Indefinite theta series, generalized error functions and D-instantons

Boris Pioline

CERN \& LPTHE

ETH, Nov 3, 2016
based on arXiv:1605.05945,1606.05495 with S. Alexandrov, S. Banerjee and J. Manschot

Introduction I

- Theta series for Euclidean lattices are an important source of holomorphic modular forms: for $Q(x)=B(x, x)$ a positive definite quadratic form on \mathbb{R}^{n},

$$
\Theta_{Q}(\tau, v)=\sum_{k \in \mathbb{Z}^{n}} q^{\frac{1}{2} Q(k)} e^{2 \pi \mathrm{i} B(v, k)}, \quad q=e^{2 \pi \mathrm{i} \tau}
$$

is a holomorphic Jacobi form of weight $n / 2$ under a suitable congruence subgroup of $S L(2, \mathbb{Z})$.

- Let $Q(x)$ a signature $(r, n-r)$ quadratic form and \mathcal{C} an open cone in $\mathbb{R}^{n-r, r}$ such that $x \in \mathcal{C} \Rightarrow Q(x)>0$, then

$$
\Theta_{Q, \mathcal{C}}(\tau, v)=\sum_{k \in \mathbb{Z}^{n} \cap \mathcal{C}} q^{\frac{1}{2} Q(k)} e^{2 \pi \mathrm{i} B(v, k)}
$$

defines a holomorphic q-series, but is it modular?

Introduction II

- Such indefinite theta series occur in many contexts:
- Partition functions of coset models / branching functions for affine Lie algebras: Kac Peterson 1984
- Characters of superconformal field theories / super-Lie algebras: Eguchi Taormina 1988, Kac Wakimoto 2000, Semikhatov Taormina Tipunin 2003
- Donadson and Vafa-Witten invariants of 4-manifolds: (Zagier 1991), Vafa Witten 1994, Goettsche 1996, Goettsche-Zagier 1998, Manschot 2010
- Quantum invariants of knows and 3-manifolds: Lawrence Zagier 1999, Hikami 2007, Hikami Lovejoy 2014
- Combinatorics of partitions: Bringmann Ono 2005
- Mirror symmetry for elliptic curves and Abelian varieties:

Polischchuk 1998

- Gromov-Witten invariants of Landau-Ginzburg orbifolds: Lau Zhou 2014, Bringmann Rolen Zwegers 2015

Introduction III

- Examples of modular theta series of signature $(1,1)$ were studied by Kronecker (around 1890) and Hecke (1925).
- Non-modular examples were studied by Appell (1886) and Lerch (1892): the Appell-Lerch sum can be written as a signature $(1,1)$ theta series, e.g. for $|q|<|y|<1, y=e^{2 \pi \mathrm{iv}}$,

$$
\begin{aligned}
\theta_{1}(\tau, v) \mu(\tau, v) & \equiv \sum_{n \in \mathbb{Z}}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)} y^{n+\frac{1}{2}}}{1-y q^{n}} \\
& =\left(\sum_{n, m \geq 0}-\sum_{n<0, m \leq 0}\right)(-1)^{n} q^{\frac{1}{2} n(n+1)+m n} y^{n+m+\frac{1}{2}}
\end{aligned}
$$

This Appell-Lerch sum and generalizations thereof underlies many of the examples mentioned earlier.

Introduction IV

- In his ground-breaking PhD thesis (2002), Zwegers showed how to correct $\mu(\tau, v)$ into a non-holomorphic, real-analytic, Jacobi form of weight 1. Schematically, one replaces

$$
\frac{1}{2}[\operatorname{sign}(m)+\operatorname{sign}(n)] \mapsto \frac{1}{2}\left[E_{1}\left(m \sqrt{2 \tau_{2}}\right)+\operatorname{sign}(n)\right]
$$

in the summand, where $E_{1}(u) \equiv \operatorname{Erf}(u \sqrt{\pi})$ is the error function.

- The difference is a theta series with an insertion of $M_{1}\left(m \sqrt{2 \tau_{2}}\right)$, where M_{1} is the complementary error function,

$$
M_{1}(u)=E_{1}(u)-\operatorname{sign}(u)=-\operatorname{sign}(u) \operatorname{Erfc}(|u| \sqrt{\pi})
$$

which can be written as an Eichler integral of an ordinary unary theta series. From this the modular behavior of $\mu(\tau, v)$ follows.

Introduction V

- Recall that given a modular form $F(w)$ of weight h, the Eichler integral

$$
G(\bar{\tau})=\int_{\tau}^{\mathrm{i} \infty} \frac{F(w) \mathrm{d} w}{(w-\bar{\tau})^{2-h}}
$$

transforms as (the complex conjugate of) a modular form of weight $2-h$, up to an inhomogeneous term proportional to a period integral of F,

$$
G\left(\frac{a \bar{\tau}+b}{c \bar{\tau}+d}\right)=(c \bar{\tau}+d)^{2-h}\left[G(\bar{\tau})-\int_{-d / c}^{\mathrm{i} \infty} \frac{F(w) \mathrm{d} w}{(w-\bar{\tau})^{2-h}}\right]
$$

- $G(\bar{\tau})$ is a mock modular form of weight $2-h$ and shadow $F(\tau)$.

Introduction VI

- More generally, Zwegers showed that the modular completion of an indefinite theta series of signature $(n-1,1)$ of the form

$$
\Theta_{C, C^{\prime}}(\tau, v)=\frac{1}{2} \sum_{k \in \mathbb{Z}^{n}+b}\left[\operatorname{sign} B(k, C)-\operatorname{sign} B\left(k, C^{\prime}\right)\right] q^{\frac{1}{2} Q(k)} e^{-2 \pi \mathrm{i} B\left(c, k-\frac{1}{2} b\right)}
$$

where C, C^{\prime} are a pair of vectors with $Q(C), Q\left(C^{\prime}\right), B\left(C, C^{\prime}\right)<0$ and $v=b \tau-c$, is obtained by replacing

$$
\operatorname{sign} B(k, C) \mapsto E_{1}\left(B(k, C) \sqrt{\frac{2 \tau_{2}}{-Q(C)}}\right)
$$

- Our goal will be to generalize Zwegers' construction to arbitrary signature $(n-r, r)$. $\stackrel{\wedge}{ }$ For consistency with our paper, I will henceforth flip the sign of $Q:(n-r, r) \rightarrow(r, n-r)$.

Vignéras' Theorem (1977) I

- Let $\Lambda \subset \mathbb{R}^{n}$ be an n-dimensional lattice with a signature $(r, n-r)$ quadratic form $Q(x)=B(x, x)$, such that $Q(k) \in 2 \mathbb{Z}$ for $k \in \Lambda$. For any $\mu \in \Lambda^{*} / \Lambda, \lambda \in \mathbb{Z}, \Phi: \mathbb{R}^{n} \rightarrow \mathbb{C}$ such that $\Phi(x) e^{\frac{\pi}{2} Q(x)} \in L_{1}\left(\mathbb{R}^{n}\right)$,

$$
\vartheta_{\mu}[\Phi, \lambda](\tau, b, c)=\tau_{2}^{-\lambda / 2} \sum_{k \in \Lambda+\mu+b} \Phi\left(\sqrt{2 \tau_{2}} k\right) q^{-\frac{1}{2} Q(k)} e^{2 \pi i B\left(c, k-\frac{1}{2} b\right)}
$$

satisfies the quasi-periodicity conditions

$$
\begin{aligned}
\vartheta_{\mu}[\Phi, \lambda](\tau, b, c) & =e^{\mathrm{i} \pi B(c, k)} \vartheta_{\mu}[\Phi, \lambda](\tau, b+k, c) \\
& =e^{-\mathrm{i} \pi B(b, k)} \vartheta_{\mu}[\Phi, \lambda](\tau, b, c+k) \\
& =e^{\mathrm{i} \pi Q(\mu)} \vartheta_{\mu}[\Phi, \lambda](\tau+1, b, c+b)
\end{aligned}
$$

Vignéras' Theorem (1977) II

- If in addition Φ satisfies

$$
\begin{aligned}
& {\left[B^{-1}\left(\partial_{x}, \partial_{x}\right)+2 \pi x \partial_{x}\right] \Phi(x)=2 \pi \lambda \Phi(x),} \\
& \left\{\begin{array}{l}
R(x) \Phi(x) e^{\frac{\pi}{2} Q(x)} \in L^{2}\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right) \\
R(\partial) \Phi(x) e^{\frac{\pi}{2}} Q(x)
\end{array} L^{2}\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right)\right.
\end{aligned}, ~ . ~ \$
$$

for any quadratic polynomial R, then $\vartheta_{\mu}[\Phi, \lambda](\tau, b, c)$ transforms as a vector-valued Jacobi form of weight $\left(\lambda+\frac{n}{2}, 0\right)$. Namely,

$$
\vartheta_{\mu}[\Phi, \lambda]\left(-\frac{1}{\tau}, c,-b\right)=\frac{(-\mathrm{i} \tau)^{\lambda+\frac{n}{2}}}{\sqrt{\left|\Lambda^{*} / \Lambda\right|}} \sum_{\nu \in \Lambda^{*} / \Lambda} e^{2 \pi \mathrm{i} B(\mu, \nu)} \vartheta_{\nu}[\Phi, \lambda](\tau, b, c)
$$

Vignéras' Theorem (1977) III

- Remark 1: The transformations are those of a Jacobi theta series with $v=0$ and characteristics $(b, c) \in \Lambda \otimes \mathbb{R}$. To obtain the usual Jacobi form, set $\vartheta_{\mu}(\tau, b, c)=e^{\mathrm{i} \pi B(b, b \tau-c)} \tilde{\vartheta}_{\mu}(\tau, v=b \tau-c)$.
- Remark 2: Under the Maass raising and lowering operators,

$$
\begin{aligned}
\tau_{2}^{2} \partial_{\bar{\tau}} \vartheta_{\mu}[\Phi, \lambda] & =\vartheta_{\mu}\left[\frac{i}{4}\left(x \partial_{x} \Phi-\lambda \Phi\right), \lambda-2\right] \\
\left(\partial_{\tau}-\frac{i\left(\lambda+\frac{n}{2}\right)}{2 \tau_{2}}\right) \vartheta_{\mu}[\Phi, \lambda] & =\vartheta_{\mu}\left[-\frac{i}{4}\left(x \partial_{x} \Phi+[\lambda+n+2 \pi Q(x)] \Phi\right), \lambda+2\right] .
\end{aligned}
$$

We call $\tau_{2}^{2} \partial_{\bar{\tau}}$ and $x \partial_{x}-\lambda$ the 'shadow' operators.

Vignéras' Theorem (1977) IV

- Remark 3: For any r-dimensional positive plane $\mathcal{P} \subset \mathbb{R}^{n}$, let $x=x_{+}+x_{-}$with $x_{+} \in \mathcal{P}, x_{-} \in \mathcal{P}^{\perp}$. The function $\Phi(x)=e^{-\pi Q\left(x_{+}\right)}$ satisfies the assumptions of the theorem with $\lambda=-r$, and leads to the usual Siegel theta series, also known as Narain lattice partition function $\Gamma_{r, n-r}$.
- Remark 4: In order to get a holomorphic q-series, one needs $x \partial_{x} \Phi=\lambda \Phi$, but a homogeneous polynomial of degree λ will not satisfy the assumptions of the theorem. Thus, there is tension between holomorphy and modularity.
- To achieve mock modularity, we shall take Φ to be a homogeneous local polynomial of degree λ. For simplicity, take a locally constant function $(\lambda=0)$.

Indefinite theta series of Lorentzian signature I

Let $Q(x)$ a signature ($1, n-1$) quadratic form, and C, C^{\prime} linearly independent vectors with $Q(C)=Q\left(C^{\prime}\right)=1, B\left(C, C^{\prime}\right)>0$,

$$
\begin{aligned}
& \Phi_{1}(x)=\frac{1}{2}\left(\operatorname{sign}[B(C, x)]-\operatorname{sign}\left[B\left(C^{\prime}, x\right)\right]\right), \\
& \widehat{\Phi}_{1}(x)=\frac{1}{2}\left(E_{1}[B(C, x)]-E_{1}\left[B\left(C^{\prime}, x\right)\right]\right) \\
& \Psi_{1}(x)=\frac{i}{4}\left(B(C, x) e^{-\pi[B(C, x)]^{2}}-B\left(C^{\prime}, x\right) e^{-\pi\left[B\left(C^{\prime}, x\right)\right]^{2}}\right)
\end{aligned}
$$

(1) $\Theta_{\mu}\left[\phi_{1}, 0\right], \Theta_{\mu}\left[\widehat{\phi}_{1}, 0\right], \Theta_{\mu}\left[\widehat{\phi}_{1}, 0\right]$ are all convergent;
(2) $\Theta_{\mu}\left[\widehat{\phi}_{1}, 0\right]$ is real-analytic vector-valued Jacobi form of weight $n / 2$;
(3) $\Theta_{\mu}\left[\Phi_{1}, 0\right]$ is a holomorphic in τ and in z, but not modular;
(9) Their difference is proportional to the Eichler integral of Ψ_{1},

$$
\Theta_{\mu}\left[\hat{\phi}_{1}-\Phi_{1}, 0\right](\tau, b, c)=-4 \int_{-\mathrm{i} \infty}^{\bar{\tau}} \frac{\mathrm{d} \bar{w}}{(\tau-\bar{w})^{2}} \Theta_{\mu}\left[\Psi_{1},-2\right](\tau, \bar{w}, b, c) .
$$

Indefinite theta series of Lorentzian signature II

Sketch of proof:
(1) $\operatorname{sign}[B(C, x)]=\operatorname{sign}\left[B\left[\left(C^{\prime}, x\right)\right]\right.$ unless $Q(x)<0$;
(2) $\Phi_{1}(x)$ is locally constant so $\Theta_{\mu}\left[\Phi_{1}, 0\right]$ is holomorphic;
(3) $E_{1}(u)$ satisfies the 1 D Vignéras equation,

$$
\left(\partial_{u}^{2}+2 \pi u \partial_{u}\right) E_{1}(u)=0
$$

so $\widehat{\Phi}_{1}$ satisfies the assumptions of Vigneras theorem;
(4) Ψ_{1} is proportional to the shadow of $\widehat{\Phi}_{1}$.

Remark: In the limit where C becomes null, then $E_{1}[B(C, x)] \rightarrow$ $\operatorname{sign}[B(C, x)]$. If both C and C^{\prime} are null and $B\left(C, C^{\prime}\right)>0$, then $\Theta_{\mu}\left[\Phi_{1}\right]$ is a holomorphic vector-valued Jacobi form of weight $n / 2$.

Integral representations for error functions

To prepare the ground for higher signature case, note the following:

$$
E_{1}(u)=\int_{\mathbb{R}} \mathrm{d} u^{\prime} \operatorname{sign}\left(u^{\prime}\right) e^{-\pi\left(u-u^{\prime}\right)^{2}}
$$

$$
M_{1}(u)=\frac{\mathrm{i}}{\pi} \int_{\mathbb{R}-\mathrm{i} u} \frac{\mathrm{dz}}{z} e^{-\pi z^{2}-2 \pi \mathrm{i} z u}
$$

which make it clear that M_{1}, E_{1} are solutions to 1D Vignéras equation,

$$
\begin{aligned}
& {\left[\partial_{u}^{2}+2 \pi u \partial_{u}\right] M_{1}=\frac{\mathrm{i}}{\pi} \int_{\mathbb{R}-\mathrm{i} u} \frac{\mathrm{~d} z}{z} 2 \pi z \partial_{z}\left[e^{-\pi z^{2}-2 \pi \mathrm{i} z u}\right]=0} \\
& {\left[\partial_{u}^{2}+2 \pi u \partial_{u}\right] E_{1}=\int_{\mathbb{R}} \mathrm{d} u^{\prime} \operatorname{sign}\left(u^{\prime}\right)\left[\partial_{u} \partial_{u^{\prime}}+2 \pi u \partial_{u}^{\prime}\right] e^{-\pi\left(u-u^{\prime}\right)^{2}}=0}
\end{aligned}
$$

Indefinite theta series of signature $(r, n-r)$ I

- In signature $(r, n-r)$, consider the locally constant function

$$
\Phi_{r}(x)=\frac{1}{2^{r}} \prod_{i=1}^{r}\left(\operatorname{sign}\left[B\left(C_{i}, x\right)\right]-\operatorname{sign}\left[B\left(C_{i}^{\prime}, x\right)\right]\right)
$$

where C_{i}, C_{i}^{\prime} are chosen such that $Q(x)<0$ whenever $\Phi_{r}(x) \neq 0$.
To find its modular completion, we need a C^{∞} solution $\widehat{\Phi}_{r}$ of Vignéras equation which asymptotes to Φ_{r} as $|x| \rightarrow \infty$.

- For $r=2$, Alexandrov Banerjee Manschot BP (2016) found sufficient conditions for the convergence of $\vartheta\left[\Phi_{r}, 0\right]$. Kudla (2016) gave weaker conditions which work for arbitrary r.

Indefinite theta series of signature $(r, n-r)$ II

- To state Kudla's conditions, note that the space \mathcal{D} of positive oriented r planes in $\mathbb{R}^{r, n-r}$ has two disconnected components $\mathcal{D}^{ \pm}$. For any $I \subset\{1, \ldots r\}$, let $C_{I}=\left(C_{1}^{\prime \prime}, \ldots C_{r}^{\prime \prime}\right)$ where $C_{i}^{\prime \prime}=C_{i}$ if $i \in I$, and $C_{i}^{\prime \prime}=C_{i}^{\prime}$ if $i \notin I$.
- Theorem (Kudla 2016): Assume that all such collections C/ span distinct positive oriented r planes in the same component, say $\mathcal{D}^{ \pm}$. Then $\vartheta\left[\Phi_{r}, 0\right]$ is absolutely convergent.
- For $r=2$, this reduces to

$$
\begin{gathered}
Q\left(C_{1}\right), Q\left(C_{1}^{\prime}\right), Q\left(C_{2}\right), Q\left(C_{2}^{\prime}\right)>0, \quad \Delta_{12}, \Delta_{12^{\prime}}, \Delta_{1^{\prime} 2}, \Delta_{1^{\prime} 2^{\prime}}>0 \\
B\left(C_{1 \perp 2}, C_{1^{\prime} \perp 2}\right), B\left(C_{1 \perp 2^{\prime}}, C_{1^{\prime} \perp 2^{\prime}}\right)>0 \\
B\left(C_{2 \perp 1}, C_{2^{\prime} \perp 1}\right), B\left(C_{2 \perp 1^{\prime}}, C_{2^{\prime} \perp 1^{\prime}}\right)>0
\end{gathered}
$$

where $\Delta_{12}=Q\left(C_{1}\right) Q\left(C_{2}\right)-B\left(C_{1}, C_{2}\right)^{2}, C_{1 \perp 2}=C_{1}-\frac{B\left(C_{1}, C_{2}\right)}{Q\left(C_{2}\right)} C_{2}$, etc

Indefinite theta series of signature $(r, n-r)$ III

- To construct $\widehat{\Phi}_{r}$, consider the natural generalizations of the error functions $M_{1}(u)$ and $E_{1}(u)$,

$$
\begin{gathered}
E_{r}\left(\left\{C_{i}\right\} ; x\right)=\int_{\left\langle C_{1}, \ldots, C_{r}\right\rangle} \mathrm{d}^{r} y \prod_{i=1}^{r} \operatorname{sign} B\left(C_{i}, y\right) e^{-\pi Q\left(y-x_{+}\right)}, \\
M_{r}\left(\left\{C_{i}\right\} ; x\right)=\left(\frac{\mathrm{i}}{\pi}\right)^{r} \int_{\left\langle C_{1}, \ldots, C_{r}\right\rangle-\mathrm{i} x} \mathrm{~d}^{r} z \frac{\sqrt{\Delta\left(\left\{C_{i}\right\}\right)} e^{-\pi Q(z)-2 \pi \mathrm{i} B(z, x)}}{\prod_{i=1}^{r} B\left(C_{i}, z\right)}
\end{gathered}
$$

where $\mathrm{d}^{r} y$ is the uniform measure on the plane $\left\langle C_{1}, \ldots, C_{r}\right\rangle$, normalized such that $\int_{\left\langle C_{1}, \ldots, C_{r}\right\rangle} \mathrm{d}^{r} y e^{-\pi Q(y)}=1$, and x_{+}is the orthogonal projection of x on the same plane.

Indefinite theta series of signature $(r, n-r)$ IV

Indefinite theta series of signature $(r, n-r) \mathrm{V}$

Proposition: (ABMP 2016; Nazaroglu 2016)

- $E_{r}\left(\left\{C_{i}\right\} ; x\right)$ is a C^{∞} solution of Vignéras' equation with $\lambda=0$, which asymptotes to $\prod_{i=1}^{r} \operatorname{sign} B\left(C_{i}, x\right)$ as $|x| \rightarrow \infty$.
- $M_{r}\left(\left\{C_{i}\right\} ; x\right)$ is a C^{∞} solution of Vignéras' equation with $\lambda=0$, away from the walls $B\left(C_{i}, x\right)=0$, exponentially suppressed in all directions.
- The difference $E_{r}\left(\left\{C_{i}\right\}\right)-\prod_{i=1}^{r} \operatorname{sign} B\left(C_{i}, x\right)$ is a linear combination of $M_{r^{\prime}}$ functions with $1 \leq r^{\prime} \leq r$, with locally constant coefficients.
- The shadow of $E_{r}\left(\left\{C_{i}\right\}\right)$ is a linear combination of $E_{r^{\prime}}$ functions with $0 \leq r^{\prime}<r$, with Gaussian coefficients.

Indefinite theta series of signature $(r, n-r) \mathrm{VI}$

Theorem:

- The modular completion of $\vartheta\left[\Phi_{r}, 0\right]$ is the non-holomorphic theta series $\vartheta\left[\widehat{\Phi}_{r}, 0\right]$ with kernel

$$
\widehat{\Phi}_{r}(x)=\frac{1}{2^{r}} \sum_{l \subset\{1, \ldots r\}}(-1)^{r-|| |} E_{r}\left(C_{l} ; x\right)
$$

- Its shadow $\vartheta\left[\widehat{\Psi}_{r},-2\right]$ is a linear combination of indefinite theta series of signature $(r-1, n-r+1)$.
- The difference $\vartheta\left[\widehat{\Phi}_{r}-\Phi_{r}, 0\right]$ is an Eichler integral of $\vartheta\left[\widehat{\Psi}_{r},-2\right]$, giving access to the modular properties of the holomorphic theta series $\vartheta\left[\Phi_{r}, 0\right]$.

Other approaches to indefinite theta series I

- An alternative approach to indefinite theta series was developped in the 80s by Kudla and Millson, who constructed a closed r-form $\theta_{r}^{K M}(z, \tau)$ on $\mathcal{D} \times \mathcal{H}$, which is invariant under a (finite index subgroup) of $\operatorname{Aut}(\Lambda)$ and has modular weight $n / 2$ in τ.
- Kudla (2016) proposes (and shows for $r=1$ and $r=2$) that

$$
\vartheta\left[\widehat{\Phi}_{r}, 0\right] \propto \int_{S} \theta_{r}^{K M}(z, \tau)
$$

where S is a geodesic hypercube in \mathcal{D}^{+}, parametrized by

$$
\phi:[0,1]^{r} \rightarrow S,\left[s_{1}, \ldots, s_{r}\right] \mapsto\left\langle B_{1}\left(s_{1}\right), \ldots B_{r}\left(s_{r}\right)\right\rangle
$$

where $B_{i}\left(s_{i}\right)=\left(1-s_{i}\right) C_{i}+s_{i} C_{i}^{\prime}$.

Other approaches to indefinite theta series II

- The shadow is proportional to the integral of $\theta_{r-1}^{K M}(z, \tau)$ on the faces of the hypercube, hence a linear combination of indefinite theta series of signature $(r-1, n-r+1)$.
- Any compact geodesic polyhedron S in \mathcal{D}^{+}similarly leads to a non-holomorphic theta series, which is the modular completion of a holomorphic indefinite theta series.
- Any such S can be decomposed as a sum of geodesic simplexes. Each term corresponds to a theta series $\Theta_{Q, \mathcal{C}}$ where \mathcal{C} is a tetrahedral cone.

Physics application: S-duality in HM moduli space I

In type IIB string theory compactified on a CY threefold X, the moduli space decomposes into two factors:

$$
\mathcal{M}=\mathcal{M}_{V}(X) \times \mathcal{M}_{H}(X)
$$

- The vector-multiplet moduli space $\mathcal{M}_{V}(X)$ describes the complex structure moduli of X. It carries a Kähler metric derived from the Kähler potential $\mathcal{K}_{V}=-\log \int_{X} \Omega \wedge \bar{\Omega}$.
- The hypermultiplet moduli space $\mathcal{M}_{H}(X)$ describes the Kähler moduli of X, along with the string coupling $g=e^{\phi}$, the RR axions $C \in H_{\text {even }}(X, \mathbb{R}) / H_{\text {even }}(X, \mathbb{Z})$ and the NS axion $\sigma \in \mathbb{R} / \mathbb{Z}$. It carries a quaternion-Kähler metric (which is NOT a Kähler, not even complex !). In the weak coupling limit $g \rightarrow 0$,

$$
\mathcal{M}_{H}(X) \sim_{g \rightarrow 0} \mathrm{c}-\operatorname{map}\left(\mathcal{M}_{V}(\hat{X})\right)
$$

Physics application: S-duality in HM moduli space II

- For g finite, one expects $\mathcal{O}\left(e^{-1 / g}\right)$ corrections from Euclidean D-branes, i.e. stable objects in the derived category of stable sheaves on X, weighted by the corresponding generalized Donaldson-Thomas invariants $\Omega(\gamma)$; as well as $\mathcal{O}\left(e^{-1 / g^{2}}\right)$ corrections from NS five-branes, whose mathematical description is unknown.
- The same generalized DT invariants count D6-D4-D2-D0 black holes in type IIA string theory compactified on X.

Physics application: S-duality in HM moduli space III

- The effect of Euclidean D-branes on the QK metric on $\mathcal{M}_{H}(X)$ is well understood in terms of the twistor space \mathcal{Z}, a \mathbb{P}^{1} bundle over $\mathcal{M}_{H}(X)$ equipped with a canonical complex contact structure.

Alexandrov BP Saueressig Vandoren 2008; Gaiotto Moore Neitzke 2008

- A canonical system of Darboux coordinates \equiv on \mathcal{Z} is obtained by solving the integral equations

$$
\equiv=\Xi_{\mathrm{sf}}+\frac{1}{8 \pi^{2}} \sum_{\gamma} \gamma \Omega\left(\gamma, z^{a}\right) \int_{\ell_{\gamma}} \frac{\mathrm{d} t^{\prime}}{t^{\prime}} \frac{t+t^{\prime}}{t-t^{\prime}} \log \left[1-e^{-2 \pi \mathrm{i}\left(\equiv\left(t^{\prime}\right), \gamma\right\rangle}\right]
$$

where $\bar{\Xi}_{\text {sf }}$ are the semi-flat coordinates and $\ell(\gamma)=\left\{t: Z\left(\gamma, z^{a}\right) / t \in i \mathbb{R}^{+}\right\}$are the BPS rays.

- The QK metric is smooth across walls of marginal stability.

Physics application: S-duality in HM moduli space IV

- An key constraint is that $\mathcal{M}_{H}(X)$ should admit a smooth QK manifold with an isometric action of $S L(2, \mathbb{Z})$, originating from S-duality in type IIB string theory. Equivalently, the contact structure on the twistor space must be invariant under $S L(2, \mathbb{Z})$.

Robles-Llana, Rocek, Saueressig, Theis, Vandoren 2006

- S-duality relates D1-instantons to F1-instantons (hence DT invariants to GW invariants); D5-instanton to NS5-instantons; but maps D3-instantons to themselves. Thus it gives an important constraint on DT-invariants for pure dimension 2 sheaves supported on a divisor $\mathcal{P} \subset X$, with $p=[\mathcal{P}] \in H_{4}(\mathcal{X}, \mathbb{Z}) \equiv \Lambda$.

Physics application: S-duality in HM moduli space V

- Indeed, these same invariants count D4-D2-D0 black hole microstates in type IIA/X, and are described by given by the (modified) elliptic genus of a suitable $N=(4,0)$ SCFT:

$$
Z_{p}(\tau, c)=\sum_{q_{a} \in \Lambda^{*}, q_{0} \in \mathbb{Z}} \Omega^{\mathrm{MSW}}\left(p^{a}, q_{a}, q_{0}\right) e^{-2 \pi \tau_{2}|Z(\gamma)|-2 \pi \mathrm{i}\left(\tau_{1} q_{0}+c^{a} q_{a}\right)}
$$

is a Jacobi form of weight $(-3 / 2,1 / 2)$.
Maldacena Strominger Witten 1997

- Here, the MSW invariants are defined as the generalized DT invariants in the 'large volume attractor chamber':

$$
\Omega^{\mathrm{MSW}}\left(p^{a}, q_{a}, q_{0}\right)=\lim _{\lambda \rightarrow+\infty} \Omega\left(0, p^{a}, q_{a}, q_{0} ;-\kappa^{a b} q_{b}+\mathrm{i} \lambda p^{a}\right)
$$

de Boer Denef El Showk Messamah van den Bleeken 2008

Physics application: S-duality in HM moduli space VI

- Invariance under spectral flow $\left(q_{a}, q_{0}\right) \mapsto\left(q_{a}-\kappa_{a b c} p^{b} \epsilon^{c}, q_{0}-\epsilon^{a} q_{a}+\frac{1}{2} \kappa_{a b c} p^{a} \epsilon^{b} \epsilon^{c}\right)$ implies the theta series decomposition

$$
Z_{p}(\tau, c)=\sum_{\mu \in \Lambda^{*} / \Lambda} h_{p, \mu}(\tau) \theta_{p, \mu}(\tau, c)
$$

where $h_{p, \mu}(\tau)$ is a vector-valued holomorphic modular form of weight $-\frac{b_{2}}{2}-1$, and $\theta_{p, \mu}(\tau, c)$ a Siegel theta series of signature $\left(1, b_{2}-1\right)$ and weight $\left(\frac{b_{2}-1}{2}, \frac{1}{2}\right)$.

Denef Moore; Gaiotto Strominger Yin; de Boer Cheng Dijkgraaf Manschot Verlinde

Physics application: S-duality in HM moduli space VII

- Explicitly,

$$
\theta_{p, \mu}(\tau, c)=\sum_{k \in \Lambda+\mu} e^{-\mathrm{i} \pi \tau Q\left(k_{-}\right)-\mathrm{i} \pi \bar{\tau} Q\left(k_{+}\right)-2 \pi \mathrm{i}^{a} k_{a}}
$$

where $Q(k)=\frac{1}{2} \kappa_{a b c} p^{a} k^{b} k^{c}$ is a quadratic form of signature $\left(1, b_{2}-1\right), k_{+}$is the projection of k along the timelike vector $t \in \mathbb{R}^{1, b_{2}-1}$ parametrizing the Kähler cone, and $k_{-}=k-k_{+}$.

S-duality in HM moduli space I

- In the large volume limit, at one-instanton order and zooming near $t=0$, the Darboux coordinates 三 can be expressed in terms of contour integrals of the form

$$
\mathcal{J}_{p}(t)=\sum_{\substack{q \in \Lambda \\ q_{0} \in \mathbb{Z}}} \int_{\mathbb{R}} \frac{\mathrm{d} t^{\prime}}{t^{\prime}-t} \Omega^{\mathrm{MSW}}(\gamma) e^{-2 \pi \mathrm{i}\left\langle\bar{\Xi}_{\mathrm{sf}}\left(t^{\prime}\right), \gamma\right\rangle}
$$

- Using spectral flow invariance of $\Omega^{\mathrm{MSW}}(\gamma)$, and restricting to $t=0$ for simplicity, this can be rewritten as

$$
\mathcal{J}_{p}(0)=\sum_{\mu \in \Lambda^{*} / \Lambda} h_{p, \mu}\left[\sum_{k \in \Lambda+\mu} M_{1}\left(k_{+} \sqrt{\tau_{2}}\right) q^{-\frac{1}{2} Q(k)}\right]
$$

S-duality in HM moduli space II

- The series $\sum_{k} M_{1}\left(k_{+} \sqrt{\tau_{2}}\right) q^{-\frac{1}{2} Q(k)}$ is an Eichler integral of the Gaussian theta series $\sum_{k} k_{+} e^{-\pi \tau_{2} k_{+}^{2}} q^{-\frac{1}{2} Q(k)}$, therefore it transforms non-homogeneously under $S L(2, \mathbb{Z})$.
- However, since it appears in the modular completion of the Zwegers-type indefinite theta series $\sum_{k}\left[\operatorname{sign}\left(k_{+}\right)-\operatorname{sign}\left(k_{+}^{\prime}\right)\right] q^{-\frac{1}{2} Q(k)}$ (where $k_{+}^{\prime}=k_{a} t^{\prime a}$ with $Q\left(t^{\prime}\right)=0$), its modular anomaly is holomorphic, and therefore 三 transforms by a holomorphic contact transformation!
- This shows that at one-instanton level, D3-instanton corrections are consistent with S-duality, provided the generating function $h_{p, \mu}$ of MSW invariants is a vector-valued modular form of fixed weight and multiplier system, as predicted by MSW.

Alexandrov Manschot BP, 2012

S-duality in HM moduli space III

- At two-instanton level, one has to deal with indefinite theta series of signature $\left(2,2 b_{2}-2\right)$, corresponding to sums over fluxes on pairs of D3-branes wrapped on a divisor $\mathcal{P}=\mathcal{P}_{1}+\mathcal{P}_{2}$.
- After a lot of work, one finds that D3-instanton corrections are consistent with S-duality, provided $h_{p, \mu}$ is a vector-valued mock modular form of fixed weight, multiplier system and shadow. More precisely, $\widehat{h}_{p, \mu} \equiv h_{p, \mu}-R_{p, \mu}$ is a vector-valued modular form of weight $-\frac{b_{2}}{2}-1$, where $R_{p, \mu}$ is a non-holomorphic function of τ constructed from $h_{p_{1}, \mu_{1}}, h_{p_{2}, \mu_{2}}$.
- Such mock modularity is known to appear in the context of rank 2 sheaves on complex surfaces, here we see it arise more generally in the context of DT invariants of pure dimension 2 sheaves on Calabi-Yau threefolds.

Conclusion I

- We have found a very simple prescription for finding the modular completion of a large class of indefinite theta series of arbitrary: replace the locally constant function Φ_{r} by its image under the heat kernel operator!
- This in principle allows to determine the modular properties of many interesting q-series, e.g. the generating function of Euler numbers of moduli spaces of rank $r+1$ sheaves on rational surfaces...
- This hints a theory of level- r mock modular forms, defined recursively as holomorphic q-series whose shadow is a level $r-1$ mock modular form. Do the connections to harmonic Maass forms and meromorphic Jacobi forms generalize to $r>1$?
- Re: HM multiplet moduli space, a manifestly S-duality invariant. twistorial construction would be very useful, e.g. for incorporating NS5-brane instantons.

