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String amplitudes and modular integrals I

Scattering amplitudes of n external states in perturbative string
theory have a topological expansion

An =
∞∑

h=0

g2h−2
s Ah,n , Ah,n =

∫
Mh,n

dµh,n Fh,n

+ + + ...

where Fh,n is a correlator of n vertex operators (along with ghost
insertions) in a certain SCFT on a Riemann surface Σh of genus h
with n punctures zi , integrated over the moduli space of
super-Riemann surfaces Mh,n.
Only one topology at each loop order, but the integrand is vastly
more complicated than in QFT !
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String amplitudes and modular integrals II
String amplitudes are automatically free of UV divergences:
boundaries of Mh,n correspond to Riemann surfaces with nodes,
describing propagation of massless states over long proper time:

String amplitudes are expected to have the same infrared
divergences as QFT amplitudes. This is tricky to show, since Mh,n
is a non-projected supermanifold. We shall ignore this
complication, and assume that Ah,n can be reduced to an integral
over the moduli spaceMh of ordinary Riemann surfaces.

Donagi Witten 2013
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String amplitudes and modular integrals III
In a low energy expansion, all Feynman diagrams at h-loop
emerge from degenerations of the genus h Riemann surface:

2

1

1

11

In order to regulate IR divergences, a cut-off is needed.
Dimensional regularization is hardly an option in string theory !
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String amplitudes and modular integrals IV
For genus h ≤ 3,Mh is isomorphic to a fundamental domain Fh in
the Siegel-Poincaré upper half plane Hh, parametrized by the
period matrix Ω, a complex h × h symmetric matrix with positive
definite imaginary part.
Entries in Im(Ω) correspond to Schwinger/Feynman parameters in
QFT, while the entries in Re(Ω) are Lagrange multipliers which
ensure that only level-matched states propagate.
The integrand Fh(Ω) is a Siegel modular form for Γh = Sp(2h,Z),
acting as Ω 7→ (AΩ + B) · (CΩ + D)−1. This includes integer shifts
of Re(Ω).
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String amplitudes and modular integrals V
At genus 1,M1 is a fundamental domain in the Poincaré
upper-half plane, parametrized by Ω11 ≡ τ = τ1 + iτ2 and the
integrand is invariant under SL(2,Z). A convenient choice is

τ2 can be interpreted as the Schwinger time while integral over τ1
(for τ2 > 1) projects on level-matched states.
UV finiteness is manifest. IR divergences can be regulated by
introducing a IR cut-off τ2 < Λ.
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String amplitudes and modular integrals VI
E.g. the one-loop vacuum amplitude in bosonic closed string
theory in D = 26 flat space time is proportional to

A1 =

∫
F

dτ1dτ2

τ
1+D/2
2

e
π(D−2)

6 τ2

|
∏∞

n=1(1− e2πinτ )|2(D−2)

This is infrared divergent due to the existence of a tachyon.
One-loop amplitudes in superstring theory look similar except the
integrand grows only polynomially in τ2.
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String amplitudes and modular integrals VII

For h ≥ 2, a standard fundamental domain in Hh is obtained by
choosing −1

2 ≤ Re(Ωαβ) ≤ 1
2 , Im(Ω) to be Minkovski-reduced, and

further requiring that det(CΩ2 + D) ≥ 1 for all elements in
Sp(h,Z).

For genus 2, it takes about 25 inequalities to define F2 !

For genus h ≥ 4,Mh sits in a codimension 1
2(h − 2)(h − 3) locus

inside Hh known as the Schottky locus. It is not clear how to
extend Fh to a modular form on Hh.
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Rankin-Selberg method / unfolding trick I

Our goal is to develop methods to compute integrals of Siegel
modular forms over a fundamental domain of the Siegel upper-half
plane analytically.
The key idea is to represent the integrand as a Poincaré series,

Fh(Ω) =
∑

γ∈Γh,∞\Γh

fh|γ(Ω)

where fh|γ(Ω) = fh(γ · Ω) and the ‘seed’ fh(Ω) is invariant under a
subgroup Γh,∞ ⊂ Γh. Typically, Γh,∞ is the stabilizer of the cusp at
infinity, acting by integer shifts of Ω1.
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Rankin-Selberg method / unfolding trick II
Provided the sum is absolutely convergent, one can exchange the
sum and integral and obtain∫

Γh\Hh

dµh Fh(Ω) =

∫
Γ∞,h\Hh

dµh fh(Ω) .

2
1

2
1 o 2

o 1

1

2
1

2
1 o 2

o 1

UT

F

S

We gain if Γ∞,h\Hh and fh are simpler than Γh\Hh and Fh !
If Fh is a cusp form, one can always insert by hand an Eisenstein
series E(s; Ω) in the integrand, apply the unfolding trick, and then
extract the residue at a suitable value of s where E(s; Ω) has a
pole with constant residue. But Fh is rarely a cusp form !
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Rankin-Selberg method / unfolding trick III
We shall focus on a class of one-loop amplitudes of the form

A =

∫
F1

dµ Γd+k ,d Φ(τ) , dµ =
dτ1dτ2

τ2
2

where Φ(τ) is a weakly, almost holomorphic modular form of
weight w = −k/2 (the elliptic genus) and Γ(d+k ,d) is a Siegel
Theta series (the Narain lattice partition function) for an even
self-dual lattice Λ of signature (d + k ,d),

Γd+k ,d = τ
d/2
2

∑
p∈Λ

e−πτ2M2(p)+πiτ1〈p,p〉

The positive definite quadratic formM2(p) is parametrized by the
orthogonal Grassmannian

Gd+k ,d =
O(d + k ,d)

O(d + k)×O(d)
3 (gij ,Bij ,Y a

i ) ,
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Rankin-Selberg method / unfolding trick IV

Such modular integrals arise in certain BPS-saturated amplitudes,
such as F 2,R2,F 4,R4 in type II string theory (k = 0) or heterotic
string (k = 8,16) compactified on a torus T d .

A is invariant under T-duality, i.e. under the automorphisms of the
lattice. Mathematically, Φ 7→ A is a Theta correspondence
between SL(2,Z) and O(Γd+k ,d ) automorphic forms.

Borcherds; Kudla Rallis; Harvey Moore

We shall also consider higher loop integrals of the form∫
Fh

dµh Γd ,d ,h, which arise e.g. in D4R4 and D6R4 amplitudes in
type II string theory compactified on T d .
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Outline

1 String amplitudes and modular integrals

2 The Rankin-Selberg method at one-loop

3 Rankin-Selberg method at higher genus
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Rankin-Selberg method I

The simplest Poincaré series is the (completed) non-holomorphic
Eisenstein series

E?(s; τ) =1
2 ζ

?(2s)
∑

(c,d)=1

τ s
2

|c τ + d |2s

where ζ?(s) ≡ π−s/2 Γ(s/2) ζ(s) = ζ?(1− s).
E?(s; τ) is convergent for Re(s) > 1, and has a meromorphic
continuation to all s, invariant under s 7→ 1− s, with simple poles
at s = 0,1 with constant residue:

E?(s) =
1

2(s − 1)
+ 1

2

(
γ − log(4π τ2 |η(τ)|4)

)
+O(s − 1) ,
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Rankin-Selberg method (cont.)

For any modular function F (Ω) of rapid decay, consider the
Rankin-Selberg transform

R?(F , s) =

∫
F

dµ E?(s; τ) F (τ)

By the unfolding trick, R?(F , s) is proportional to the Mellin
transform of the constant term F0(τ2) =

∫ 1/2
−1/2 dτ1 F (τ),

R?(F ; s) =ζ?(2s)

∫
R+×[−1

2 ,
1
2 ]

dµ τ s
2 F (τ)

=ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2 F0(τ2) ,
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Rankin-Selberg method (cont.) I

It inherits the meromorphicity and functional relations of E?, e.g.
R?(F ; s) = R?(F ; 1− s). In analytic number theory, this is useful
for analyzing properties of L-functions.
Since the residue of E?(s) at s = 0,1 is constant, the residue of
R?(F ; s) at s = 1 is proportional to the modular integral of F ,

Ress=1R?(F ; s) = 1
2

∫
F

dµF

For this it was important that F was of rapid decay near the cusp.
This is rarely so for string theory applications !
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Rankin-Selberg method (cont.) II

Zagier extended the RS method to the case where F (0) is of
power-like growth F (τ) ∼ ϕ(τ2) =

∑
α cατα2 at the cusp: the

renormalized integral defined by

R.N.
∫
F

dµF (τ) ≡ lim
Λ→∞

[∫
FΛ

dµF (τ)− ϕ̂(Λ)

]

where ϕ̂(Λ) =
∑

α 6=1 cα
τα−1

2
α−1 +

∑
α=1 cα log τ2, is related to the

renormalized Rankin-Selberg transform

R?(F ; s) ≡ ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2

(
F (0) − ϕ

)
,

via R.N.
∫
F dµF (τ) = 2 Ress=1R?(F ; s) + δ
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Rankin-Selberg method (cont.) III

Here δ is a scheme-dependent correction which depends only on
the leading behavior ϕ(τ2):

δ = 2 Ress=1 [ζ?(2s) hΛ(s) + ζ?(2s − 1) hΛ(1− s)]− ϕ̂(Λ) ,

where hΛ(s) =
∫ Λ

0 dτ2 ϕ(τ2) τ s−2
2 .

With these definitions, the Rankin-Selberg transform R?(F ; s) is
equal to the renormalized integral

R?(F ; s) = R.N.
∫
F

dµF (τ) E?(s; τ)

moreover R.N.
∫
F dµ E?(τ ; s) = R.N.

∫
F dµ E?(τ ; s1) E?(τ ; s2) = 0 !
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Epstein series from modular integrals

The RSZ method applies immediately to A =
∫
F dµ Γd ,d :

R?(Γd ,d ; s) = ζ?(2s)

∫ ∞
0

dτ2 τ
s+d/2−2
2

′∑
〈p,p〉=0

e−πτ2M2(p)

= ζ?(2s)
Γ(s+

d
2−1)

π
s+

d
2−1

Ed
V (g,B; s + d

2 − 1)

where Ed
V (g,B; s) is the constrained Epstein series

Ed
V (g,B; s) ≡

′∑
〈p,p〉=0

[
M2(p)

]−s
,

Mathematically, Ed
V is recognized as a degenerate

Langlands-Eisenstein series with infinitesimal character ρ− 2sα1
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Epstein series and BPS state sums I

Physically, Ed
V is identified as a sum over all BPS states of

momentum mi and winding ni , with mass

M2(p) = (mi + Biknk )g ij(mj + Bjlnl) + nigijnj

subject to the BPS condition 〈p,p〉 = mini = 0. Invariance under
O(Γd ,d ) is manifest.
Ed

V (g,B; s) converges absolutely for Re(s) > d . The RSZ method
shows that it admits a meromorphic continuation in the s-plane
satisfying

Ed?
V (s) ≡ π−s Γ(s) ζ?(2s − d + 2) Ed

V (s) = Ed ?
V (d − 1− s) ,

with a simple pole at s = 0, d
2 − 1, d

2 ,d − 1 (double poles if d = 2).
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Epstein series and BPS state sums II

The residue at s = d
2 produces the modular integral of interest:

R.N.
∫
F

dµ Γd ,d (g,B) =
Γ(d

2 − 1)

π
d
2−1

Ed
V
(
g,B; d

2 − 1
)

rigorously proving an old conjecture of Obers and myself (1999).
For d = 2, the BPS constraint mini = 0 can be solved, leading to

E2?
V (s; T ,U) =2 E?(s; T ) E?(s; U)

hence to Dixon-Kaplunovsky-Louis famous result (1989)

R.N.
∫
F

dµ Γ2,2(T ,U) = − log
(

T2 U2 |η(T ) η(U)|4
)

+ cte

up to a scheme-dependent additive constant.
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Modular integrals with unphysical tachyons I

For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon, Φ(τ) ∼ 1/q +O(1).
The RSZ method fails, however the unfolding trick can still be
used if Φ(τ) can be represented as a uniformly convergent
Poincaré series.
If Φ(τ) is an almost, weakly holomorphic modular form of negative
weight, as is usually the case for BPS amplitudes, it can be
decomposed as a sum of Niebur-Poincaré series, for which the
unfolding trick applies.
This provides a new method for evaluating one-loop threshold
corrections, alternative to the one of Harvey-Moore, which keeps
T-duality manifest throughout. A topic for another talk.

Angelantonj Florakis BP, Bruinier, Bringmann Kane
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Rankin-Selberg method at higher genus I

String amplitudes at genus h ≤ 3 can be written as

Ah =

∫
Fh

dµh Fh(Ω) , dµh =
dΩ1dΩ2

|Ω2|h+1

where Fh is a fundamental domain of the action of Γ = Sp(2h,Z)
on Hh, and Fh is a Siegel modular function.
For example, in type II compactified on T d , D4R4 and D6R4

amplitudes at two-loop and three-loop are given by above where
Fh is the Narain partition function at genus h

Γd ,d ,h = |Ω2|d/2
∑

p∈Γ⊗h
d,d

e−πΩαβ2 M
2(pα,pβ)+2πi Ωαβ1 〈pα,pβ〉

For D6R4 at two-loop, F2 = ϕ(Ω) Γd ,d ,2 where ϕ(Ω) is the
Kawazumi-Zhang invariant.

D’Hoker Gutperle Phong; D’Hoker Green; Gomez Mafra; D’Hoker Green BP Russo
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Rankin-Selberg method at higher genus II
The genus h analog of E?(s; τ) is the non-holomorphic
Siegel-Eisenstein series

E?h (s; Ω) = Nh(s)
∑

γ∈Γ∞\Γ

|Ω2|s|γ

where Γ∞ = {
(

A B
0 A−t

)
} ⊂ Γ, Nh(s) = ζ?(2s)

∏[h/2]
j=1 ζ?(4s − 2j).

The sum converges absolutely for Re(s) > h+1
2 and can be

meromorphically continued to the full s plane. The analytic
continuation is invariant under s 7→ h+1

2 − s, and has a simple pole
at s = h+1

2 with constant residue rh = 1
2
∏[h/2]

j=1 ζ?(2j + 1)
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Rankin-Selberg method at higher genus III
For any modular function F (Ω) of rapid decay, the Rankin-Selberg
transform can be computed by the unfolding trick,

R?h(F ; s) =

∫
Fh

dµh F (Ω) E?h (Ω, s)

=Nh(s)

∫
GL(h,Z)\Ph

dΩ2 |Ω2|s−h−1 F0(Ω2)

where Ph is the space of positive definite real matrices, and
F0(Ω2) =

∫
[0,1]h(h+1)/2 dΩ1F (Ω) is the constant term of F wrt. Γ∞.

The residue at s = h+1
2 is proportional to the average of F ,

Res
s=

h+1
2
R?h(F ; s) = rh

∫
Fh

dµh F .
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Rankin-Selberg method at higher genus IV
This procedure cannot be directly applied to F = Γd ,d ,h: it is not
exponentially suppressed near all cusps, due to contributions of
momenta with Rk(pα) < h.
Boundaries of Fh correspond to regions where Ω2 becomes large
in a diagonal block of size 1 ≤ h2 ≡ h − h1 ≤ h: in this region,

Fh → Fh1 ×
Ph2

GL(h2,Z)
× T̃ 2h1h2/Z2 × T h2(h2+1)/2

The integral over Ph2/GL(h2,Z) is potentially divergent,
corresponding to an infrared subdivergence at h2-loop. Eg. for
h = 2:
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Rankin-Selberg method at higher genus V
The renormalized integral R.N.

∫
Fh
Eh(s) F can be defined by

imposing an infrared cut-off max(Ωαβ) < Λ, subtracting
Λ-dependent subdivergences, and taking the limit Λ→∞:

R.N.
∫
Fh

Eh(s) F = lim
Λ→∞

∫
FΛ

h

Eh(s) F −
∑

1≤h2≤h

ah2Λαh2


Similarly, the renormalized Rankin-Selberg transform R?h(F ; s) is
defined by subtracting the non-decaying part of F0(Ω2):

R?h(F ; s) = Nh(s)

∫
GL(h,Z)\Ph

dΩ2 |Ω2|s−h−1 [F0(Ω2)− ϕ(Ω2)]

Under suitable assumptions, using differential operators one can
show R.N.

∫
Fh
Eh(s) F = R?h(F ; s).

Florakis BP 2016
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Rankin-Selberg method at higher genus VI

For F = Γd ,d ,h, the RS transform keeps only momenta of maximal
rank,

Rh(Γd ,d ,h; s) =

∫
GL(h,Z)\Ph

dΩ2

|Ω2|h+1−s−d
2

∑
BPS

e−πTr(M2Ω2)

=Γh(s − h+1−d
2 )

∑
BPS

[
detM2

]h+1−d
2 −s

where∑
BPS

=
∑

p∈Λ⊗h
d,d ,Rkp=h

, Γh(s) = π
1
4 h(h−1)

h−1∏
k=0

Γ(s − k
2 )
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Rankin-Selberg method at higher genus VII
For d > h, this is recognized as the Langlands-Eisenstein series
of SO(d ,d ,Z) with infinitesimal character ρ− 2(s − h+1−d

2 )λh,
associated to ΛhV where V is the defining representation,

Rh(Γd ,d ; s) = E?,SO(d ,d)

ΛhV (s − h+1−d
2 ) (h > d)

The pole structure and functional equation predicted from the RS
method reproduces the known analytic structure of the
Langlands-Eisenstein series
The modular integral of Γd ,d ,h is proportional to the residue of
Rh(Γd ,d ,h; s) at s = h+1

2 , up to a computable correction δ.
For d < h, Rh(Γd ,d ; s) = 0 and the integral of Γd ,d ,h entirely comes
from the subtraction δ.
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Rankin-Selberg method at higher genus VIII

For d = 1, any h,

Ah = Vh(Rh + R−h) , Vh =

∫
Fh

dµh = 2
h∏

j=1

ζ?(2j)

For h = d = 2, either by computing the BPS sum, or by unfolding
the Siegel-Narain theta series, one finds

R?2(Γ2,2, s) =2ζ?(2s)ζ?(2s − 1)ζ?(2s − 2)

× [E?1 (T ; 2s − 1) + E?1 (U; 2s − 1)]

hence
A2 = 2ζ?(2) [E?1 (T ; 2) + E?1 (U; 2)]

proving the conjecture by Obers and BP (1999).
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Conclusion - Outlook

Modular integrals can be efficiently computed using Rankin-
Selberg type methods. The result is expressed as a field theory
amplitude with BPS states running in the loop.
The RSZ method also works at genus 2 and 3, for integrands
whose only singularities correspond to boundaries of the Siegel
modular domain. It would be useful to extend it to integrands with
singularities on separating degeneration locus.
Our results confirm predictions from S-duality, which requires that
certain loop integrals are expected in terms of
Langlands-Eisenstein series. It also opens up the way to construct
new types of automorphic forms...
Non-BPS amplitudes are challenging ! So are amplitudes with
h ≥ 4 !
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