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String amplitudes and modular integrals I

Scattering amplitudes of n external states in perturbative
superstring theory have a topological expansion

A =
∞∑

h=0

g2h−2
s Ah , Ah =

∫
Mh,n

dµh,n Fh,n

+ + + ...

where Fh,n is a correlator of n vertex operators (along with ghost
insertions) in a certain SCFT on a Riemann surface Σh of genus h
with n punctures zi , integrated over the moduli space of
super-Riemann surfaces Mh,n.
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String amplitudes and modular integrals II

After integrating over the positions of the punctures and fermionic
part of supermoduli, one is left with an integral over the (ordinary)
moduli space of Riemann surfacesMh:

Ah =

∫
Mh

dµh Fh

There is no canonical way of projecting the supermoduli space
onto bosonic moduli space. Different projections differ by total
derivatives onMh, which can in principle be fixed by matching
with QFT behavior at the boundaries.

Donagi Witten
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String amplitudes and modular integrals III
The moduli spaceMh = Th/Γh is the quotient of the Teichmüller
space Th by the mapping class group Γh. The integrand is
naturally a function on Th invariant under Γh.
For genus h ≤ 3, the Teichmüller space Th is isomorphic to (an
open set in) the Siegel-Poincaré upper half plane Hh,
parametrized by the period matrix Ω, a complex h × h symmetric
matrix with positive definite imaginary part. The integrand Fh(Ω) is
a Siegel modular form for Γh = Sp(2h,Z), acting as
Ω 7→ (AΩ + B) · (CΩ + D)−1.
Th is the analog of the space of Schwinger/Feynman parameters
in QFT, while Γh has no analog in QFT. The quotient by Γh is
largely responsible for the UV finiteness of string theory.
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String amplitudes and modular integrals IV

At genus 1, T1 is the Poincaré upper-half plane, parametrized by
Ω11 ≡ τ = τ1 + iτ2 and the integrand F1 is invariant under
SL(2,Z). A convenient choice of fundamendal domain is

τ2 can be interpreted as a Schwinger parameter while τ1 (for
τ2 > 1) a Lagrange multiplier projecting the spectrum on
level-matched states
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String amplitudes and modular integrals V

E.g. the one-loop vacuum amplitude in bosonic closed string
theory in D = 26 flat space time is proportional to

A1 =

∫
F

dτ1dτ2

τ
1+D/2
2

1
|η|2(D−2)

where η(τ) = q1/24∏∞
n=1(1− qn) is the Dedekind eta function

(q = e2πiτ ). This is infrared divergent due to tachyon.

For genus 2, it takes 25 inequalities to define F2 !

For genus h ≥ 4, Th is a codimension 1
2(h − 2)(h − 3) locus inside

Hh known as the Schottky locus. It is not clear how to extend Fh to
a modular form on Hh.
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Rankin-Selberg method / unfolding trick I

Our goal is to develop methods to compute integrals of Siegel
modular forms over a fundamental domain of the Siegel upper-half
plane analytically.
The key idea is to represent the integrand as a Poincaré series,

Fh(Ω) =
∑

γ∈Γh,∞\Γh

fh|γ(Ω)

where fh|γ(Ω) = fh(γ · Ω) and the ‘seed’ fh(Ω) is invariant under a
subgroup Γh,∞ ⊂ Γh. Typically, Γh,∞ is the stabilizer of the cusp at
infinity, acting by integer shifts of Ω1.
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Rankin-Selberg method / unfolding trick II
Provided the sum is absolutely convergent, one can exchange the
sum and integral and obtain∫

Γh\Hh

dµh Fh(Ω) =

∫
Γ∞,h\Hh

dµh fh(Ω) .

2
1

2
1 o 2

o 1

1

2
1

2
1 o 2

o 1

UT

F

S

We gain if Γ∞,h\Hh and fh are simpler than Γh\Hh and Fh !
This method is limited by our ability to represent the integrand as
a Poincaré series. Not much is known in genus h > 1. In genus
one, any weakly, almost holomorphic modular form of negative
weight can be represented as a Poincaré series.
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Rankin-Selberg method / unfolding trick III
We shall focus on a class of one-loop amplitudes of the form

A =

∫
F

dµΓd+k ,d Φ(τ) , dµ =
dτ1dτ2

τ2
2

where Φ(τ) is a weakly, almost holomorphic modular form of
weight w = −k/2 (the elliptic genus) and Γ(d+k ,d) is a Siegel
Theta series (the Narain lattice partition function) for an even
self-dual lattice (Γ,B) of signature (d + k ,d),

Γ(d+k ,d) = τ
d/2
2

∑
p∈Γ

e−πτ2M2(p)+πiτ1〈p,p〉

The positive definite quadratic formM2(p) is parametrized by the
orthogonal Grassmannian

Gd+k ,d =
O(d + k ,d)

O(d + k)×O(d)
3 (gij ,Bij ,Y a

i ) ,
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Rankin-Selberg method / unfolding trick IV

Such modular integrals arise in certain BPS-saturated amplitudes,
such as F 2,R2,F 4,R4 in type II string theory (k = 0) or heterotic
string (k = 8,16) compactified on a torus T d .
A is invariant under T-duality, i.e. under the automorphisms of the
lattice. Mathematically, Φ 7→ A is a Theta correspondence
between SL(2,Z) and O(Γd+k ,d ) automorphic forms.

Borcherds; Kudla Rallis

In the physics literature, such integrals are typically computed the
orbit method, i.e. by applying the unfolding trick to Γ(d+k ,d).
Instead, we shall apply the unfolding trick to Φ(τ), which has the
advantage of keeping T-duality manifest throughout.

Dixon Kaplunovsky Louis; Harvey Moore
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Outline

1 String amplitudes and modular integrals

2 The Rankin-Selberg method

3 Niebur-Poincaré series and generalized prepotentials

4 Rankin-Selberg method at higher genus
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Rankin-Selberg method I

Consider the completed non-holomorphic Eisenstein series

E?(τ ; s) =ζ?(2s)
∑

γ∈Γ∞\Γ

τ s
2 |γ = 1

2 ζ
?(2s)

∑
(c,d)=1

τ s
2

|c τ + d |2s

where ζ?(s) ≡ π−s/2 Γ (s/2) ζ(s) = ζ?(1− s).
E?(τ ; s) is convergent for Re(s) > 1, and has a meromorphic
continuation to all s, invariant under s 7→ 1− s, with simple poles
at s = 0,1 with constant residue:

E?(τ ; s) =
1

2(s − 1)
+ 1

2

(
γ − log(4π τ2 |η(τ)|4)

)
+O(s − 1) ,
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Rankin-Selberg method (cont.)

For any modular function F (Ω) of rapid decay, consider the
Rankin-Selberg transform

R?(F , s) =

∫
F

dµE?(τ ; s) F (τ)

By the unfolding trick, R?(F , s) is proportional to the Mellin
transform of the constant term F0(τ2) =

∫ 1/2
−1/2 dτ1 F (τ),

R?(F ; s) =ζ?(2s)

∫
R+×[−1

2 ,
1
2 ]

dµ τ s
2 F (τ)

=ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2 F0(τ2) ,
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Rankin-Selberg method (cont.) I

It inherits the meromorphicity and functional relations of E?, e.g.
R?(F ; s) = R?(F ; 1− s).
Since the residue of E?(τ ; s) at s = 0,1 is constant, the residue of
R?(F ; s) at s = 1 is proportional to the modular integral of F ,

Ress=1R?(F ; s) = 1
2

∫
F

dµF
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Rankin-Selberg method (cont.) II

This was extended by Zagier to the case where F (0) is of
power-like growth F (0)(τ) ∼ ϕ(τ2) at the cusp: the renormalized
integral

R.N.
∫
F

dµF (τ) = lim
T →∞

[∫
FT

dµF (τ)− ϕ̂(T )

]

ϕ(τ2) =
∑
α

cατα2 , ϕ̂(T ) =
∑
α6=1

cα
τα−1

2
α− 1

+
∑
α=1

cα log τ2

is related to the Mellin transform of the (regularized) constant term

R?(F ; s) = ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2

(
F (0) − ϕ

)
,

via R.N.
∫
F dµF (τ) = 2 Ress=1R?(F ; s) + δ
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Rankin-Selberg method (cont.) III

Here δ is a scheme-dependent correction which depends only on
the leading behavior ϕ(τ2):

δ = 2 Ress=1 [ζ?(2s) hT (s) + ζ?(2s − 1) hT (1− s)]− ϕ̂(T ) ,

where hT (s) =
∫ T

0 dτ2 ϕ(τ2) τ s−2
2 .

The Rankin-Selberg transform R?(F ; s) is itself equal to the
renormalized integral

R?(F ; s) = R.N.
∫
F

dµF (τ) E?(s; τ)

According to this prescription, R.N.
∫
F dµ E?(τ ; s) = 0 !
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Epstein series from modular integrals

The RSZ method applies immediately to A =
∫
F dµΓd ,d (g,B):

R?(Γd ,d ; s) = ζ?(2s)

∫ ∞
0

dτ2 τ
s+d/2−2
2

′∑
〈p,p〉=0

e−πτ2M2(p)

= ζ?(2s)
Γ (s + d

2 − 1)

πs+
d
2−1

Ed
V (g,B; s + d

2 − 1)

where Ed
V (g,B; s) is the constrained Epstein series

Ed
V (g,B; s) ≡

′∑
〈p,p〉=0

[
M2(p)

]−s
,

a.k.a. degenerate Langlands-Eisenstein series with infinitesimal
character ρ− 2sα1
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Epstein series and BPS state sums I

This is identified as a sum over all BPS states of momentum mi
and winding ni , with mass

M2(p) = (mi + Biknk )g ij(mj + Bjlnl) + nigijnj

subject to the BPS condition 〈p,p〉 = mini = 0. Invariance under
O(Γd ,d ) is manifest.
The constrained Epstein Zeta series Ed

V (g,B; s) converges
absolutely for Re(s) > d . The RSZ method shows that it admits a
meromorphic continuation in the s-plane satisfying

Ed?
V (s) = π−s Γ(s) ζ?(2s − d + 2) Ed

V (s) = Ed ?
V (d − 1− s) ,

with a simple pole at s = 0, d
2 − 1, d

2 ,d − 1 (double poles if d = 2).
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Epstein series and BPS state sums II

The residue at s = d
2 produces the modular integral of interest:

R.N.
∫
F

dµΓd ,d (g,B) =
Γ(d

2 − 1)

π
d
2−1

Ed
V
(
g,B; d

2 − 1
)

rigorously proving an old conjecture of Obers and myself (1999).
For d = 2, the BPS constraint mini = 0 can be solved, leading to

E2?
V (T ,U; s) =2 E?(T ; s) E?(U; s)

hence to Dixon-Kaplunovsky-Louis famous result (1989)∫
F

(
Γ2,2(T ,U)− τ2

)
dµ = − log

(
T2 U2 |η(T ) η(U)|4

)
+ cte

up to a scheme-dependent additive constant.
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Modular integrals with unphysical tachyons I

For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon, Φ(τ) ∼ 1/qκ +O(1) with κ = 1.
In mathematical terms, Φ(τ) ∈ C[Ê2,E4,E6,1/∆] is an almost,
weakly holomorphic modular form with weight w = −k/2 ≤ 0.
The RSZ method fails, however the unfolding trick could still work
provided Φ(τ) can be represented as a uniformly convergent
Poincaré series with seed f (τ) is invariant under Γ∞ : τ → τ + n,

Φ(τ) =
∑

γ∈Γ∞\Γ

f (τ)|wγ

Convergence requires f (τ)� τ
1−w

2
2 as τ2 → 0. The choice

f (τ) = 1/qκ works for w > 2 but fails for w ≤ 2.
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Selberg-Poincaré series I

One option is to insert a non-holomorphic convergence factor à la
Hecke-Kronecker, i.e. choose a seed f (τ) = τ

s−w
2

2 q−κ:

E(s, κ,w) ≡ 1
2

∑
(c,d)=1

(cτ + d)−w τ
s−w

2
2

|cτ + d |2s−w e−2πiκ aτ+b
cτ+d

Selberg;Goldfeld Sarnak; Pribitkin

This converges absolutely for Re(s) > 1, but analytic continuation
to desired value s = w

2 is tricky, and in general non-holomorphic.
Moreover, E(s, κ,w) is not an eigenmode of the Laplacian, rather[

∆w + 1
2 s(1− s) + 1

8 w(w + 2)
]

E(s, κ,w) = 2πκ (s − w
2 ) E(s+1, κ,w)
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Niebur-Poincaré series I

A very convenient basis is provided by the Niebur-Poincaré series

F(s, κ,w) = 1
2

∑
γ∈Γ∞\Γ

f (τ)|w γ

where the seed f (τ) = |4πκτ2|−
w
2 M
−w

2 sgn(κ),s−1
2

(4π|κ|τ2)e−2πiκτ1

is chosen so that

f (τ) ∼τ2→0 τ
s−w

2
2 e−2πiκτ1 f (τ) ∼τ2→∞

Γ (2s)

Γ (s + w
2 )

q−κ

F(s, κ,w) converges absolutely for Re(s) > 1 and satisfies[
∆w + 1

2 (s − w
2 )(1− s − w

2 )
]
F(s, κ,w) = 0

Niebur; Hejhal; Bruinier Ono Bringmann...
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Niebur-Poincaré series II
Under raising and lowering operators,

Dw = i
π

(
∂τ −

iw
2τ2

)
, D̄w = −iπ τ2

2∂τ̄ ,

the NP series transforms as

Dw · F(s, κ,w) = 2κ (s + w
2 )F(s, κ,w + 2) ,

D̄w · F(s, κ,w) =
1

8κ
(s − w

2 )F(s, κ,w − 2) .

Under Hecke operators,

Hκ′ · F(s, κ,w) =
∑

d |(κ,κ′)

d1−w F(s, κκ′/d2,w) .

For congruence subgroups of SL(2,Z), one can similarly define
NP series Fa(s, κ,w) for each cusp.
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Niebur-Poincaré series III
For s = 1− w

2 , the value relevant for weakly holomorphic modular
forms, the seed simplifies to

f (τ) = Γ (2− w)

(
q−κ − q̄κ

−w∑
`=0

(4πκτ2)`

`!

)
For w < 0, the value s = 1− w

2 lies in the convergence domain,
but F(1− w

2 , κ,w) is in general NOT holomorphic, but rather a
weakly harmonic Maass form,

Φ =
∞∑

m=−κ
am qm +

∞∑
m=1

mw−1 b̄m Γ (1− w ,4πmτ2) q−m

For any such form, D̄Φ = τ2−w
2 Ψ̄ where Ψ =

∑
m≥1 bmqm is a

holomorphic cusp form of weight 2− w , the shadow of the Mock
modular form Φ− =

∑∞
m=−κ am qm.
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Niebur-Poincaré series IV
If |w | is small enough, the negative frequency coefficients bm
vanish and Φ is in fact a weakly holomorphic modular form:

w F(1− w
2 ,1,w)

0 j + 24
−2 3! E4E6/∆

−4 5! E2
4/∆

−6 7! E6/∆

−8 9! E4/∆

−10 11! Φ−10

−12 13!/∆

−14 15! Φ−14

Here Φ−10 and Φ−14 are genuine harmonic Maass forms with
shadow 2.8402...×∆ and 1.3061...× E4 ∆.
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Niebur-Poincaré series V

Theorem (Bruinier) : any weakly holomorphic modular form of
weight w ≤ 0 with polar part Φ =

∑
0<m≤κ a−m q−m +O(1) is a

linear combination of Niebur-Poincaré series

Φ =
1

Γ (2− w)

∑
0<m≤κ

a−m F(1− w
2 ,m,w) + a′0 δw ,0

(The same holds for congruence subgroups of SL(2,Z), including
contributions from all cusps)
Weakly almost holomorphic modular forms of weight w ≤ 0 can
similarly be represented as linear combinations of
F(1− w

2 + n,m,w) with 0 < m ≤ κ,0 ≤ n ≤ p where p is the
depth. This fails for positive weight, as such forms are not
necessarily harmonic !
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Unfolding the modular integral

By Bruinier’s thm, any modular integral is a linear combination of

Id+k ,d (s, κ) = R.N.
∫
F

dµΓd+k ,d (G,B,Y )F(s, κ,−k
2 )

Using the unfolding trick, one arrives at the BPS state sum

Id+k ,d (s, κ) =(4πκ)1− d
2 Γ (s + 2d+k

4 − 1)

×
∑
p∈Γ
〈p,p〉=κ

2F1

(
s − k

4 , s + 2d+k
4 − 1 ; 2s ; 4κ

p2
L

) (p2
L

4κ

)1−s− 2d+k
4

Bruinier; Angelantonj Florakis BP

where p2
L =M2(p) + 4〈p,p〉. This converges absolutely for

Re(s) > 2d+k
4 and can be analytically continued to Re(s) > 1 with

a simple pole at s = 2d+k
4 .
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Unfolding the modular integral

For s = 1− w
2 + n, the values relevant for almost holomorphic

modular forms, the summand can be written using elementary
functions, e.g.

I2+k ,2(1 + k
4 , κ) =− Γ (2 + k

2 )
∑
〈p,p〉=κ

log
(

p2
R

p2
L

)
+

k/2∑
`=1

1
`

(
p2

L
4κ

)−`
The result is manifestly O(Γd+k ,d ) invariant, and requires no
choice of chamber in Narain modular space. Singularities on
Gd+k ,d arise when p2

L = 0 for some lattice vector.
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Fourier-Jacobi expansion I

For d = 2, k = 0, the Fourier expansion in T1 (or U1) can be
obtained by solving the BPS constraint 〈p,p〉 = κ. E.g. for κ = 1,
all solutions to m1n1 + m2n2 = 1 are{

m1 = b + dM, n1 = −c
m2 = a + cM, n2 = d

γ =

(
a b
c d

)
∈ Γ∞\SL(2,Z) ,M ∈ Z

After Poisson resumming over M, the sum over γ neatly produces
Niebur-Poincaré series in U,

I(s,1) =22s
√

4πΓ(s − 1
2)T 1−s

2 E(U; s)

+4
∑
N>0

√
T2
N K

s−1
2

(2πNT2)
[
e2πiNT1 F(s,N,0; U)︸ ︷︷ ︸

=HN ·F(s,1,0;U)

+cc
]
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Fourier-Jacobi expansion II
The same result is obtained by the usual orbit method. In fact,
both methods end up computing the same integral,∫

H
dµe−πT2

|U−τ |2
τ2U2 F(τ) = 2 T−1/2

2 e2πT2 K
s−1

2
(2πT2)F(U) ,

where F(τ) is the seed of the NP series in the unfolding method,
or the full NP series F(s, κ,0; τ) in the old orbit method.

Bachas Fabre Kiritsis Obers Vanhove

This formula works for any solution of [∆ + 1
2s(1− s)]F(τ) = 0,

irrespective of modular invariance. It generalizes the average
value property of harmonic functions.

Fay
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Fourier-Jacobi expansion III
For s = 1, using F(1,1,0; U) = j(U) + 24 one finds

A =8π Ress=1

[
T 1−s

2 E(s; U)
]

+ 2
∑
N>0

[
qN

T
N

H(U)
N · [j(U) + 24] + cc

]
=− 24 log

[
T2U2|η(T )η(U)|4

]
− log |j(T )− j(U)|4

consistently with Borcherds product

qT [j(T )− j(U)] =
∏

M>0,N∈Z
(1− qM

T qN
U )c(MN) , j =

∑
M≥−1

c(M)qM

Borcherds; Harvey Moore
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Fourier-Jacobi expansion IV

For s = 1 + n, relevant for almost holomorphic modular forms of
depth n, one can express I2,2(n + 1,1) as the iterated derivative
of a generalized prepotential,

I2,2(n + 1,1) = 4 Re
[

(−DT DU)n

n!
fn(T ,U)

]
where fn is holomorphic in T but harmonic in U,

fn(T ,U) =2 (2π)2n+1 E(n + 1,−2n; U)

+
∑
N>0

2qN
T

(2N)2n+1F(n + 1,N,−2n; U)
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Fourier-Jacobi expansion V

One can turn fn into a holomorphic function f̃n(T ,U) by replacing
the Eisenstein series E(n + 1,−2n; U) by its analytic part

Ẽ(n+1,−2n; τ) = ζ(2n+2) (2πiτ)2n+1

(−4π2)n+1 +
1
2
ζ(2n+1)+

∑
N≥1

σ−1−2n(N) qN

without affecting the real part of its iterated derivative.
The generalized holomorphic prepotential becomes

f̃n(T ,U) =
∑
N,M

cn(NM) Li2n+1(qM
T qN

U ) + Γ (2n + 2) Li2n+1

(
qT

qU

)

+ (−1)n (2π)2n+2

2ζ(2n+2)

[
ζ(2n + 1) + ζ(−2n−1)

Γ (2n+2) (2πiU)2n+1

]

where F(n + 1,1,−2n) =
∑

M≥−1 cn(M)qM .
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Fourier-Jacobi expansion VI

f̃n(T ,U) now transforms as an Eichler integral of weight
(−2n,−2n) under SL(2,Z)T × SL(2,Z)U n (T ↔ U),

(cU + d)2n f̃n

(
T ,

aU + b
cU + d

)
= f̃n(T ,U) + Pγ(U) ,

where Pγ(U) is a computable polynomial of degree ≤ 2n.
The case n = 1 describes the standard prepotential appearing in
string vacua with N = 2 supersymmetry.

Antoniadis, Ferrara, Gava, Narain, Taylor; Harvey Moore

The case n = 2 has appeared in the context of 1/4-BPS
amplitudes in Het/K3. Higher n has not come up in physics yet,
but is suggestive of CY2n+1-fold.

Lerche Stieberger Warner
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Rankin-Selberg method at higher genus I

String amplitudes at genus h ≤ 3 take the form

Ah =

∫
Fh

dµh Γd+k ,d ,h(G,B,Y ; Ω) Φ(Ω) , dµh =
dΩ1dΩ2

[det Ω2]h+1

Fh is a fundamental domain of the action of Γ = Sp(2h,Z) on
Siegel’s upper half plane {Ω = Ωt ∈ Ch×h,Ω2 > 0}
Γd+k,d,h a Siegel-Narain theta series of signature (d + k ,d)

Γd+k,d,h = [det Ω2]d/2
∑

pα∈Γd+k,d ,α=1...h

e−πΩαβ2 M
2(pα,pβ)+2πiΩαβ1 〈pα,pβ〉

Φ(Ω) a Siegel modular form of weight −k/2.

We would like to generalize the previous methods to the case
where Φ(Ω) is an almost holomorphic modular form with poles
inside Fh, such as 1/χ10. As a first step, take k = 0, Φ = 1.
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Rankin-Selberg method at higher genus II
The genus h analog of E?(s; τ) is the non-holomorphic
Siegel-Eisenstein series

E?h (s; Ω) = ζ?(2s)

[h/2]∏
j=1

ζ?(4s − 2j)
∑

γ∈Γ∞\Γ

[det Ω2]s|γ

where Γ∞ = {
(

A B
0 A−t

)
} ⊂ Γ.

The sum converges absolutely for Re(s) > h+1
2 and can be

meromorphically continued to the full s plane. The analytic
continuation is invariant under s 7→ h+1

2 − s, and has a simple pole
at s = h+1

2 with constant residue rh = 1
2
∏[h/2]

j=1 ζ?(2j + 1)
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Rankin-Selberg method at higher genus III
For any modular function F (Ω) of rapid decay, the Rankin-Selberg
transform can be computed by the unfolding trick,

R?h(F ; s) =

∫
Fh

dµh F (Ω) E?h (Ω, s)

=ζ?(2s)

[h/2]∏
j=1

ζ?(4s − 2j)
∫

GL(h,Z)\Ph

dΩ2 |Ω2|s−h−1 F0(Ω2)

where Ph is the space of positive definite real matrices,
|Ω2| = det Ω2 and F0(Ω2) =

∫ 1
0 dΩ1F (Ω) is the constant term of F .

The residue at s = h+1
2 is proportional to the average of F ,

Res
s=

h+1
2
R?h(F ; s) = rh

∫
Fh

F .
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Rankin-Selberg method at higher genus IV
The Siegel-Narain theta series is not a cusp form, instead its
zero-th Fourier mode is

Γ
(0)
d ,d ,h(g,B; Ω) = |Ω2|d/2

∑
(mα

i ,n
iα)∈Z2d×h,m(α

i niβ)=0

e−πΩ2αβM2;αβ

where

M2;αβ = (mα
i + Biknkα)g ij(mβ

j + Bjlnlβ) + niαgijnjβ

Terms with Rk(mα
i ,n

iα) < h do not decay rapidly at Ω2 →∞. For
d < h, this is always the case.
The Siegel-Eisenstein series E?h (Ω, s) similarly has non-decaying
constant term of the form

∑
T e−Tr(T Ω2) with Rk(T ) < h.
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Rankin-Selberg method at higher genus V

The regularized Rankin-Selberg transform is obtained by
subtracting non-suppressed terms, and yields a field theory-type
amplitude, with BPS states running in the loops,

Rh(Γd ,d ,h; s) =

∫
GL(h,Z)\Ph

dΩ2

|Ω2|h+1−s−d
2

∑
BPS

e−πTr(M2Ω2)

=Γh(s − h+1−d
2 )

∑
BPS

[
detM2

]h+1−d
2 −s

where∑
BPS

=
∑

(mαi ,n
iα)∈Z2d×h,

m(α
i niβ)=0,detM2 6=0

, Γh(s) = π
1
4 h(h−1)

h−1∏
k=0

Γ(s − k
2 )
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Rankin-Selberg method at higher genus VI
For d > h, this is recognized as the Langlands-Eisenstein series
of SO(d ,d ,Z) with infinitesimal character ρ− 2(s − h+1−d

2 )λh,
associated to ΛhV where V is the defining representation,

Rh(Γd ,d ; s) ∝ ESO(d ,d)

ΛhV (s − h+1−d
2 ) (h > d)

The modular integral of Γd ,d ,h is proportional to the residue of
Rh(Γd ,d ,h; s) at s = h+1

2 , up to a scheme dependent term δ which
remains to be computed. For d < h, the entire result ought to
come from δ.
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Rankin-Selberg method at higher genus VII

For d = 1, any h,

Ah = Vh(Rh + R−h) , Vh =

∫
Fh

dµh = 2
h∏

j=1

ζ?(2j)

For h = d = 2, either by computing the BPS sum, or by unfolding
the Siegel-Narain theta series, one finds

R?2(Γ2,2, s) =2ζ?(2s)ζ?(2s − 1)ζ?(2s − 2)

× [E?1 (T ; 2s − 1) + E?1 (U; 2s − 1)]

hence
A2 = 2ζ?(2) [E?1 (T ; 2) + E?1 (U; 2)]

proving the conjecture by Obers and BP (1999).
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Conclusion - Outlook

Modular integrals can be efficiently computed using Rankin-
Selberg type methods. The result is expressed as a field theory
amplitude with BPS states running in the loop.
T-duality and singularities from enhanced gauge symmetry are
manifest. Fourier-Jacobi expansions can be obtained in some
cases by solving the BPS constraint.
The RSZ method also works at higher genus, at least for h = 2,3 .
For computing modular integrals with Φ 6= 1 it will be important to
develop Poincaré series representations for Siegel modular forms
with poles at Humbert divisors, such as 1/Φ10.
Non-BPS amplitudes where Φ is not almost weakly holomorphic
are challenging ! So are amplitudes with h ≥ 4 !
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