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Modular integrals and BPS amplitudes I

In the low energy effective action of string theory, an interesting
class of terms (known as BPS-saturated coupling, topological
amplitude or F-term) are given by a modular integral

A =

∫
F

dµΓ(d+k ,d) Φ(τ)

• F = Γ\H : fundamental domain of the modular group Γ = SL(2,Z)
on the Poincaré UHP H;

• dµ = dτ1dτ2/τ
2
2 is the Γ-invariant measure;

• Γ(d+k,d) = τ
d/2
2

∑
q

1
2 p2

L q̄
1
2 p2

R : the partition function of an even
self-dual (Narain) lattice of signature (d + k ,d);

• Φ(τ) : an (almost, weak) holomorphic modular form of weight
w = −k/2, known as the elliptic genus
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Modular integrals and BPS amplitudes II
Such amplitudes arise in a variety of examples:
• Gauge thresholds, R2F 2h−2 in Het/K 3× T 2 at one-loop

Dixon Kaplunovsky Louis; Harvey Moore

• F 4 couplings in Het/T d at one-loop
Bachas Fabre Kiritsis Obers Vanhove

• R4 couplings in type II/T d at one-loop (Φ = 1)
Green Vanhove; Kiritsis BP

• R2 couplings in type II/K 3× T 2 at one-loop (")
Harvey Moore; Gregori Kiritsis Kounnas Obers Petropoulos BP

• F 4 couplings in type II/T 4/ZN at tree-level (")
Obers BP

• ∇4R4 couplings in M/T d at two-loops (")
Green Vanhove Russo

These amplitudes are strongly constrained by supersymmetry,
and offer precise tests of string dualities.
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Modular integrals and BPS amplitudes III

When A arises at one-loop, and upon choosing F as the standard
‘keyhole’ domain, τ2 can be interpreted as the Schwinger
parameter, while τ1 is a Lagrange multiplier enforcing the
level-matching constraint p2

L − p2
R = N.
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Theta correspondances

From the mathematical point of view, modular integrals give a
theta correspondence

Φ : Γ\H → C ↔ A : O(Γd+k ,d )\Gd+k ,d → C

between modular forms on H and automorphic forms on the
Grassmannian Gd+k ,d , or Narain moduli space

Gd+k ,d =
O(d + k ,d)

O(d + k)×O(d)
3 (gij ,Bij ,Y a

i )

Indeed, SL(2)×O(d + k ,d) forms a dual pair in Sp(d + k ,d), and
the lattice partition function is invariant under Γ×O(Γd+k ,d ).
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Unfolding trick

In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method where the
domain of integration F is unfolded by grouping the terms in the
theta series into orbits.

E.g for d = 1, representing Γ(1,1) = R
∑

m,n e−πR2|m−nτ |2/τ2 ,∫
F
Γ(1,1) =R

∫
F

dµ+ R
∫
S

∑
m 6=0

e−πR2m2/τ2

=
π

3
R +

π

3
R−1

where S = H/Γ∞ is the strip {−1
2 ≤ τ1 ≤ 1

2 , τ2 > 0}.

B. Pioline (CERN & LPTHE) Unfolding methods NBI, June 14, 2012 6 / 40



Unfolding trick

In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method where the
domain of integration F is unfolded by grouping the terms in the
theta series into orbits.
E.g for d = 1, representing Γ(1,1) = R

∑
m,n e−πR2|m−nτ |2/τ2 ,∫

F
Γ(1,1) =R

∫
F

dµ+ R
∫
S

∑
m 6=0

e−πR2m2/τ2

=
π

3
R +

π

3
R−1

where S = H/Γ∞ is the strip {−1
2 ≤ τ1 ≤ 1

2 , τ2 > 0}.

B. Pioline (CERN & LPTHE) Unfolding methods NBI, June 14, 2012 6 / 40



Unfolding trick

For d = 2, a (lengthy) landmark computation shows∫
F

(
Γ(2,2)(T ,U)− τ2

)
dµ =

∫
F

+

∫
S

+

∫
H

=(mess)

=− log
(

8πe1−γ

3
√

3
T2 U2 |η(T ) η(U)|4

)
Dixon Kaplunovsky Louis

where T ,U parametrize the Grassmannian G2,2 = HT ×HU/Z2.

The final result is invariant under T-duality, but intermediate steps
do not make T-duality manifest. We shall present a method that
preserves T-duality at all steps.
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2 Rankin-Selberg method for lattice integrals
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4 Black hole counting from genus 2 modular integral
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Rankin-Selberg method I

Our method is an extension of the Rankin-Selberg method
commonly used in number theory. It relies on the (completed,
non-holomorphic) Eisenstein series

E?(τ ; s) ≡ζ?(2s)
∑

γ∈Γ∞\Γ

[Im (γ · τ)]s

=1
2 ζ

?(2s)
∑

(c,d)=1

τ s
2

|c τ + d |2s

where ζ?(s) ≡ π−s/2 Γ (s/2) ζ(s) = ζ?(1− s) is the completed zeta
function with simple poles at s = 1,0
E?(τ ; s) = E?(τ ; 1− s) is analytic in s away from s = 0,1,

E?(τ ; s) =
1

2(s − 1)
+ 1

2

(
γ − log(4π τ2 |η(τ)|4)

)
+O(s − 1) ,
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Rankin-Selberg method (cont.)

If F (τ) is a modular function of rapid decay at the cusp, the
Rankin-Selberg transform

R?(F , s) ≡
∫
F

dµE?(τ ; s) F (τ)

can be computed by the same unfolding trick,

R?(F ; s) =ζ?(2s)

∫
S

dτ1 dτ2

τ2−s
2

F (τ)

=ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2 F0(τ2) ,

Thus R?(F , s) is proportional to the Mellin transform of the
constant term F0(τ2) =

∫ 1/2
−1/2 dτ1 F (τ)
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Rankin-Selberg method (cont.)

The analyticity and functional relation for E?(s) implies similar
properties for R?(F ; s). For F = f .g product of two cusp forms,
this is used e.g. to show the analyticity and functional relation of
the L-function L(s) =

∑
n anbnn−s ∝ R?(F ; s).

For us, the main point is that, since the residue of E? at s = 0,1 is
constant, the residue of R?(F ; s) at s = 0 is proportional to the
modular integral of F ,

Res R?(F ; s)|s=1 = 1
2

∫
F

dµF = −Res R?(F ; s)|s=0 .
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Rankin-Selberg-Zagier method I

This was extended by Zagier to the case where F is of moderate
growth F (τ) ∼ φ(τ2) at the cusp (φ(τ2) at most a power).

To regulate the infrared divergence, one may introduce a hard
cut-off T . The unfolding trick generalizes into∫

F ;τ2≤T

∑
γ∈Γ/Γ∞

f |γ =

∫
S;τ2≤T

f +

∫
S;τ2>T

∑
γ∈Γ/Γ∞,γ 6=1

f |γ

where f |γ(τ) = f (γ · τ).
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Rankin-Selberg-Zagier method II
Defining the renormalized modular integral

R.N.
∫
F

dµF (τ) ≡ lim
T →∞

[∫
FT

dµF (τ)− ϕ̂(T )

]
where ϕ̂ is the anti-derivative of ϕ (i.e. dϕ̂/dT = ϕ(T )/T 2), one
finds that it is again related to the (regularized) Mellin transform of
the constant term

R?(F ; s) = ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2 (F0 − ϕ) ,

via
R.N.

∫
F

dµF (τ) = 2 Res [R?(F ; s)]s=1 + δ
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Rankin-Selberg-Zagier method III

The correction δ depends only of the leading behavior φ(τ2), and
is given by

δ = 2 Res [ζ?(2s) hT (s) + ζ?(2s − 1) hT (1− s)]s=1 − ϕ̂(T ) ,

where

hT (s) =

∫ T
0

dτ2 ϕ(τ2) τ s−2
2 , φ̂(T ) = Res

[
hT (s)

s − 1

]
s=1

Other renormalization schemes may give a different constant δ
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Epstein series from modular integrals

The RSZ method applies immediately to modular integrals with
unit elliptic genus Φ = 1:

R?(Γ(d ,d); s) = R.N.
∫
F

dµ τd/2
2

∑
mi ,ni

q
1
2 p2

L q̄
1
2 p2

R E?(s, τ) ,

= ζ?(2s)

∫ ∞
0

dτ2 τ
s+d/2−2
2

∑
mi ni =0

e−πτ2M2

= ζ?(2s)
Γ (s + d

2 − 1)

πs+
d
2−1

Ed
V (g,B; s + d

2 − 1)

where Ed
V (g,B; s) is the constrained Epstein Zeta series

Ed
V (g,B; s) ≡

∑
(mi ,ni )∈Z2d\(0,0)

mi ni =0

M−2s , M2 = p2
L + p2

R
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Epstein series from modular integrals

The constrained Epstein Zeta series Ed
V (g,B; s) converges

absolutely for s + d
2 − 1 > 1. The RSZ method shows that it

admits a meromorphic continuation in the s-plane satisfying

Ed?
V (g,B; s) = Ed ?

V (g,B; d − 1− s) ,

where

Ed?
V (g,B; s) = π−sΓ(s)ζ?(2s − d + 2) Ed

V (g,B; s)

Moreover Ed?
V (s) has a simple pole at s = 0, d

2 − 1, d
2 ,1 (for d > 2)

and is an eigenmode of the Laplace-Beltrami operator on the
Grassmannian Gd ,d with eigenvalue s(s − d + 1), as a result of

0 =
[
∆SO(d ,d) − 2 ∆SL(2) + 1

4 d(d − 2)
]
Γ(d ,d)(g,B)

0 =
[
∆SL(2) − 1

2 s(s − 1)
]

E?(τ ; s) ,
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Epstein series and BPS state sums I

The residue at s = d
2 produces the modular integral of interest:

R.N.
∫
F

dµΓ(d ,d)(g,B) =
π

3
Γ(d/2)

πd/2 Res Ed
V (g,B; s)

∣∣∣
s=d/2

=
Γ(d/2− 1)

πd/2−1 Ed
V
(
g,B; 1

2 d − 1
)

rigorously proving an old conjecture of Obers and myself.
This is identified as a sum over all BPS states of momentum mi
and winding ni along the torus, O(Γd ,d )-invariant mass

M2 = (mi + Biknk )g ij(mj + Bjlnl) + nigijnj

subject to the O(Γd ,d )-invariant BPS condition mini = 0.
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Epstein series and BPS state sums II
For d = 1 or d = 2:

E1,?
V (g,B; s − 1

2) =2 ζ?(2s) ζ?(2s − 1)
(

R1−2s + R2s−1
)

E2?
V (T ,U; s) =2 E?(T ; s) E?(U; s)

leading immediately to advertized results.
By the Siegel-Weil formula, Ed?

V (g,B; s) is also equal to the
Langlands-Eisenstein series of G = O(d ,d) with character
λ = −2sα1,

Ed?
V (g; s) =

∑
G(Z)/(P∩G(Z)

e〈ρ+λ,a(g)〉|γ , g = k · a · n

The residue at s = d
2 is the minimal theta series, attached to the

minimal representation of SO(d ,d) (functional dimension 2d − 3).

Ginzburg Rallis Soudry; Kazhdan BP Waldron; Green Vanhove Miller
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Higher genus I

Similar techniques can be used to evaluate modular integrals at
genus h > 1, at least for h = 2,3 where the Schottky problem
does not arise. Consider the completed Eisenstein series

E?(Ω, s) = ζ?(2s)

[h/2]∏
j=1

ζ?(4s − 2j)
∑

(C,D)

[
det Im(Ω)

|det(CΩ + D)|2

]−s

,

It converges for Re(s) > (h + 1)/2, can be meromorphically
continued to the full s plane and satisfies the functional relation

E?(Ω, s) = E?(Ω, h+1
2 − s)

and has a simple pole at s = h+1
2 (and s = 0) with residue

1
2

[h/2]∏
j=1

ζ?(2j + 1)
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Higher genus II

The (suitably renormalized) modular integral can be computed by
unfolding

Ih(s) =R.N.
∫
Fh

dµ E(Ω, s) Γ
(h)
d ,d (g,B; Ω)

=

∫
Sh

dΩ

[det(ImΩ)]m+1−s

(
Γ

(h)
d ,d (g,B; Ω)− [det(ImΩ)]d/2

)
The integral over Re(Ω) imposes the BPS constraints

PL P t
L = PR P t

R
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Higher genus III

The integral over ω ≡ Im(Ω) ∈ GL(h)/SO(h) leads to

Ih(s) =
h∏

k=1

Γ
( s−h−1

2 − k−1
2 + d

4

) ∑
BPS

[
det(PL P t

L + PR P t
R)
]− s−h−1

2 − d
4

The modular integral of interest is proportional to the residue at
s = (h + 1)/2,∫

Fh

dµ Γ
(h)
d ,d (g,B; Ω) =Ress=(h+1)/2

2 Ih(s)∏[h/2]
j=1 ζ?(2j + 1)

∝
∑
BPS

[
det(PL P t

L + PR P t
R)
]− d

4

B. Pioline (CERN & LPTHE) Unfolding methods NBI, June 14, 2012 22 / 40



Higher genus IV

This should be compared with the Obers-BP conjecture∫
Fh

dµ Γ
(h)
d ,d (g,B; Ω) ∝ Ed?

S (h) + Ed?
C (h)

where Ed?
S,C(s) are constrained lattice sums

∑
M−2s in spinor

representations of SO(d ,d).
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Modular integrals with unphysical tachyons I

For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon.
In mathematical terms, Φ(τ) ∈ C[Ê2,E4,E6,1/∆] is a weak almost
holmorphic modular form with weight w = −k/2 ≤ 0.
The RSZ method fails, however the unfolding trick could still work
provided Φ(τ) had a uniformly convergent Poincaré representation

Φ(τ) =
∑

γ∈Γ∞\Γ

f (τ)|wγ

where the seed f (τ) is invariant under τ → τ + 1 and

(f |wγ) (τ) = (cτ + d)−w f (γ · τ) , γ · τ =
aτ + b
cτ + d

.
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Various Poincaré series representations I

Naively, one requires f (τ) = 1/qκ (κ = 1 for physics applications),

however convergence requires f (τ)� τ
1−w

2
2 as τ2 → 0. This is OK

for w > 2 but fails for w ≤ 0. We need to regularize.
Any weak holomorphic modular form can be represented as a
linear combination of regularized holomorphic Poincaré series

P(κ,w) = 1
2

!∑
(c,d)=1

(cτ + d)−w e−2πiκ aτ+b
cτ+d Rw

(
2πiκ

c(cτ + d)

)
,

where Rw (x) ∼ x1−w/Γ (2− w) as x → 0 and approaches 1 as
x →∞. However this is only conditionally convergent, and
P(κ,w) in general has modular anomalies.

Niebur; Knopp; Manschot Moore
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Various Poincaré series representations II

Another option is to insert a non-holomorphic convergence factor
and consider the Selberg-Poincaré series with f (τ) = τ

s−w
2

2 q−κ,

E(s, κ,w) ≡ 1
2

∑
(c,d)=1

τ
s−w

2
2

|cτ + d |2s−w (cτ + d)−w e−2πiκ aτ+b
cτ+d

Selberg;Goldfeld Sarnak; Pribitkin

This converges absolutely for Re(s) > 1, but the analytic
continuation to s = w

2 is tricky (no modular anomaly, but in general
holomorphic anomalies).
Moreover, E(s, κ,w) is not an eigenmode of the Laplacian, rather[

∆w + 1
2 s(1− s) + 1

8 w(w + 2)
]

E(s, κ,w) = 2πκ (s − w
2 ) E(s+1, κ,w)
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Niebur-Poincaré series I

There exist yet another regularization which does not require
analytic continuation and is still an eigenmode of the Laplacian:
the Niebur-Poincaré series

F(s, κ,w) = 1
2

∑
γ∈Γ∞\Γ

Ms,w (−κτ2) e−2πiκτ1 |w γ
Niebur; Hejhal; Bruinier Ono Bringmann...

whereMs,w (y) is proportional to a Whittaker function, so that[
∆w + 1

2 s(1− s) + 1
8 w(w + 2)

]
F(s, κ,w) = 0

The seed f (τ) =Ms,w (−κτ2) e−2πiκτ1 satisfies

f (τ) ∼τ2→0 τ
Re(s)−w

2
2 e−2πiκτ1 f (τ) ∼τ2→∞

Γ (2s)

Γ (s + w
2 )

q−κ

hence F(s, κ,w) converges absolutely for Re(s) > 1.
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Niebur-Poincaré series II
For s = 1− w

2 the eigenvalue coincides with that of a holomorphic
modular form, and the seed simplifies to

f (τ) = Γ (2− w)

(
q−κ − q̄κ

−w∑
`=0

(4πκτ2)`

`!

)
For w < 0, the value s = 1− w

2 lies in the convergence domain.
F(1− w

2 , κ,w) is in general NOT holomorphic, but rather a weak
harmonic Maass form.
For s = w ′

2 and w ′ > 0, F(w ′
2 , κ,w

′) IS weakly holomorphic. For
w ′ = 2− w , it is the Farey transform (or the ’ghost’) of the weak
harmonic Maass form F(1− w

2 , κ,w).
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Niebur-Poincaré series III

w F(1− w
2 ,1,w) F(1− w

2 ,1,2− w)

0 j + 24 E2
4 E6∆

−1

−2 3! E4E6∆
−1 E4(j − 240)

−4 5! E2
4 ∆
−1 E6(j + 204)

−6 7! E6∆
−1 E2

4 (j − 480)

−8 9! E4∆
−1 E4E6(j + 264)

−10 11! Φ−10 (mess)

−12 13!∆−1 E2
4 E6(j + 24)

−14 15! Φ−14 (mess)
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Niebur-Poincaré series IV
Indeed, for w = −10, there does not exist any weak holomorphic
modular form with a simple pole at the cusp. Rather, there exist a
weak harmonic Maass form

Φ−10 =q−1 − 65520
691 − 1842.89 q − 23274.08 q2 + . . .

+
∞∑

m=1

m−11 b̄m Γ (11,4πmτ2) q−m

Ono

with shadow
∑

bmqm proportional to the cusp form ∆.
Theorem (Bruinier) : any weak holomorphic modular form of
weight w ≤ 0 with polar part Φ =

∑
−κ≤m<0 am qm +O(1) can be

represented as a linear combination of Niebur-Poincaré series

Φ =
1

Γ (2− w)

∑
−κ≤m<0

am F(1− w
2 ,m,w) + a′0 δw ,0
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Niebur-Poincaré series V

Almost weak holomorphic modular forms can be reached by
raising and lowering operators

Dw =
i
π

(
∂τ −

iw
2τ2

)
, D̄w = −iπ τ2

2∂τ̄ ,

under which

Dw · F(s, κ,w) = 2κ (s + w
2 )F(s, κ,w + 2) ,

D̄w · F(s, κ,w) =
1

8κ
(s − w

2 )F(s, κ,w − 2) .

The relevant values of s are s = 1− w
2 + n with n ≥ 0. E.g.

Ê2E4E6

∆
= F(2,1,0)− 5F(1,1,0)− 144
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Niebur-Poincaré series VI
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•

w

s

2 4−2−4

1

2

3

DD̄

j + 24 E2
4 E6/∆

weak almost harmonic

s =
w

2
: wea

k ho
l. (g

ho
st)wea
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Figure: Phase diagram for the Niebur-Poincaré series F(s, κ,w) for
integer values of ( w

2 , s) with s ≥ 1. For low negative values of w ,
F(s, κ,w) reduces to an ordinary weak almost holomorphic Maass form,
see Table ??.
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Unfolding the modular integral

Using Bruinier’s thm, any modular integral can be expressed as a
linear combination of

Id+k ,d (s, κ; ) = R.N.
∫
F

dµΓd+k ,d (G,B,Y )F(s, κ,−k
2 )

Using the unfolding trick, one arrives at the BPS state sum

Id+k ,d (s, κ) =(4πκ)1− d
2 Γ (s + 2d+k

4 − 1)

×
∑
BPS

2F1

(
s − k

4 , s + 2d+k
4 − 1 ; 2s ; 4κ

p2
L

) (p2
L

4κ

)1−s− 2d+k
4

Bruinier; Angelantonj Florakis BP

where
∑

BPS ≡
∑

pL , pR
δ(p2

L − p2
R − 4κ). This converges absolutely

for Re(s) > 2d+k
4 and can be analytically continued to Re(s) > 1

with a simple pole at s = 2d+k
4 .
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Unfolding the modular integral

The result is manifestly T-duality invariant, and requires no choice
of chamber in Narain modular space. Singularities on Gd+k ,d arise
when p2

L = 0 for some lattice vector.
For the relevant values s = 1− w

2 + n, the result can be written
using elementary functions, e.g.

I1,1(1 + n, κ) =1
2
√
π (16κ)1+n Γ (n + 1

2)

×
∑

p,q∈Z
pq=κ

(∣∣∣p R + q R−1
∣∣∣+
∣∣∣p R − q R−1

∣∣∣)−1−2n

I2+k ,2(1 + k
4 , κ) =− Γ (2 + k

2 )
∑
BPS

log
(

p2
R

p2
L

)
+

k/2∑
`=1

1
`

(
p2

L
4κ

)−`
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One example

Consider Het/T 2 × K 3 at Z2 orbifold point with gauge group
broken to E8 × E7 × SU(2). The gauge threshold for E7 is

∆E7 = − 1
12

∫
F

dµΓ2,2
Ê2 E4 E6 − E3

4
∆

Expressing the elliptic genus as a linear combination

Ê2 E4 E6 − E3
4

∆
= F(2,1,0)− 6F(1,1,0)− 864

one arrives at

∆E7 =
∑
BPS

[
1 +

p2
R

4
log

(
p2

R

p2
L

)]
−72 log

(
4π e−γT2 U2 |η(T ) η(U)|4

)
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Black holes in D = 4 and instantons in D = 3 I

1/4-BPS black holes in N = 4 CHL-type vacua are counted by a
Siegel modular form of genus 2 and weight k , where r = 2k + 8 is
the rank of the lattice of electric charges (k = 10 in Het/T 6).
Invariance under G4 = SL(2,Z)× SO(6, r − 6,Z) is manifest.

Dijkgraaf Verlinde Verlinde; David Jatkar Sen

Suitable BPS couplings in D = 3 (e.g. ∇2R2) should receive
instanton corrections from 1/4-BPS black holes in D = 4, along
with KK monopoles. Yet they should be invariant under the 3D
U-duality group G3 = SO(8, r − 4,Z).
1/4-BPS black holes in M/K 3× T 4 can be represented by
M5-branes wrapping around genus 2 curve Σ ⊂ T 4. On the
heterotic side, one should include all genus 2 wordsheet
instantons in T 7, plus NS5 and KK monopoles.

Gaiotto Dabhokar
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Black holes in D = 4 and instantons in D = 3 II
Thus, it is natural to conjecture

f D=3
∇2R2 =

∫
F2

d3Ωd3Ω̄

(det ImΩ)3
Z8,r−4(Ω) Ê2(Ω) (det ImΩ)4

Φk

where Z8,r−4 is the partition function of the non-perturbative lattice,
and Ê2 is the almost holomorphic Eisenstein series of weight 2.
At weak heterotic coupling, one should recover the two-loop
amplitude, invariant under SO(7, r − 5,Z), plus other perturbative
corrections.
At large radius, one should recover a sum over 1/4-BPS states,
weighted by their entropy, along with KK monopoles

f D=3
∇2R2

?
= f D=4
∇2R2 +

∑
Ω(γ) e−RM(γ) +

∑
k

e−R2k + . . .

Since Ω(`γ) ∼ e`
2

whileM(`γ) ∼ `, the series is at best
asymptotic...
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Conclusion - Outlook

Modular integrals can be efficiently computed using Rankin-
Selberg type methods. While the time-honored ’orbit method’ is
still useful for studying large volume limits, our method makes
T-duality and singularities manifest.

For application to orbifold models, it would be useful to extend this
method to congruence subgroups of SL(2,Z).
More interestingly, it would be useful to find Poincaré series
representations for Siegel modular forms of higher genus.
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