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String amplitudes and modular integrals |

@ Scattering amplitudes of n external states in perturbative string
theory have a topological expansion

[o.¢]
Ap = Z ggh—Z -Ah,n ) -Ah,n = / d,Uh,n Fh,n
h=0 Mpn

O (2 E=D) -

where Fp, , is a correlator of n vertex operators (along with ghost

insertions) in a certain SCFT on a Riemann surface ¥, of genus h
with n punctures z;, integrated over the moduli space of
super-Riemann surfaces My, .

@ Only one topology at each loop order, but the integrand is vastly
more complicated than in QFT !
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String amplitudes and modular integrals |l

@ String amplitudes are automatically free of UV divergences:
boundaries of M1, , correspond to Riemann surfaces with nodes,
describing propagation of massless states over long proper time:

(a) $ ib)
() (-
@ String amplitudes are expected to have the same infrared
divergences as QFT amplitudes. This is tricky to show, since My, ,
is a non-projected supermanifold. We shall ignore this

complication, and assume that .4, , can be reduced to an integral
over the moduli space My, of ordinary Riemann surfaces.

Donagi Witten 2013
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String amplitudes and modular integrals I

@ In a low energy expansion, all Feynman diagrams at h-loop
emerge from degenerations of the genus h Riemann surface:

@@@ 5 0o
} |
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@ In order to regulate IR divergences, a cut-off is needed.
Dimensional regularization is hardly an option in string theory !

= =

T
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String amplitudes and modular integrals IV

@ For genus h < 3, My, is isomorphic to a fundamental domain 7, in
the Siegel-Poincaré upper half plane Hp, parametrized by the
period matrix 2, a complex h x h symmetric matrix with positive
definite imaginary part.

@ Entries in Im(Q2) correspond to Schwinger/Feynman parameters in
QFT, while the entries in Re(2) are Lagrange multipliers which
ensure that only level-matched states propagate.

@ The integrand Fj(Q) is a Siegel modular form for ', = Sp(2h, Z),
acting as Q + (AQ + B) - (CQ + D)~'. This includes integer shifts
of Re(Q).
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String amplitudes and modular integrals V

@ At genus 1, Mj is a fundamental domain in the Poincaré
upper-half plane, parametrized by Q11 = 7 = 7y + im» and the
integrand is invariant under SL(2,7Z). A convenient choice is

@ 75 can be interpreted as the Schwinger time while integral over
(for » > 1) projects on level-matched states.

@ UV finiteness is manifest. IR divergences can be regulated by
introducing a IR cut-off m» < A.
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String amplitudes and modular integrals VI

@ E.g. the one-loop vacuum amplitude in bosonic closed string
theory in D = 26 flat space time is proportional to

w(D-2)

A /dT1d7’2 e & 2
1= oo TinT —
> 3 PP Ty (1 = 7))

This is infrared divergent due to the existence of a tachyon.
One-loop amplitudes in superstring theory look similar except the
integrand grows only polynomially in 7».
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String amplitudes and modular integrals VII

@ For h > 2, a standard fundamental domain in H;, is obtained by
choosing —% < Re(Qup) < 3, Im(Q) to be Minkovski-reduced, and
further requiring that det(CQ, + D) > 1 for all elements in
Sp(h,Z).

@ For genus 2, it takes about 25 inequalities to define 75 !

@ For genus h > 4, M, sits in a codimension }(h — 2)(h — 3) locus
inside Hp known as the Schottky locus. It is not clear how to
extend Fj to a modular form on H,.
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Rankin-Selberg method / unfolding trick |

@ Our goal is to develop methods to compute integrals of Siegel
modular forms over a fundamental domain of the Siegel upper-half
plane analytically.

@ The key idea is to represent the integrand as a Poincaré series,

Fr(@) = > fhl(Q)

YEMh,00\lh

where f4|(Q2) = fo(y - ) and the ‘seed’ f(Q2) is invariant under a
subgroup 'y C I'p. Typically, I'p « is the stabilizer of the cusp at
infinity, acting by integer shifts of Q.
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Rankin-Selberg method / unfolding trick Il

@ Provided the sum is absolutely convergent, one can exchange the
sum and integral and obtain

/ dun Fp() = / dpn fn(R2) -
Fr\Hn loo,n\Hn

@ We gain if [, ,\Hp, and f, are simpler than I',\Hp, and Fp !

@ If Fp is a cusp form, one can always insert by hand an Eisenstein
series £(s; Q) in the integrand, apply the unfolding trick, and then
extract the residue at a suitable value of s where £(s; Q) has a
pole with constant residue. But F, is rarely a cusp form !
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Rankin-Selberg method / unfolding trick Il

@ We shall focus on a class of one-loop amplitudes of the form

dridm
A= [ dulgikg®(t), dp=-—5
F1 T2

where ®(7) is a weakly, almost holomorphic modular form of
weight w = —k/2 (the elliptic genus) and ' (4.« ) is a Siegel
Theta series (the Narain lattice partition function) for an even
self-dual lattice A of signature (d + k, d),

d/2 — o M? i
rd+k,d = ’7'2 / Z e T2 (p)+71'1’7'1 <p7p>
pel

@ The positive definite quadratic form M?2(p) is parametrized by the
orthogonal Grassmannian
O(d + k,d)
’ B ya
O(d + k) x o(d) - (9B Y7

Ga+kad =
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Rankin-Selberg method / unfolding trick IV

@ Such modular integrals arise in certain BPS-saturated amplitudes,
such as F2,R?, F*, R* in type |l string theory (k = 0) or heterotic
string (k = 8, 16) compactified on a torus 7.

@ A is invariant under T-duality, i.e. under the automorphisms of the
lattice. Mathematically, ® — A is a Theta correspondence
between SL(2,Z) and O(T 4. «,q) automorphic forms.

Borcherds; Kudla Rallis; Harvey Moore

@ We shall also consider higher loop integrals of the form
J7, din T g, Which arise e.g. in D*R* and D8R* amplitudes in
type |l string theory compactified on T9.
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0 String amplitudes and modular integrals
@ The Rankin-Selberg method at one-loop

e Rankin-Selberg method at higher genus
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@ The Rankin-Selberg method at one-loop
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Rankin-Selberg method |

@ The simplest Poincaré series is the (completed) non-holomorphic
Eisenstein series

lcT + d|2s

EX(s;T) =3¢*(2s) >

(c,d)=1
where ¢*(s) = n=5/2T(5/2) ((s) = ¢*(1 — s).
@ &*(s; 1) is convergent for Re(s) > 1, and has a meromorphic

continuation to all s, invariant under s — 1 — s, with simple poles
at s = 0, 1 with constant residue:

£1(5) = 75 =gy + (7~ loaldn 2 n(r)1Y) + O(s = 1).
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Rankin-Selberg method (cont.)

@ For any modular function F(Q) of rapid decay, consider the
Rankin-Selberg transform

R*(F,s) = /F djuE*(si7) F(7)

@ By the unfolding trick, R*(F, s) is proportional to the Mellin
transform of the constant term Fy(72) f 172471 F(7),

R*(F;9) =C'(29) [ gy O

ZC*(ZS)/O dra 7572 Fo(12)
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Rankin-Selberg method (cont.) |

@ It inherits the meromorphicity and functional relations of £*, e.g.
R*(F;s) = R*(F;1— s). In analytic number theory, this is useful
for analyzing properties of L-functions.

@ Since the residue of £*(s) at s = 0, 1 is constant, the residue of
R*(F;s) at s = 1 is proportional to the modular integral of F,

Ress—1R*(F; s) = ;/ du F
f

@ For this it was important that F was of rapid decay near the cusp.
This is rarely so for string theory applications !
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Rankin-Selberg method (cont.) Il

@ Zagier extended the RS method to the case where F(O) is of
power-like growth F(7) ~ ¢(72) = >, ca75" at the cusp: the
renormalized integral defined by

R.N. /f du F(r) = lim [ /f : d,uF(T)—@(/\)]

N—00

a—1
where ¢(A) = 3,1 Ca 2 + >_,_1 Ca10g 72, is related to the
renormalized Rankin-Selberg transform

R*(F; s) 28)/ d7'2 ”—go) ,

via RN. [duF(r) = 2Ress_1R*(F;8) + 0
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Rankin-Selberg method (cont.) IlI

@ Here § is a scheme-dependent correction which depends only on
the leading behavior ¢(m2):

§ = 2Resg—1 [(*(25) hA(S) + ¢*(2s — 1) ha(1 — 8)] — B(N)
where hy(s) = foA dro p(mo) 5 2.

@ With these definitions, the Rankin-Selberg transform R*(F; s) is
equal to the renormalized integral

R*(F;S):R.N./}_d,uF(T)E*(S;T)

moreover RN. [ du&*(7;8) =R.N. [du&*(1;81)E*(1:82) =0

B. Pioline (CERN & LPTHE) Unfolding methods Dublin 2016 19/33



Epstein series from modular integrals

@ The RSZ method applies immediately to A = ff dulgq:
R*(Ta.q;8) = ¢*(25) / S+d/2 2 Z g e M(p
0
(p.p
rs+2-1) 4
=(*(2s) —3—E0(9.B;s+ - 1)

7rs+2 —1

where £2(g, B; s) is the constrained Epstein series
! —S
£i(g.B:s)= Y. [Mp)]

{(p:p)=0
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Epstein series from modular integrals

@ The RSZ method applies immediately to A = ff dulgq:
R*(Ta.q;8) = ¢*(25) / S+d/2 2 Z g e M(p
0
(p.p
rs+2-1) 4
=(*(2s) —3—E0(9.B;s+ - 1)

7rs+2 —1

where £2(g, B; s) is the constrained Epstein series
! —S
£i(g.B:s)= Y. [Mp)]

{(p:p)=0

@ Mathematically, é’ﬁ is recognized as a degenerate
Langlands-Eisenstein series with infinitesimal character p — 2sa;4
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Epstein series and BPS state sums |

@ Physically, 83 is identified as a sum over all BPS states of
momentum m; and winding n', with mass

M2(p) = (m; + Byn)gi(m; + Byn') + ng;n/

subject to the BPS condition (p, p) = m;n’ = 0. Invariance under
O(T g,q) is manifest.

e £4(g, B; s) converges absolutely for Re(s) > d. The RSZ method
shows that it admits a meromorphic continuation in the s-plane
satisfying

55*(5) =g r(s) C*(ZS— d+2) ge(s) _ 55*(0'— 1_ 5)7

with a simple pole at s = 0,3 — 1,4, d — 1 (double poles if d = 2).
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Epstein series and BPS state sums |l

@ The residue at s = % produces the modular integral of interest:

R.N d r (2 1) g el
N H dd(ng)—Tg (973 1)
]

rigorously proving an old conjecture of Obers and myself (1999).
@ For d = 2, the BPS constraint m;n’ = 0 can be solved, leading to

E2(s; T, U) =2E*(s; T) EX(s; U)
hence to Dixon-Kaplunovsky-Louis famous result (1989)
N. /J-cd“ F22(T,U) = —log (Tz Uz |77(T)77(U)|4) + cte
up to a scheme-dependent additive constant.
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Modular integrals with unphysical tachyons |

@ For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon, ®(7) ~ 1/g+ O(1).

@ The RSZ method fails, however the unfolding trick can still be
used if ®(7) can be represented as a uniformly convergent
Poincaré series.

@ If ®(7) is an almost, weakly holomorphic modular form of negative
weight, as is usually the case for BPS amplitudes, it can be
decomposed as a sum of Niebur-Poincaré series, for which the
unfolding trick applies.

@ This provides a new method for evaluating one-loop threshold
corrections, alternative to the one of Harvey-Moore, which keeps
T-duality manifest throughout. A topic for another talk.

Angelantonj Florakis BF, Bruinier, Bringmann Kane
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e Rankin-Selberg method at higher genus
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Rankin-Selberg method at higher genus |

@ String amplitudes at genus h < 3 can be written as

dQ4dQ,

AhZ/ dpn Fr(2) ,  dpn = 557
Fi ©) Q|1

where Fj, is a fundamental domain of the action of ' = Sp(2h, Z)
on Hp, and Fj is a Siegel modular function.

@ For example, in type Il compactified on 79, D*R* and D6 R*
amplitudes at two-loop and three-loop are given by above where
Fpn is the Narain partition function at genus h

_x aff 2 o i apf -
e ‘Qz‘d/2zp€r?,&e Q57 M= (Pa,pp)+27i Q7 (Pa,Pp)
For DSR* at two-loop, F» = () [g.q.2 Where () is the
Kawazumi-Zhang invariant.

D’Hoker Gutperle Phong; D’Hoker Green, Gomez Mafra; D’Hoker Green BP Russo
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Rankin-Selberg method at higher genus |l

@ The genus h analog of £*(s; 7) is the non-holomorphic
Siegel-Eisenstein series

NS =Ni(s) S Ialh
YEM o\
where Mo = {(f)‘ A‘?,)} C T, Nu(s) = ¢*(2s) IV ¢ (4s - 2)).

@ The sum converges absolutely for Re(s) > ”“ and can be
meromorphically continued to the full s plane The analytic
continuation is invariant under s — “;1 s, and has a simple pole

at s = ™1 with constant residue r, = 1 Hj[-i/f] ¢*(2j+1)
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Rankin-Selberg method at higher genus |l

@ For any modular function F(Q2) of rapid decay, the Rankin-Selberg
transform can be computed by the unfolding trick,

Ry(F: ) = /f dyin F(Q) E1(9, )

=Np(8) / dQ (R[5 Fy(Q02)
GL(Z)\ Py

where P}, is the space of positive definite real matrices, and
Fo(Qp) = f[o 1]A(h1)/2 dQ4F(£) is the constant term of F wrt. I'.

@ The residue at s = % is proportional to the average of F,

Res h+1 R;(F, S) = rh/ dth.
=2 Fh
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Rankin-Selberg method at higher genus IV

@ This procedure cannot be directly applied to F = Iy 4 5: it is not
exponentially suppressed near all cusps, due to contributions of
momenta with Rk(p*) < h.

@ Boundaries of F}, correspond to regions where 2, becomes large
in a diagonal block of size 1 < h, = h— hy < h: in this region,

Ph, F2h1 hp ho(ho+1)/2
Fn— Fh, XiGL(hg,Z) x T JZo x T

The integral over Py, /GL(hy, Z) is potentially divergent,
corresponding to an infrared subdivergence at ho-loop. Eg. for
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Rankin-Selberg method at higher genus V

@ The renormalized integral R.N. ffh En(s) F can be defined by
imposing an infrared cut-off max(€2,5) < A, subtracting
A-dependent subdivergences, and taking the limit A — oc:

R.N. En(s) F = lim [ En(s) F — Z ahZAO‘f@]
g

A
Fh oo 1<hp<h

@ Similarly, the renormalized Rankin-Selberg transform Ry (F; s) is
defined by subtracting the non-decaying part of Fy(Q2):

Ri(F: $) = Ni(s) / 40 (2[5 [Fo(Q) — 9(22)
GL(h,Z)\'Pp

@ Under suitable assumptions, using differential operators one can
show R.N. ffh En(s) F =R} (F; s).

Florakis BP 2016
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Rankin-Selberg method at higher genus VI

@ For F =Ty 4, the RS transform keeps only momenta of maximal

rank,
dQ
Rn(Fa,d,pnS) :/ 720’ o T T (M2Q,)
GL(NZ)\Ph |Qu | H1-5-2 §p3
htl-d
:Fh(s — W) Z |:det,/\/l2:| 2
BPS
where .
] -
h(h—
Y= X = h)
BPS  pend” Rkp=h k=0
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Rankin-Selberg method at higher genus VII

@ For d > h, this is recognized as the Langlands-Eisenstein series
of SO(d, d, Z) with infinitesimal character p — 2(s — H1=9)\,
associated to A"V where V is the defining representation,

Ri(To.0:8) = Epy V(s = 24=9)  (h> )

@ The pole structure and functional equation predicted from the RS
method reproduces the known analytic structure of the
Langlands-Eisenstein series

@ The modular integral of I'y 4 4 is proportional to the residue of
Ri(Tg,0.n S) at s =, up to a computable correction 6.

@ For d < h, Ry(lq,4;5) = 0 and the integral of 'y 4 4 entirely comes
from the subtraction §.
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Rankin-Selberg method at higher genus VI

@ Ford =1, any h,
h
An=Va(R"+ BTN, V= /F dun =2 T ¢*(2))
h j=1

@ For h=d = 2, either by computing the BPS sum, or by unfolding
the Siegel-Narain theta series, one finds

R3(T22,5) =2¢"(25)¢"(25 — 1)¢"(2s — 2)
x [E7(T;28 = 1)+ & (U; 25 — 1))
hence
Az = 2¢7(2) [£7(T: 2) + £7(U; 2)]
proving the conjecture by Obers and BP (1999).
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Conclusion - Outlook

@ Modular integrals can be efficiently computed using Rankin-
Selberg type methods. The result is expressed as a field theory
amplitude with BPS states running in the loop.

@ The RSZ method also works at genus 2 and 3, for integrands
whose only singularities correspond to boundaries of the Siegel
modular domain. It would be useful to extend it to integrands with
singularities on separating degeneration locus.

@ Our results confirm predictions from S-duality, which requires that
certain loop integrals are expected in terms of
Langlands-Eisenstein series. It also opens up the way to construct
new types of automorphic forms...

@ Non-BPS amplitudes are challenging ! So are amplitudes with
h>4!
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