R}^{\star}(F ; s)\right]_{s=1}+\delta
$$

Rankin-Selberg-Zagier method III

- The correction δ depends only of the leading behavior $\phi\left(\tau_{2}\right)$, and is given by

$$
\delta=2 \operatorname{Res}\left[\zeta^{\star}(2 s) h_{\mathcal{T}}(s)+\zeta^{\star}(2 s-1) h_{\mathcal{T}}(1-s)\right]_{s=1}-\hat{\varphi}(\mathcal{T})
$$

where

$$
h_{\mathcal{T}}(s)=\int_{0}^{\mathcal{T}} \mathrm{d} \tau_{2} \varphi\left(\tau_{2}\right) \tau_{2}^{s-2}, \quad \hat{\phi}(\mathcal{T})=\operatorname{Res}\left[\frac{h_{\mathcal{T}}(s)}{s-1}\right]_{s=1}
$$

- Other renormalization schemes may give a different constant δ

Epstein series from modular integrals

- The RSZ method applies immediately to modular integrals with unit elliptic genus $\Phi=1$:

$$
\begin{aligned}
\mathcal{R}^{\star}\left(\Gamma_{(d, d)} ; s\right) & =\mathrm{R} \cdot \mathrm{~N} \cdot \int_{\mathcal{F}} \mathrm{d} \mu \tau_{2}^{d / 2} \sum_{m_{i}, n^{i}} q^{\frac{1}{2} p_{L}^{2}} \bar{q}^{\frac{1}{2} p_{R}^{2}} E^{\star}(s, \tau) \\
& =\zeta^{\star}(2 s) \int_{0}^{\infty} \mathrm{d} \tau_{2} \tau_{2}^{s+d / 2-2} \sum_{m_{i} n^{i}=0} e^{-\pi \tau_{2} \mathcal{M}^{2}} \\
& =\zeta^{\star}(2 s) \frac{\Gamma\left(s+\frac{d}{2}-1\right)}{\pi^{s+\frac{d}{2}-1}} \mathcal{E}_{V}^{d}\left(g, B ; s+\frac{d}{2}-1\right)
\end{aligned}
$$

where $\mathcal{E}_{V}^{d}(g, B ; s)$ is the constrained Epstein Zeta series

$$
\mathcal{E}_{V}^{d}(g, B ; s) \equiv \sum_{\substack{\left(m_{i}, n^{i}\right) \in \mathbb{Z}^{2 d} \backslash(0,0) \\ m_{i} n^{\prime}=0}} \mathcal{M}^{-2 s}, \quad \mathcal{M}^{2}=p_{L}^{2}+p_{R}^{2}
$$

Epstein series from modular integrals

- The constrained Epstein Zeta series $\mathcal{E}_{V}^{d}(g, B ; s)$ converges absolutely for $s+\frac{d}{2}-1>1$. The RSZ method shows that it admits a meromorphic continuation in the s-plane satisfying

$$
\mathcal{E}_{V}^{d_{\star}}(g, B ; s)=\mathcal{E}_{V}^{d \star}(g, B ; d-1-s),
$$

where

$$
\mathcal{E}_{V}^{d \star}(g, B ; s)=\pi^{-s} \Gamma(s) \zeta^{\star}(2 s-d+2) \mathcal{E}_{V}^{d}(g, B ; s)
$$

- Moreover $\mathcal{E}_{V}^{d \star}(s)$ has a simple pole at $s=0, \frac{d}{2}-1, \frac{d}{2}, 1$ (for $d>2$) and is an eigenmode of the Laplace-Beltrami operator on the Grassmannian $G_{d, d}$ with eigenvalue $s(s-d+1)$, as a result of

$$
\begin{aligned}
& 0=\left[\Delta_{\mathrm{SO}(d, d)}-2 \Delta_{\mathrm{SL}(2)}+\frac{1}{4} d(d-2)\right] \Gamma_{(d, d)}(g, B) \\
& 0=\left[\Delta_{\mathrm{SL}(2)}-\frac{1}{2} s(s-1)\right] E^{\star}(\tau ; s)
\end{aligned}
$$

Epstein series and BPS state sums I

- The residue at $s=\frac{d}{2}$ produces the modular integral of interest:

$$
\text { R.N. } \begin{aligned}
\int_{\mathcal{F}} \mathrm{d} \mu \Gamma_{(d, d)}(g, B) & =\left.\frac{\pi}{3} \frac{\Gamma(d / 2)}{\pi^{d / 2}} \operatorname{Res} \mathcal{E}_{V}^{d}(g, B ; s)\right|_{s=d / 2} \\
& =\frac{\Gamma(d / 2-1)}{\pi^{d / 2-1}} \mathcal{E}_{V}^{d}\left(g, B ; \frac{1}{2} d-1\right)
\end{aligned}
$$

rigorously proving an old conjecture of Obers and myself.

- This is identified as a sum over all BPS states of momentum m_{i} and winding n^{i} along the torus, $O\left(\Gamma_{d, d}\right)$-invariant mass

$$
\mathcal{M}^{2}=\left(m_{i}+B_{i k} n^{k}\right) g^{i j}\left(m_{j}+B_{j l} n^{\prime}\right)+n^{i} g_{i j} n^{j}
$$

subject to the $O\left(\Gamma_{d, d}\right)$-invariant BPS condition $m_{i} n^{i}=0$.

Epstein series and BPS state sums II

- For $d=1$ or $d=2$:

$$
\begin{aligned}
\mathcal{E}_{V}^{1, \star}\left(g, B ; s-\frac{1}{2}\right) & =2 \zeta^{\star}(2 s) \zeta^{\star}(2 s-1)\left(R^{1-2 s}+R^{2 s-1}\right) \\
\mathcal{E}_{V}^{2 \star}(T, U ; s) & =2 E^{\star}(T ; s) E^{\star}(U ; s)
\end{aligned}
$$

leading immediately to advertized results.

- By the Siegel-Weil formula, $\mathcal{E}_{V}^{d \star}(g, B ; s)$ is also equal to the Langlands-Eisenstein series of $G=O(d, d)$ with character $\lambda=-2 s \alpha_{1}$,

$$
\mathcal{E}_{V}^{d_{\star}}(g ; s)=\left.\sum_{G(\mathbb{Z}) /(P \cap G(\mathbb{Z})} e^{\langle\rho+\lambda, a(g)\rangle}\right|_{\gamma}, \quad g=k \cdot a \cdot n
$$

- The residue at $s=\frac{d}{2}$ is the minimal theta series, attached to the minimal representation of $S O(d, d)$ (functional dimension $2 d-3$).

Ginzburg Rallis Soudry; Kazhdan BP Waldron; Green Vanhove Miller

Higher genus I

- Similar techniques can be used to evaluate modular integrals at genus $h>1$, at least for $h=2,3$ where the Schottky problem does not arise. Consider the completed Eisenstein series

$$
\mathcal{E}^{\star}(\Omega, s)=\zeta^{\star}(2 s) \prod_{j=1}^{[h / 2]} \zeta^{\star}(4 s-2 j) \sum_{(C, D)}\left[\frac{\operatorname{det} \operatorname{Im}(\Omega)}{|\operatorname{det}(C \Omega+D)|^{2}}\right]^{-s}
$$

It converges for $\operatorname{Re}(s)>(h+1) / 2$, can be meromorphically continued to the full s plane and satisfies the functional relation

$$
\mathcal{E}^{\star}(\Omega, s)=\mathcal{E}^{\star}\left(\Omega, \frac{h+1}{2}-s\right)
$$

and has a simple pole at $s=\frac{h+1}{2}($ and $s=0)$ with residue

$$
\frac{1}{2} \prod_{j=1}^{[h / 2]} \zeta^{\star}(2 j+1)
$$

Higher genus II

- The (suitably renormalized) modular integral can be computed by unfolding

$$
\begin{aligned}
I_{h}(s) & =\text { R.N. } \int_{\mathcal{F}_{h}} \mathrm{~d} \mu \mathcal{E}(\Omega, s) \Gamma_{d, d}^{(h)}(g, B ; \Omega) \\
& =\int_{\mathcal{S}_{h}} \frac{\mathrm{~d} \Omega}{[\operatorname{det}(\operatorname{Im} \Omega)]^{m+1-s}}\left(\Gamma_{d, d}^{(h)}(g, B ; \Omega)-[\operatorname{det}(\operatorname{Im} \Omega)]^{d / 2}\right)
\end{aligned}
$$

The integral over $\operatorname{Re}(\Omega)$ imposes the BPS constraints

$$
P_{L} P_{L}^{t}=P_{R} P_{R}^{t}
$$

Higher genus III

- The integral over $\omega \equiv \operatorname{Im}(\Omega) \in G L(h) / S O(h)$ leads to

$$
I_{h}(s)=\prod_{k=1}^{h} \Gamma\left(\frac{s-h-1}{2}-\frac{k-1}{2}+\frac{d}{4}\right) \sum_{\mathrm{BPS}}\left[\operatorname{det}\left(P_{L} P_{L}^{t}+P_{R} P_{R}^{t}\right)\right]^{-\frac{s-h-1}{2}-\frac{d}{4}}
$$

- The modular integral of interest is proportional to the residue at $s=(h+1) / 2$,

$$
\begin{aligned}
\int_{\mathcal{F}_{h}} \mathrm{~d} \mu \Gamma_{d, d}^{(h)}(g, B ; \Omega) & =\operatorname{Res}_{s=(h+1) / 2} \frac{2 I_{h}(s)}{\prod_{j=1}^{[h / 2]} \zeta^{\star}(2 j+1)} \\
& \propto \sum_{\text {BPS }}\left[\operatorname{det}\left(P_{L} P_{L}^{t}+P_{R} P_{R}^{t}\right)\right]^{-\frac{d}{4}}
\end{aligned}
$$

Higher genus IV

- This should be compared with the Obers-BP conjecture

$$
\int_{\mathcal{F}_{h}} \mathrm{~d} \mu \Gamma_{d, d}^{(h)}(g, B ; \Omega) \propto \mathcal{E}_{S}^{d \star}(h)+\mathcal{E}_{C}^{d \star}(h)
$$

where $\mathcal{E}_{S, C}^{d \star}(s)$ are constrained lattice sums $\sum \mathcal{M}^{-2 s}$ in spinor representations of $S O(d, d)$.

Outline

(1) Introduction

2 Rankin-Selberg method for lattice integrals

(3) Modular integrals with unphysical tachyons

4 Black hole counting from genus 2 modular integral

Modular integrals with unphysical tachyons I

- For many cases of interest, the integrand is NOT of moderate growth at the cusp, rather it grows exponentially, due to the heterotic unphysical tachyon.
- In mathematical terms, $\Phi(\tau) \in \mathbb{C}\left[\hat{E}_{2}, E_{4}, E_{6}, 1 / \Delta\right]$ is a weak almost holmorphic modular form with weight $w=-k / 2 \leq 0$.
- The RSZ method fails, however the unfolding trick could still work provided $\Phi(\tau)$ had a uniformly convergent Poincaré representation

$$
\Phi(\tau)=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} f(\tau)\right|_{w} \gamma
$$

where the seed $f(\tau)$ is invariant under $\tau \rightarrow \tau+1$ and

$$
\left(\left.f\right|_{w} \gamma\right)(\tau)=(c \tau+d)^{-w} f(\gamma \cdot \tau), \quad \gamma \cdot \tau=\frac{a \tau+b}{c \tau+d}
$$

Various Poincaré series representations I

- Naively, one requires $f(\tau)=1 / q^{\kappa}$ ($\kappa=1$ for physics applications), however convergence requires $f(\tau) \ll \tau_{2}^{1-\frac{w}{2}}$ as $\tau_{2} \rightarrow 0$. This is OK for $w>2$ but fails for $w \leq 0$. We need to regularize.
- Any weak holomorphic modular form can be represented as a linear combination of regularized holomorphic Poincaré series

$$
P(\kappa, w)=\frac{1}{2} \sum_{(c, d)=1}^{!}(c \tau+d)^{-w} e^{-2 \pi \mathrm{i} \kappa \frac{a \tau+b}{c \tau+d}} R_{w}\left(\frac{2 \pi \mathrm{i} \kappa}{c(c \tau+d)}\right)
$$

where $R_{w}(x) \sim x^{1-w} / \Gamma(2-w)$ as $x \rightarrow 0$ and approaches 1 as $x \rightarrow \infty$. However this is only conditionally convergent, and $P(\kappa, w)$ in general has modular anomalies.

Niebur; Knopp; Manschot Moore

Various Poincaré series representations II

- Another option is to insert a non-holomorphic convergence factor and consider the Selberg-Poincaré series with $f(\tau)=\tau_{2}^{s-\frac{w}{2}} q^{-\kappa}$,

$$
E(s, \kappa, w) \equiv \frac{1}{2} \sum_{(c, d)=1} \frac{\tau_{2}^{s-\frac{w}{2}}}{|c \tau+d|^{2 s-w}}(c \tau+d)^{-w} e^{-2 \pi \mathrm{i} \kappa \frac{a \tau+b}{c \tau+d}} \quad \text { Selberg;Goldfeld Sarnak; Pribitkin }
$$

This converges absolutely for $\operatorname{Re}(s)>1$, but the analytic continuation to $s=\frac{w}{2}$ is tricky (no modular anomaly, but in general holomorphic anomalies).

- Moreover, $E(s, \kappa, w)$ is not an eigenmode of the Laplacian, rather

$$
\left[\Delta_{w}+\frac{1}{2} s(1-s)+\frac{1}{8} w(w+2)\right] E(s, \kappa, w)=2 \pi \kappa\left(s-\frac{w}{2}\right) E(s+1, \kappa, w)
$$

Niebur-Poincaré series I

- There exist yet another regularization which does not require analytic continuation and is still an eigenmode of the Laplacian: the Niebur-Poincaré series

$$
\mathcal{F}(s, \kappa, w)=\left.\frac{1}{2} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi \mathrm{i} \kappa \tau_{1}}\right|_{w} \gamma
$$

where $\mathcal{M}_{s, w}(y)$ is proportional to a Whittaker function, so that

$$
\left[\Delta_{w}+\frac{1}{2} s(1-s)+\frac{1}{8} w(w+2)\right] \mathcal{F}(s, \kappa, w)=0
$$

- The seed $f(\tau)=\mathcal{M}_{s, w}\left(-\kappa \tau_{2}\right) e^{-2 \pi \mathrm{i} \kappa \tau_{1}}$ satisfies

$$
f(\tau) \sim_{\tau_{2} \rightarrow 0} \tau_{2}^{\operatorname{Re}(s)-\frac{w}{2}} e^{-2 \pi \mathrm{i} \kappa \tau_{1}} \quad f(\tau) \sim_{\tau_{2} \rightarrow \infty} \frac{\Gamma(2 s)}{\Gamma\left(s+\frac{w}{2}\right)} q^{-\kappa}
$$

hence $\mathcal{F}(s, \kappa, w)$ converges absolutely for $\operatorname{Re}(s)>1$.

Niebur-Poincaré series II

- For $s=1-\frac{w}{2}$ the eigenvalue coincides with that of a holomorphic modular form, and the seed simplifies to

$$
f(\tau)=\Gamma(2-w)\left(q^{-\kappa}-\bar{q}^{\kappa} \sum_{\ell=0}^{-w} \frac{\left(4 \pi \kappa \tau_{2}\right)^{\ell}}{\ell!}\right)
$$

- For $w<0$, the value $s=1-\frac{w}{2}$ lies in the convergence domain. $\mathcal{F}\left(1-\frac{w}{2}, \kappa, w\right)$ is in general NOT holomorphic, but rather a weak harmonic Maass form.
- For $s=\frac{w^{\prime}}{2}$ and $w^{\prime}>0, \mathcal{F}\left(\frac{w^{\prime}}{2}, \kappa, w^{\prime}\right)$ IS weakly holomorphic. For $w^{\prime}=2-w$, it is the Farey transform (or the 'ghost') of the weak harmonic Maass form $\mathcal{F}\left(1-\frac{w}{2}, \kappa, w\right)$.

Niebur-Poincaré series III

w	$\mathcal{F}\left(1-\frac{w}{2}, 1, w\right)$	$\mathcal{F}\left(1-\frac{w}{2}, 1,2-w\right)$
0	$j+24$	$E_{4}^{2} E_{6} \Delta^{-1}$
-2	$3!E_{4} E_{6} \Delta^{-1}$	$E_{4}(j-240)$
-4	$5!E_{4}^{2} \Delta^{-1}$	$E_{6}(j+204)$
-6	$7!E_{6} \Delta^{-1}$	$E_{4}^{2}(j-480)$
-8	$9!E_{4} \Delta^{-1}$	$E_{4} E_{6}(j+264)$
-10	$11!\Phi_{-10}$	$($ mess $)$
-12	$13!\Delta^{-1}$	$E_{4}^{2} E_{6}(j+24)$
-14	$15!\Phi_{-14}$	$($ mess $)$

Niebur-Poincaré series IV

- Indeed, for $w=-10$, there does not exist any weak holomorphic modular form with a simple pole at the cusp. Rather, there exist a weak harmonic Maass form

$$
\begin{aligned}
\Phi_{-10}= & q^{-1}-\frac{65520}{691}-1842.89 q-23274.08 q^{2}+\ldots \\
& +\sum_{m=1}^{\infty} m^{-11} \bar{b}_{m} \Gamma\left(11,4 \pi m \tau_{2}\right) q^{-m}
\end{aligned}
$$

with shadow $\sum b_{m} q^{m}$ proportional to the cusp form Δ.

- Theorem (Bruinier) : any weak holomorphic modular form of weight $w \leq 0$ with polar part $\Phi=\sum_{-\kappa \leq m<0} a_{m} q^{m}+\mathcal{O}(1)$ can be represented as a linear combination of Niebur-Poincaré series

$$
\Phi=\frac{1}{\Gamma(2-w)} \sum_{-\kappa \leq m<0} a_{m} \mathcal{F}\left(1-\frac{w}{2}, m, w\right)+a_{0}^{\prime} \delta_{w, 0}
$$

Niebur-Poincaré series V

- Almost weak holomorphic modular forms can be reached by raising and lowering operators

$$
D_{w}=\frac{\mathrm{i}}{\pi}\left(\partial_{\tau}-\frac{\mathrm{i} w}{2 \tau_{2}}\right), \quad \bar{D}_{w}=-\mathrm{i} \pi \tau_{2}^{2} \partial_{\bar{\tau}}
$$

under which

$$
\begin{aligned}
& D_{w} \cdot \mathcal{F}(s, \kappa, w)=2 \kappa\left(s+\frac{w}{2}\right) \mathcal{F}(s, \kappa, w+2) \\
& \bar{D}_{w} \cdot \mathcal{F}(s, \kappa, w)=\frac{1}{8 \kappa}\left(s-\frac{w}{2}\right) \mathcal{F}(s, \kappa, w-2)
\end{aligned}
$$

The relevant values of s are $s=1-\frac{w}{2}+n$ with $n \geq 0$. E.g.

$$
\frac{\hat{E}_{2} E_{4} E_{6}}{\Delta}=\mathcal{F}(2,1,0)-5 \mathcal{F}(1,1,0)-144
$$

Niebur-Poincaré series VI

Unfolding the modular integral

- Using Bruinier's thm, any modular integral can be expressed as a linear combination of

$$
\mathcal{I}_{d+k, d}(s, \kappa ;)=\text { R.N. } \int_{\mathcal{F}} \mathrm{d} \mu \Gamma_{d+k, d}(G, B, Y) \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)
$$

Unfolding the modular integral

- Using Bruinier's thm, any modular integral can be expressed as a linear combination of

$$
\mathcal{I}_{d+k, d}(s, \kappa ;)=\text { R.N. } \int_{\mathcal{F}} \mathrm{d} \mu \Gamma_{d+k, d}(G, B, Y) \mathcal{F}\left(s, \kappa,-\frac{k}{2}\right)
$$

- Using the unfolding trick, one arrives at the BPS state sum

$$
\begin{aligned}
& \mathcal{I}_{d+k, d}(s, \kappa)=(4 \pi \kappa)^{1-\frac{d}{2}} \Gamma\left(s+\frac{2 d+k}{4}-1\right) \\
& \quad \times \sum_{\text {BPS }}{ }_{2} F_{1}\left(s-\frac{k}{4}, s+\frac{2 d+k}{4}-1 ; 2 s ; \frac{4 \kappa}{p_{\mathrm{L}}^{2}}\right)\left(\frac{p_{\mathrm{L}}^{2}}{4 \kappa}\right)^{1-s-\frac{2 d+k}{4}}
\end{aligned}
$$

Bruinier; Angelantonj Florakis BP
where $\sum_{\mathrm{BPS}} \equiv \sum_{p_{\mathrm{L}}, p_{\mathrm{R}}} \delta\left(p_{\mathrm{L}}^{2}-p_{\mathrm{R}}^{2}-4 \kappa\right)$. This converges absolutely for $\operatorname{Re}(s)>\frac{2 d+k}{4}$ and can be analytically continued to $\operatorname{Re}(s)>1$ with a simple pole at $s=\frac{2 d+k}{4}$.

Unfolding the modular integral

- The result is manifestly T-duality invariant, and requires no choice of chamber in Narain modular space. Singularities on $G_{d+k, d}$ arise when $p_{L}^{2}=0$ for some lattice vector.
- For the relevant values $s=1-\frac{w}{2}+n$, the result can be written using elementary functions, e.g.

$$
\begin{aligned}
\mathcal{I}_{1,1}(1+n, \kappa)= & \frac{1}{2} \sqrt{\pi}(16 \kappa)^{1+n} \Gamma\left(n+\frac{1}{2}\right) \\
& \times \sum_{\substack{p, q \in \mathbb{Z} \\
p q=\kappa}}\left(\left|p R+q R^{-1}\right|+\left|p R-q R^{-1}\right|\right)^{-1-2 n} \\
\mathcal{I}_{2+k, 2}\left(1+\frac{k}{4}, \kappa\right)= & -\Gamma\left(2+\frac{k}{2}\right) \sum_{\text {BPS }}\left[\log \left(\frac{p_{\mathrm{R}}^{2}}{p_{\mathrm{L}}^{2}}\right)+\sum_{\ell=1}^{k / 2} \frac{1}{\ell}\left(\frac{p_{\mathrm{L}}^{2}}{4 \kappa}\right)^{-\ell}\right]
\end{aligned}
$$

One example

- Consider Het/ $T^{2} \times K 3$ at \mathbb{Z}_{2} orbifold point with gauge group broken to $E_{8} \times E_{7} \times S U(2)$. The gauge threshold for E_{7} is

$$
\Delta_{\mathrm{E}_{7}}=-\frac{1}{12} \int_{\mathcal{F}} \mathrm{d} \mu \Gamma_{2,2} \frac{\hat{E}_{2} E_{4} E_{6}-E_{4}^{3}}{\Delta}
$$

Expressing the elliptic genus as a linear combination

$$
\frac{\hat{E}_{2} E_{4} E_{6}-E_{4}^{3}}{\Delta}=\mathcal{F}(2,1,0)-6 \mathcal{F}(1,1,0)-864
$$

one arrives at

$$
\Delta_{\mathrm{E}_{7}}=\sum_{\mathrm{BPS}}\left[1+\frac{p_{\mathrm{R}}^{2}}{4} \log \left(\frac{p_{\mathrm{R}}^{2}}{p_{\mathrm{L}}^{2}}\right)\right]-72 \log \left(4 \pi e^{-\gamma} T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right)
$$

Outline

(1) Introduction

(2) Rankin-Selberg method for lattice integrals

(3) Modular integrals with unphysical tachyons

4 Black hole counting from genus 2 modular integral

Black holes in $D=4$ and instantons in $D=3$ I

- 1/4-BPS black holes in $\mathcal{N}=4 \mathrm{CHL}$-type vacua are counted by a Siegel modular form of genus 2 and weight k, where $r=2 k+8$ is the rank of the lattice of electric charges $\left(k=10\right.$ in $\left.\mathrm{Het} / T^{6}\right)$. Invariance under $G_{4}=S L(2, \mathbb{Z}) \times S O(6, r-6, \mathbb{Z})$ is manifest.

Dijkgraaf Verlinde Verlinde; David Jatkar Sen

- Suitable BPS couplings in $D=3$ (e.g. $\nabla^{2} R^{2}$) should receive instanton corrections from 1/4-BPS black holes in $D=4$, along with KK monopoles. Yet they should be invariant under the 3D U-duality group $G_{3}=S O(8, r-4, \mathbb{Z})$.
- 1/4-BPS black holes in $M / K 3 \times T^{4}$ can be represented by M5-branes wrapping around genus 2 curve $\Sigma \subset T^{4}$. On the heterotic side, one should include all genus 2 wordsheet instantons in T^{7}, plus NS5 and KK monopoles.

Black holes in $D=4$ and instantons in $D=3 \|$

- Thus, it is natural to conjecture

$$
f_{\nabla^{2} R^{2}}^{D=3}=\int_{\mathcal{F}_{2}} \frac{\mathrm{~d}^{3} \Omega \mathrm{~d}^{3} \bar{\Omega}}{(\operatorname{det} \operatorname{Im} \Omega)^{3}} \frac{Z_{8, r-4}(\Omega) \hat{E}_{2}(\Omega)(\operatorname{det} \operatorname{Im} \Omega)^{4}}{\Phi_{k}}
$$

where $Z_{8, r-4}$ is the partition function of the non-perturbative lattice, and \hat{E}_{2} is the almost holomorphic Eisenstein series of weight 2.

- At weak heterotic coupling, one should recover the two-loop amplitude, invariant under $S O(7, r-5, \mathbb{Z})$, plus other perturbative corrections.
- At large radius, one should recover a sum over 1/4-BPS states, weighted by their entropy, along with KK monopoles

$$
f_{\nabla^{2} R^{2}}^{D=3} \stackrel{?}{=} f_{\nabla^{2} R^{2}}^{D=4}+\sum \Omega(\gamma) e^{-R \mathcal{M}(\gamma)}+\sum_{k} e^{-R^{2} k}+\ldots
$$

Since $\Omega(\ell \gamma) \sim e^{\ell^{2}}$ while $\mathcal{M}(\ell \gamma) \sim \ell$, the series is at best asymptotic...

Conclusion - Outlook

- Modular integrals can be efficiently computed using RankinSelberg type methods. While the time-honored 'orbit method' is still useful for studying large volume limits, our method makes T-duality and singularities manifest.

Conclusion - Outlook

- Modular integrals can be efficiently computed using RankinSelberg type methods. While the time-honored 'orbit method' is still useful for studying large volume limits, our method makes T-duality and singularities manifest.
- For application to orbifold models, it would be useful to extend this method to congruence subgroups of $S L(2, \mathbb{Z})$.

Conclusion - Outlook

- Modular integrals can be efficiently computed using RankinSelberg type methods. While the time-honored 'orbit method' is still useful for studying large volume limits, our method makes T-duality and singularities manifest.
- For application to orbifold models, it would be useful to extend this method to congruence subgroups of $S L(2, \mathbb{Z})$.
- More interestingly, it would be useful to find Poincaré series representations for Siegel modular forms of higher genus.

