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Introduction

@ The KZ invariant ¢(X), introduced around 2008 by N. Kawazumi
and S-W. Zhang, is a canonical invariant of a compact Riemann
surface . When X is hyperelliptic, it is related to the Faltings
invariant 6(x) and the discriminant A(X). Unlike A(X), ¢(X) and
d(X) are hard to compute.

@ In 2013, D’Hoker and Green noticed that the KZ invariant p(X) of
genus-two curves arises in the integrand of the scattering
amplitude of 4 gravitons at two-loop in type Il string theories at
NNLO in the low-energy expansion.

@ Understanding the constraints from U-duality on the low-energy
effective action of type Il strings compactified on a torus T¢ has
lead us to uncover unexpected properties of the KZ invariant of
genus-two curves, including a numerically efficient formula for ¢
given the period matrix .
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Four-graviton scattering in type Il strings, tree-level

@ The study of the four-graviton scattering amplitude in type Il string
theories has a long history. At tree-level, with s = —a/py - p2/2,
t=—a/p1p3/2, u=— —a/pips/2 (hence s+ t+ u = 0)

4(©) rM—=s)r0—-Hr( —u)
stulr(1+s)r(1+Hr(1 + u)

; +2¢(3) + ¢(5) (8% + 12 + U?) + 2[@‘(3)]2(33 + 2403+ ...

Green Schwarz 1981, Gross and Witten 1986, . ..
@ These terms generate higher-derivative corrections of the form

/ dPx/—ge 2 {2<(3) RA+C(5) D*R* + %[C(S)]2D6R4 +
to the low energy effective action.

@ Each of these couplings receives quantum corrections. Denote the

h-loop contribution by f7(z4), so that fre o< Y220 fg}) e@h=2)¢ 4 p.
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One-loop correction to four-graviton scattering

@ At one-loop, a simple computation gives
fgﬁ =mR.N. /]: dut Fa.01(G, B; 1)
1

fél)R4 =27 R.N. /f dp1 Taa1(G, B, 1) EY(2;7)
1

1
e =5 RN [ i1 T01(G.B:7) (5E7(3i7) + C(3))
1
Green Vanhove 1999; Green Russo Vanhove 2008

@ 7, is a fundamental domain for the action of Sp(2h, Z) on the
Siegel upper-half plane of degree h;

Q la,4,n(G, B; T) is the genus-h Narain lattice partition function, a
non-holomorphic Theta series parametrized by the constant metric
Gj = G; > 0 and Kalb-Ramond field Bj = — B on the torus TY;

© ¢&i(s; 1) is the non-holomorphic Eisenstein series for Sp(2h, Z);

© R.N. a suitable renormalization prescription - see next
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About UV and IR divergences |

@ Loop amplitudes in string theory are automatically free of UV
divergences. In a maximally SUSY background such as
R"9-9 x TY they are also free of IR divergences when d < 6.

@ Near (s, t,u) — 0, the amplitude is non-analytic, and dominated
by massless supergravity modes. Decompose

A(h)(sv tv U) = Ag?jGRA(Sv t, u, A) + A(a,r?(sa ta u, A)

where the first term is the SUGRA contribution, cut-off at A, and
Ag],)(s, t,u,N) is the remainder. The running scale A serves as a
UV cut-off for SUGRA modes and IR Wilsonian cut-off for string
modes.
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About UV and IR divergences Il

@ The local couplings fgg%y are obtained by Taylor expanding

Ag';)(s, t,u,N)in (s, t, u), subtracting powerlike terms in A, and
sending A — oo.

@ For example, at one-loop,

d
. A2
R.N./ dut Fg,a1(G,B;7) = lim / du1 Taa1(G, B 7) — 2
]__1 Ehal] /\—}OO f1/\ 'y § _ 1

where F7' is the usual fundamental domain, cut-off at Imr < A.

@ These modular integrals can be computed e.g. using the
Rankin—Selberg method.

Dixon Kaplunovsky Louis 1991, Angelantonj Florakis BP 2011
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Two-loop correction to four-graviton scattering |

@ At two loops, a much harder computation shows

& =0

3 —ZRN. /F dyizTag2(G. B 7)
2

1@, —rRN. /F A2 T g2(G, B 7) ()
2

where ¢(7) is the Kawazumi-Zhang invariant !
D’Hoker Phong 2001-05; D’Hoker Gutperle Phong 2005; D’Hoker Green 2013
/
@ The integrand is obtained by expanding |Vs|? e~z i<j PP G(Z:2)

in o/, and integrating over the location of the four vertex operators
z; on the genus-two curve.
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Two-loop correction to four-graviton scattering |l

@ At O(R*), the integrand vanishes. At O(D*R*%), the integral over z;
gives a constant. At O(D8R*), two of the integrations can be done
easily, leaving an integral of the form

p(r) = P(z1,22) G(z1, 22)
PION

where G(z4, zp) is the scalar Green function and P(zy, z0) is a
canonical form of degree (1,1) in zy and in z5. This is recognized
as one of the defining formulae for the KZ invariant !

D’Hoker Green 2013
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Other definitions of the KZ invariant |

@ spectral formula:

ZZ

>0 mn 1

/ b wm@n

where (w1, ...,wp) is an orthonormal basis of holomorphic
differentials on X, 0 = \g < Ay < X\ < ... are the eigenvalues of
the Arakelov Laplacian, (Ay — A\¢)¢e = 0.

Zhang 2010
@ For hyperelliptic curves, ¢, § and A are related by

3h(h+1)1(h—1)! 8h(2h+1
o(E) = 2t} 5(x) — BN jog || A(E)| — 21D log 2n

de Jong, 2013
@ Rk: all genus two curves are hyperelliptic.
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Other definitions of the KZ invariant Il

@ The Faltings invariant is

det’ A + cte
Area(X)

Alvarez-Gaumé, Bost, Moore, Nelson, Vafa, 1987

0(X) = —6log

@ In genus two,

5(Z)Z—|OQH‘V10H—/ jA 1 log[60] 2
J(x) Bost, 1987

@ Later in this talk, we shall prove (BP, 2015) [Q2: period matrix of X]

p(2) = -5 i dp(7) [FEYS“(Q;T) D, ho(7) + T3%(Q; 7) D-hy (7 )]

where ho(7) = %, hy(r) = —93,(;;7), =10+ ).
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Three-loop correction to four-graviton scattering

@ At three-loop, using Berkovits’ pure spinor formulation,

£3) _£(3)

T\’,4 D4R4 = O 9

fése)734 =3 / duglaa3
T3 Gomez Mafra 2014

@ In addition, these couplings may receive non-perturbative
corrections, of order O(e~'/9) and (for d > 6) (9(3—1/g§)_

@ These are not computable from first principle yet, however they
are fixed by requiring supersymmetry and invariance under the
U-duality group Eg+1(Z).

@ This predicts that fpr<ez4 do not get any further perturbative

contribution, fgf” = f[()IZ;i) — f[()fg;i) —0!
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Supersymmetry constraints |

@ Supersymmetry requires that fz4, fpars, fpse satisfy the
Laplace-type equations

3(d+1)2-d
<AEd+1 - ( (8 —)(d) )> fR4 :67T(5d72 s
<A5d+1 o ol _(‘_82—)(2)_ d)> fpags =40((2) 03 + 7 fre 6g,4

6(4—-d)(d+4
<AEd+1 - ( 8 —)(d )) fpoga =— (fR4)2 — Be 5d,4

— B5 fra dg5 — Bafpags dd e

where Ag, . is the Laplace-Beltrami operator on the moduli space

Edi1/Kas1.
BP 1998; Green Sethi 1998; Green Vanhove J. Russo 2010;

Bossard Verschinin 2014; Wang Yin 2015; BP 2015, Bossard Kleinschmidt 2015
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Supersymmetry constraints Il

@ Inserting the genus expansion, one gets T-duality invariant

differential constraints on fD,gy(G B), e.g.

[Asoga,a) + d(d —2)/2] ) = 47642
[Asod.a) + d(d — 3)]F50s = 24((2) 05 + 4E(5 ) D

1)\ 2 1
[Aso(d,a) — (d+2)(5 - d)] fée)m =— (f7(€4)) _ §f7(z4) 542

20
+ ?C(S)éd f5()4)7345d,6

@ Using [Aso(,d) — 20+ + 3dh(d —h—1)] T4 4 = 0and
integrating by parts, these constraints are all seen to be satisfied,
save for the last one above.
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Supersymmetry constraints Il

@ Since (d +2)(5 — d) + d(d — 3) = 10, the constraint

2
[Aso(ga) — (d+2)(5 - )] figre = — (£2) + ...

will be satisfied if o(7) is an eigenmode of A+, up to a delta
function source on the separating degeneration locus,

[A; —5] ¢ = —21dg|  [4]
D’Hoker Green BP R. Russo 2014
@ The delta function source agrees from known behavior in the
separating degeneration limit 7o — 0,

o(7) = —log |2 71277 (11)n? (122) | + O(|m12/% l0g |T12]) -
Wentworth 1991
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Closing in on the KZ invariant |

@ Further support for comes by studying the SUGRA (a.k.a. tropical)
limit: parametrizing Im7 = (L‘ L+3L3 L2+L > 0< L3 <Ly <Ly,

Li—o0

o(r) "= (L) = % [L1 + Lo+ Ly —

5L1LL3 }
Lilo + Lolsy + L3l

which is indeed annihilated by A, — 5!

@ [«] can in fact be established using standard deformation theory of
complex structures on a Riemann surface. Genus 2 is crucial !

@ The modular integral of ¢ over F» is now easily computed:

2r3
d == I|m dupg Ao = —
/fz f2p =g 0/e H2 Brp = 7

in agreement with S-duality predictions for f(G)R4 inD=10!

D’Hoker Green BP Russo 2014
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Closing in on the KZ invariant Il

@ Additional source terms in the differential equation for fgﬁ)n‘1 in

d =4,5,6 can be seen to arise with the right coefficient, provided
© behaves in the maximal non-separating degeneration as,

L 5(3) .
P(7) = eulli) + Am2(LyLy + Lolg + LgLy) + o)

and in the minimal non-separating degeneration as

91 (pv V)

n(p)

™

p(r) = gt —log {e‘”‘/zz/”

] + 50—; +O>e7h)

v . rn
where 7 = (5 oy it vg/p2)> and ¢1(p, v) is a specific
real-analytic Jacobi form of index 0 and weight 0.

BP and R. Russo, 2015
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Automorphic forms from theta lifts |

@ In a separate project with Angelantonj and Florakis (2011-16), we
studied heterotic one-loop modular integrals of the form

RN. [ 4 To.a(G.B.Y) D"0(7)
F

where ®(7) is a weakly holomorphic modular form of weight
w=-2n-&and D, =0, — % This provides automorphic
forms on the Grassmannian SO(d + k, d)/[SO(d + k) x SO(d)],
which are eigenmodes of Agp(q4.+k,q), @and have logarithmic
singularities in real codimension d.

Harvey Moore 1995, Borcherds 1997, Kiritsis Obers 1997

@ For (d + k,d) = (8,2), noting that SO(3,2) = Sp(4), one obtains
a large supply of real-analytic Siegel modular forms of degree 2 !
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Automorphic forms from theta lifts Il

@ For example, the Igusa cusp-form Vg is obtained from (Kawali,
1996):

d2
log [|W10[[(R2) =—1/FTZT [ S8 T) ho + T3%(i7) hy — 20 7| + cte
12

where k(7. 2) = ho(7) 03(27, 22) + hy(7) 62(27,22) and 55"
is the (genus-one, vector-valued) Siegel-Narain theta series for an
even lattice of signature (3,2).

@ The singularity at Q12 =0 reflects the appearance of new
‘massless states’: log |[W1o]| "= log 1p303V2024 (p)nP4 (o).
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Automorphic forms from theta lifts Il

@ Evaluating the integral using the unfolding method leads to the
product formula (Gritsenko Nikulin 1997)

W10(Q) — g2ri(pto—v) H (1 _ eZﬂi(kU+€p+bv))C(4k€—b2)
(k,t,b)>0

where ¢(m) are the Fourier coefficients of
h(r) = ho(47) + h(47) =2q~ " +20 — 128¢° + ...
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The genus-two KZ invariant as a theta lift |

@ Choosing % ( 2 — Fo(r) 05(27, 22) + Py (7) 02(27, 22), the theta lift

27_ ~
2@ =5 [ 5 [rsp(@in) Do(r) + riei ) D)

T2
can be shown to satisfy the same Laplace equation and

degeneration limits as ().

@ The difference ¢(2) — $(Q2) is square-integrable, and eigenmode
of Aq with strictly positive eigenvalue (5). Thus ¢(Q2) = $(Q2) !
BP 2015
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The genus-two KZ invariant as a theta lift Il

@ Using the unfolding trick following Harvey Moore (1995), one finds

m 57 [Vo|(p2 — |ve|) (02 — |v2]) 5(¢(3)
Q) =" C )= 2T
#(2) =5 P2+ 02 = |vef) = detQ, 472 det Q,
_ L Pt K2 27i(Kko+Lp+bv)
1672 det Q, > Cl4ki—b°)D; (e )
(k,t,b)>0

+ 1 Z (4kt — b2) B(4kl — b2) D, <627ri(ka+€p+bv)) ’
(k,t,b)>0

where (k,¢,b) > 0 means (k > 0,¢>0)or (k=0,¢>0)or
(k=£=0,b>0);

Di(x) = 2Re[Lit(x)] , Da(x) = —4Re[Liz(x) — log |x| Liz(x)] .

R(r) = Po(4r) + Br(4r) = 3 &(m)q™ = _; +2-8q°+ ...

m>—1
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The genus-two KZ invariant as a theta lift |l

@ This provides an efficient algorithm to evaluate ¢(X) to arbitrary
accuracy, given the period matrix .

@ Using the relation between the KZ invariant, Faltings invariant §
and discriminant A = Wy,

5
() = —3log|[W1o[|(?) — 56(Q) — 40log 27

a theta lift representation for the Faltings invariant 6(2) follows.
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A Siegel mock modular form underlying ¢ |

@ This modular integral is similar to the one arising when computing
the one-loop correction to the holomorphic prepotential in
heterotic string compactified on K3 x T2 (or type IIA on CY3).

@ By the same token, ¢(2) can be integrated to a holomorphic

function,
¢ =Re(0_2F)

where

Fi(Q) = Z B(4ke — b2)Li3 (ezni(ka+£p+bv)>
(k,t,b)>0
i3

— g polpto—2v)+((3)

where Oy, is the Maass raising operator, sending M,, to M, ».
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A Siegel mock modular form underlying ¢ Il

@ F; transforms as a Siegel mock modular form of weight —2,
Fil-27(Q) = F1(Q) + Py(Q) ,

where P, (Q) is a polynomial of degree 2 in Q, in the kernel of O_».

@ More generally, the theta lift of a weak Jacobi form of index 1 and
weight —2n produces a real-analytic Siegel modular function ¢,
which can be integrated to a Siegel mock modular form F, of
weight —2n:

©on = Re (O7,,Fn)

This provides an infinite supply of new Siegel mock modular
forms...

Kiritsis Obers 1997, Angelantonj Florakis BP 2015, 2016
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Exact DSR* coupling |

@ The non-perturbative completion of 74 and fpapas couplings is
known to be given by Langlands-Eisenstein series £g d+‘ @ for the
duality group. Due to the quadratic source term in the Laplace
equation, fpsa must lie outside this class.

@ Using the fact that the U-duality group SO(5,5) in D = 6 coincides
with the T-duality group in D = 5, a plausible non-perturbative
completion of fper4 in D =6 (BP, 2015):

fD6R4 = TFRN/ dus s 52¢+ 1295[‘300581?)4
Fa2
This reproduces the correct perturbative terms at weak-coupling.
It would be interesting to extract the non-perturbative corrections
from 1/8-BPS instantons, and compare with other proposals in the
literature.

Green Miller Russo Vanhove; Bossard Kleinschmidit

B. Pioline (CERN & LPTHE) On the genus-two KZ invariant String-Math 2015 25/27



Conclusion - Outlook

@ Using insights from string dualities, we discovered completely
new, efficient formulae for the genus-two Kawazumi-Zhang and
Faltings invariant, opening the way to numerical experiments. Can
this be pushed to higher genus ?

@ Theta lifts of vector-valued modular forms give an infinite supply of
mock modular forms on orthogonal Grassmannians %.

Can one find their modular completion, etc ?

@ String amplitudes at higher order in momentum provide an infinite
series of real-analytic functions on M. How about fpsr. at
two-loop ? three-loop ? Non-perturbatively ?

@ Higher loop theta lifts of ¢, such as ffz duel g.02¢, Qive rise to new
types of automorphic forms, beyond Langlands-Eisenstein series.
How do they fit in the Langlands program ?
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