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Modular integrals and BPS amplitudes |

@ In the low energy effective action of string theory, an interesting
class of terms (known as BPS-saturated coupling, topological
amplitude or F-term) are given by a modular integral

A= /fdu Lark,d) ()
e F =T\H : fundamental domain of the modular group I' = SL(2,Z)
on the Poincaré UHP #;
e du = drydmp/72 is the M-invariant measure;
® ldtka) = 75’/2 > q%pf Efépf? : the partition function of an even
self-dual (Narain) lattice of signature (d + k, d);

e ®(7) : an (almost, weak) holomorphic modular form of weight
w = —k/2, known as the elliptic genus
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Modular integrals and BPS amplitudes Il

@ Such amplitudes arise in a variety of examples:
e Gauge thresholds, R?F2"~2 in Het/K3 x T2 at one-loop
Dixon Kaplunovsky Louis; Harvey Moore
F* couplings in Het/ T9 at one-loop
Bachas Fabre Kiritsis Obers Vanhove
R* couplings in type /l/ T9 at one-loop (¢ = 1)
Green Vanhove; Kiritsis BP
R? couplings in type ///K3 x T2 at one-loop (")
Harvey Moore; Gregori Kiritsis Kounnas Obers Petropoulos BP
F* couplings in type I/ T*/Zy at tree-level (")

Obers BP

V*R* couplings in M/ T¢ at two-loops (")
Green Vanhove Russo

@ These amplitudes are strongly constrained by supersymmetry,
and offer precise tests of string dualities.
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Modular integrals and BPS amplitudes Il

@ When A arises at one-loop, and upon choosing F as the standard
‘keyhole’ domain, o can be interpreted as the Schwinger
parameter, while 71 is a Lagrange multiplier enforcing the
level-matching constraint p? — p% = N.
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Theta correspondances

@ From the mathematical point of view, modular integrals give a
theta correspondence

OJ8 F\H —-C < A: O(I’d+k7d)\Gd+k,d —-C

between modular forms on # and automorphic forms on the
Grassmannian Gy 4, or Narain moduli space

G, . __Od+kd)
d+hd = O(d + k) x O(d)

> (gijv Bl'jv Yia)
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Theta correspondances

@ From the mathematical point of view, modular integrals give a
theta correspondence

OJ8 F\H —-C < A: O(I’d+k7d)\Gd+k,d —-C

between modular forms on # and automorphic forms on the
Grassmannian Gy 4, or Narain moduli space

G . __Od+kd)
d+hd = O(d + k) x O(d)

@ Indeed, SL(2) x O(d + k, d) forms a dual pair in Sp(d + k, d), and
the lattice partition function is invariant under I' x O(T g k,a)-

> (gijv Bl'jv Yia)
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Unfolding trick

@ In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method where the
domain of integration F is unfolded by grouping the terms in the
theta series into orbits.
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Unfolding trick

@ In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method where the
domain of integration F is unfolded by grouping the terms in the
theta series into orbits.

e E.gford =1, representing Iy 1) = R Y., ,e " Im=nmF/m,

T :R/ d,u—l—R/ e—7rFi2m2/Tg
/]-' (. F SZ

m#0
s

v
——R+_-R
373

where S = 1/ is the strip {—5 < 7 < 5,7 > 0}.
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Unfolding trick
@ For d = 2, a (lengthy) landmark computation shows

[ (Nea(T.0) =) o= / / /.

mess

o 8re! 4
log( e T Ua(T) (U)\)

Dixon Kaplunovsky Louis

where T, U parametrize the Grassmannian Go» = H1 x Hy/Zo.
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Unfolding trick
@ For d = 2, a (lengthy) landmark computation shows

[ (Nea(T.0) =) o= / / /.

mess
8re'
=—lo T U u 4)
0 (%25 e Leln(M) (V)
Dixon Kaplunovsky Louis
where T, U parametrize the Grassmannian Go» = H1 x Hy/Zo.

@ The final result is invariant under T-duality, but intermediate steps
do not make T-duality manifest. We shall present a method that
preserves T-duality at all steps.
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0 Introduction
e Rankin-Selberg method for lattice integrals
e Modular integrals with unphysical tachyons

0 Black hole counting from genus 2 modular integral
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e Rankin-Selberg method for lattice integrals
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Rankin-Selberg method |

@ Our method is an extension of the Rankin-Selberg method
commonly used in number theory. It relies on the (completed,
non-holomorphic) Eisenstein series

E*(ris)=C"(2s) Y [m(y-7)°

YEL NI
10 Y
2 S Jer+ ds

where ¢*(s) = 7-5/2 I'(s/2) ((s) = ¢*(1 — s) is the completed zeta
function with simple polesat s = 1,0
@ E*(r;8) = E*(r; 1 — s) is analytic in s away from s =0, 1,

E(ri8) = 55—y + 5 (7~ loaldn 2 n(r)[Y) + O(s = 1).
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Rankin-Selberg method (cont.)

e If F(7) is a modular function of rapid decay at the cusp, the
Rankin-Selberg transform

R*(F,s) = /]:dME*(T;S)F(T)

can be computed by the same unfolding trick,

RU(Fis) =¢'(25) | 552 F()

S To

—*(25) /O dro 752 Fo(a)

Thus R*(F,s) is proportional to the Mellin transform of the
constant term Fo(72) = f 172dm F(7)
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Rankin-Selberg method (cont.)

@ The analyticity and functional relation for E*(s) implies similar
properties for R*(F; s). For F = f.g product of two cusp forms,
this is used e.g. to show the analyticity and functional relation of
the L-function L(s) = ), anbnn—° o<« R*(F; s).

@ For us, the main point is that, since the residue of E*at s = 0,1 is
constant, the residue of R*(F; s) at s = 0 is proportional to the
modular integral of F,

Res R*(F;8)|s_1 = ;/ du F = —Res R*(F; S)|s_g -
f
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Rankin-Selberg-Zagier method |

@ This was extended by Zagier to the case where F is of moderate
growth F(7) ~ ¢(72) at the cusp (¢(72) at most a power).

@ To regulate the infrared divergence, one may introduce a hard
cut-off 7. The unfolding trick generalizes into

fl, = f f
Frnir 2 = o o 2

ST el T T T ooy

where f| (1) = f(y - 7).
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Rankin-Selberg-Zagier method Il

@ Defining the renormalized modular integral

’N. [ aure) = im [ [ o) - o)

where ¢ is the anti-derivative of o (i.e. d@/dT = ¢(T)/T?), one
finds that it is again related to the (regularized) Mellin transform of
the constant term

R*(F:s) = C*(2s) /0 dra 52 (Fo — ) |

via
R.N. / dp F(1) = 2Res [R*(F; 8)]s_1 + 6
_F
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Rankin-Selberg-Zagier method Il

@ The correction ¢ depends only of the leading behavior ¢(72), and
is given by

5 = 2Res [¢*(28) hr(S) + ¢*(2s — 1) hr(1 — 8)]ouy — @(T),

where

T ~
hr(s) = [ amaetm)zs 2 —res | T

@ Other renormalization schemes may give a different constant §
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Epstein series from modular integrals

@ The RSZ method applies immediately to modular integrals with
unit elliptic genus ¢ = 1:

R*(F(d,d); S) = R.N. / dN Td/2 Z q%pf a%p.‘z? E*(S, T) s

mj,ni
= (*(2s) / "y rS O/ Z g M
0 mini=
rs+9—1
:(*(23)%8"(98 s+9-1)
7r3+§71

where £3(g, B; s) is the constrained Epstein Zeta series
%

£09.Bis)= > M. M=pi+ph
(m;,n)€Z29\(0,0)
m;n'=0
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Epstein series from modular integrals

@ The constrained Epstein Zeta series 53(9, B; s) converges
absolutely for s + ¢ — 1 > 1. The RSZ method shows that it
admits a meromorphic continuation in the s-plane satisfying

£%(9,B;s) =£3*(g,B;d —1—5),
where
£ (g,B;s) = nST(s)¢*(2s — d +2) £Y(g, B; s)

@ Moreover £J*(s) has a simple pole at s = 0,9 — 1, 4,1 (for d > 2)

and is an eigenmode of the Laplace-Beltrami operator on the
Grassmannian Gy 4 with eigenvalue s(s — d + 1), as a result of

0 = [Aso(g.d) — 2 Asi(e) + 5 d(d — 2)] I(g.a)(g.B)
0= [ASL(Z) — %S(S — 1)] E*(T; S) ,
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Epstein series and BPS state sums |

@ The residue at s = % produces the modular integral of interest:

(92 o ed o B
R.N./qul“(d,d)(g» B) = 3 ;d/2 Res £y (g, B:5) s=d/2
rd/2-1
:(7Tc/f/2—1)53(9’8;;d_1)

rigorously proving an old conjecture of Obers and myself.

@ This is identified as a sum over all BPS states of momentum m;
and winding n' along the torus, O(l'y 4)-invariant mass

./\/l2 = (m,- + B/knk)g”(mj + Bj,n’) + n’g,~,-n’

subject to the O(T g )-invariant BPS condition m;n’ = 0.
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Epstein series and BPS state sums |l

@ Ford=1ord=2:

£y1(g.Bis— 1) =2¢*(2s)C"(2s — 1) (R 2+ A7)
EF (T, U;s) =2E*(T;s) E*(U; s)
leading immediately to advertized results.

@ By the Siegel-Weil formula, £9*(g, B; s) is also equal to the
Langlands-Eisenstein series of G = O(d, d) with character
A = —28041,

e (ge) = Y, e g=k-an
G(Z)/(PNG(z)

@ The residue at s = g is the minimal theta series, attached to the
minimal representation of SO(d, d) (functional dimension 2d — 3).

Ginzburg Rallis Soudry; Kazhdan BP Waldron; Green Vanhove Miller

B. Pioline (CERN & LPTHE) Unfolding methods NBI, June 14, 2012 19/40



Higher genus |

@ Similar techniques can be used to evaluate modular integrals at
genus h > 1, at least for h = 2, 3 where the Schottky problem
does not arise. Consider the completed Eisenstein series

[h/2] —s
N N N ) detIm(Q)
e(@.9)= @) [[ cus-2) Y | |
e D) | det(CQ + D)2

It converges for Re(s) > (h+ 1)/2, can be meromorphically
continued to the full s plane and satisfies the functional relation

EXQ,8) = EX(Q, 15 — 5)
and has a simple pole at s = ! (and s = 0) with residue
1 [h/2]
> H ¢"(2j+1)
j=1
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Higher genus Il

@ The (suitably renormalized) modular integral can be computed by
unfolding

In(s) =R.N. / dn&(Q,8) (g, B:Q)
Fh ’

:/8 [det(lmcg]mﬂs (riy(g. B:9) - [det(im@))#/2)

The integral over Re(2) imposes the BPS constraints

P, P! = Pg P}
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Higher genus Il

@ The integral over w = Im(Q2) € GL(h)/SO(h) leads to

h _s—h—-1_d
=TIr¢( KL+ 9)>  [det(PLP{+ PrPR)™ & ¢
k=1 BPS

@ The modular integral of interest is proportional to the residue at

s=(h+1)/2,
2 In(s)
du Fd d(g, Q) =ReSs_(h+1)/2 .
A 77 o+ 1)
_d
x Z [det(P, P} + PrPR)] *

BPS
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Higher genus IV

@ This should be compared with the Obers-BP conjecture

| anrhe.Bi) x g (h) + £ ()

Fh

where £Z*,(s) are constrained lattice sums Y~ M~2¢ in spinor
representations of SO(d, d).
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e Modular integrals with unphysical tachyons

B. Pioline (CERN & LPTHE) Unfolding methods NBI, June 14, 2012 24/40



Modular integrals with unphysical tachyons |

@ For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon.

@ In mathematical terms, ®(7) € C[E», E4, Eg, 1/A] is a weak almost
holmorphic modular form with weight w = —k /2 < 0.

@ The RSZ method fails, however the unfolding trick could still work
provided ®(7) had a uniformly convergent Poincaré representation

o= D )y
YETN\T
where the seed f(r) is invariant under  — 7 + 1 and

_ar+b
er+d’

(flwy) (1) = (eT + ) f(y-7), 77
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Various Poincaré series representations |

@ Naively, one requires f(t) = 1/9" (x = 1 for physics applications),
however convergence requires f(7) < 721_? as m» — 0. This is OK
for w > 2 but fails for w < 0. We need to regularize.

@ Any weak holomorphic modular form can be represented as a
linear combination of regularized holomorphic Poincaré series

ar+b

|
: ; 2mik
Praw)=3 > (cr+d) e ?"eria R <> :
(r, W) =3 (C7d)_1( ) "\ c(er + d)

where Ry (x) ~ x'=%/I'(2 — w) as x — 0 and approaches 1 as
Xx — oo. However this is only conditionally convergent, and
P(x, w) in general has modular anomalies.

Niebur; Knopp; Manschot Moore
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Various Poincaré series representations Il

@ Another option is to insert a non-holomorphic convergence factor
and consider the Selberg-Poincaré series with f(7) = 725_5 q ",

ar+b

2
1 Z T2 —w —2rir
E(S7 K, W) =3 7|CT i d|2$—W (CT + d) e cr+d
(c,d)=1

Selberg;Goldfeld Sarnak; Pribitkin

This converges absolutely for Re(s) > 1, but the analytic
continuation to s = ¥ is tricky (no modular anomaly, but in general
holomorphic anomalies).

@ Moreover, E(s, k, w) is not an eigenmode of the Laplacian, rather

(A + 3 s(1—58)+ gw(w+2)] E(s,k,w) =2rk(s— %) E(s+1,5,w)
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Niebur-Poincaré series |

@ There exist yet another regularization which does not require
analytic continuation and is still an eigenmode of the Laplacian:
the Niebur-Poincaré series

F(s,k,w) Z Msw(—km)e —2miRT |y
'YEF o\l Niebur; Hejhal; Bruinier Ono Bringmann...
where M; »(y) is proportional to a Whittaker function, so that

[Ay+ 3 s(1—58)+ 3 w(w+2)] F(s,k,w)=0
@ The seed f(7) = Msw(—kTo) €27 gatisfies

I'(2s)

Re(s)— R q
2 I'(s+ %)

(7)o 3 2072 () ~

—K

hence F(s, k, w) converges absolutely for Re(s) > 1.
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Niebur-Poincaré series |l

@ For s =1 — 7 the eigenvalue coincides with that of a holomorphic
modular form, and the seed simplifies to

— (4rkp)t
f(r) =12 - w) (q”" g > i >
=0
@ For w < 0, the value s =1 — 7 lies in the convergence domain.
F(1— %, r,w)isin general NOT holomorphic, but rather a weak
harmonic Maass form.
@ Fors= % and w' > 0, F(%, s, w') IS weakly holomorphic. For
w' =2 — w, it is the Farey transform (or the 'ghost’) of the weak
harmonic Maass form F(1 — 4, x, w).
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Niebur-Poincaré series Il

w | FO -4, 1,w) | F(1 - 4,1,2—w)
0 j+24 EZEs A~°
—2 | BIEEsAT E4(j — 240)
—4 51 E2 A~ Es(j +204)
-6 71 Eg A~ E2(j — 480)
-8 91 E, A~ E4Es(j + 264)
-10 111d_q9 (mess)
12 131A-1 E2Es(j + 24)
—14 151 d_q4 (mess)
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Niebur-Poincaré series |V

@ Indeed, for w = —10, there does not exist any weak holomorphic
modular form with a simple pole at the cusp. Rather, there exist a
weak harmonic Maass form

® 19 =q ' — 3520 _ 1842.89 q — 23274.08% + ...

+ > m by r(11,47mr) g
m=1 Ono

with shadow > b,@™ proportional to the cusp form A.

@ Theorem (Bruinier) : any weak holomorphic modular form of
weight w < 0 with polarpart ® =5" o anq™ + O(1) can be
represented as a linear combination of Niebur-Poincaré series

’
d=—r——" > anF(1-%.mw)+abuo

—k<m<0
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Niebur-Poincaré series V

@ Almost weak holomorphic modular forms can be reached by
raising and lowering operators

_ify W A i 25
DW—W<8T 27_2), Dy = —ir 150z,
under which

Dw - F(s,k,w) =2k(s+ 5) F(S, 5, W+ 2),

= 1
Dy - F(s,k,w) = —(s— %) F(s,k, W — 2).
8k 2

The relevant values of sare s =1 — 3 + nwith n> 0. E.g.

E:EsEs

A F(2,1,0) —5F(1,1,0) — 144
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Niebur-Poincaré series VI

weak almog

5t harmonic
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Unfolding the modular integral

@ Using Bruinier’s thm, any modular integral can be expressed as a
linear combination of

Torwals.i) = RN. | duTuid(G.B.Y) F(s.r.~)
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Unfolding the modular integral

@ Using Bruinier’s thm, any modular integral can be expressed as a
linear combination of

Laikd(S, #:) = RN. /qu T'yikd(G,B,Y)F(s,k,—%5)
@ Using the unfolding trick, one arrives at the BPS state sum

Takd(S, k) =(4mk)' "2 T(s + 24K — 1)

2d+k
2

1—s—
<" HF <Sizjs+2d+k 28 pz) (,DL) a

BPS
Bruinier; Angelantonj Florakis BP

where 3 pps = > e 9(0f — P& — 4r). This converges absolutely
for Re(s) > 2% and can be analytically continued to Re(s) > 1
with a simple poIe at s = 29k,
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Unfolding the modular integral

@ The result is manifestly T-duality invariant, and requires no choice
of chamber in Narain modular space. Singularities on Gg.« ¢ arise
when p? = 0 for some lattice vector.

@ For the relevant values s =1 — g + n, the result can be written
using elementary functions, e.g.

Tia(1 4+ nk) =3 v/ (168)" I(n+ §)

<5 (preanspa-an) "
P,Q€EZ

pg=r
) K2 L o
Torko(1+ 5, 5)=—T(2+%) Z log (Z§> + Z 7 (Z,E)
BPS =1
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One example

@ Consider Het/ T2 x K3 at Z, orbifold point with gauge group
broken to Eg x E7 x SU(2). The gauge threshold for E7 is

1 E,E,Es— E3
AE7: 12 duFZZ*

Expressing the elliptic genus as a linear combination

E,E Es— E3
%:}“(2,1,0)—6}'(1,1,0)—864

one arrives at

A —Z[H—pﬁlo (
Ez — 4 g

BPS

)} ~72log (4r e T2 Uy [n(T)n(U)I*)

lpr\)‘;gr\)
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0 Black hole counting from genus 2 modular integral
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Black holes in D = 4 and instantons in D = 3 |

@ 1/4-BPS black holes in A/ = 4 CHL-type vacua are counted by a
Siegel modular form of genus 2 and weight k, where r = 2k + 8 is
the rank of the lattice of electric charges (k = 10 in Het/T®).
Invariance under G4 = SL(2,Z) x SO(6, r — 6,Z) is manifest.

Dijkgraaf Verlinde Verlinde; David Jatkar Sen

@ Suitable BPS couplings in D = 3 (e.g. V2R?) should receive
instanton corrections from 1/4-BPS black holes in D = 4, along
with KK monopoles. Yet they should be invariant under the 3D
U-duality group Gz = SO(8,r — 4,7).

@ 1/4-BPS black holes in M/K3 x T* can be represented by
M5-branes wrapping around genus 2 curve ¥ C T#. On the
heterotic side, one should include all genus 2 wordsheet
instantons in T7, plus NS5 and KK monopoles.

Gaiotto Dabhokar
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Black holes in D = 4 and instantons in D = 3 |l

@ Thus, it is natural to conjecture

B / BoddQ  Zg,_4(Q) Ex(Q) (detImQ)*
2R2_

i
v 7, (detImQ)3 o

where Zg ;4 is the partition function of the non-perturbative lattice,
and I::g is the almost holomorphic Eisenstein series of weight 2.

@ At weak heterotic coupling, one should recover the two-loop
amplitude, invariant under SO(7,r — 5,7), plus other perturbative
corrections.

@ At large radius, one should recover a sum over 1/4-BPS states,
weighted by their entropy, along with KK monopoles

? _R2
fnggzv2R2+ZQ"}/)e AM (7)+ZeRk+
k

Since Q(¢v) ~ e’ while M(ly) ~ ¢, the series is at best
asymptotic...
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Conclusion - Outlook

@ Modular integrals can be efficiently computed using Rankin-
Selberg type methods. While the time-honored ‘orbit method’ is
still useful for studying large volume limits, our method makes
T-duality and singularities manifest.

B. Pioline (CERN & LPTHE) Unfolding methods NBI, June 14, 2012 40/ 40



Conclusion - Outlook

@ Modular integrals can be efficiently computed using Rankin-
Selberg type methods. While the time-honored ‘orbit method’ is
still useful for studying large volume limits, our method makes
T-duality and singularities manifest.

@ For application to orbifold models, it would be useful to extend this
method to congruence subgroups of SL(2,7Z).
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Conclusion - Outlook

@ Modular integrals can be efficiently computed using Rankin-
Selberg type methods. While the time-honored ‘orbit method’ is
still useful for studying large volume limits, our method makes
T-duality and singularities manifest.

@ For application to orbifold models, it would be useful to extend this
method to congruence subgroups of SL(2,7Z).

@ More interestingly, it would be useful to find Poincaré series
representations for Siegel modular forms of higher genus.
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