## The global scattering diagram for local $\mathbb{P}^2$

#### **Boris Pioline**





#### Workshop on BPS states, mirror symmetry, and exact WKB II Sheffield, 07/09/2022

Work in progress with Pierrick Bousseau, Pierre Descombes and Bruno Le Floch

## My amazing co-authors



< A >

- $X = K_{\mathbb{P}^2}$  is one of the simplest example of CY 3-folds
- BPS states in type IIA/X are described by objects in  $C = D^b \operatorname{Coh}(X)$
- Stable objects are counted by the Donaldson-Thomas invariants  $\Omega_{\sigma}(\gamma)$  with  $\gamma \in \mathcal{K}(X)$  and  $\sigma \in \operatorname{Stab} \mathcal{C}$
- Physicists mostly care about the slice of Π stability conditions Π ⊂ Stab C, isomorphic to (universal cover of) Kähler moduli space *M*<sub>K</sub>(X), defined by VHS on the mirror Y.
- In general, dim<sub>C</sub> Π = b<sub>2</sub>(X) is less than dim<sub>C</sub>[Stab C/GL(2, ℝ)<sup>+</sup>] = b<sub>even</sub>(X) - 2, but the two agree for X = K<sub>S</sub> for any complex surface S.

< 同 → < 三 →

 The scattering diagram D<sub>ψ</sub> ⊂ Stab C is (roughly) the union over γ ∈ K(X) of active rays

 $\mathcal{R}_{\psi}(\gamma) = \{ \arg Z_{\sigma}(\gamma) = \psi + \frac{\pi}{2} , \Omega_{\sigma}(\gamma) \neq \mathbf{0} \}$ 

equipped with some element  $\mathcal{U}_{\sigma}(\gamma)$  in some pro-unipotent group keeping track of  $\Omega_{\sigma}(\gamma)$ .

- The consistency of D<sub>ψ</sub> allows to compute all Ω<sub>σ</sub>(γ) from initial rays.
- Scattering diagrams appear to be the correct mathematical framework for attacking the Split Attractor Flow Tree Conjecture [Denef'00], at least for local CY3 such that  $Z_{\sigma}$  is holomorphic on  $\Pi$

A (1) > A (2) > A

- Attractor flow of charge  $\gamma$  along  $\Pi$ :  $\frac{dz^a}{d\mu} = -g^{a\bar{b}}\partial_{\bar{b}}|Z(\gamma)|^2$
- $|Z(\gamma)|^2$  decreases along the flow, until it reaches a local minimum at  $z = z_*(\gamma)$ , or hits the boundary of  $\Pi$ . The attractor index is  $\Omega_*(\gamma) := \Omega_{Z_*(\gamma)}(\gamma)$  (There could be different basins of attraction)
- A split attractor flow tree is a rooted binary tree *T*, decorated with charges γ<sub>e</sub> along edges, embedded in Π along the flow lines of |*Z*(γ<sub>e</sub>)| along each edge, satisfying at each vertex

**)** charge conservation: 
$$\gamma_{p(v)} = \gamma_{L(v)} + \gamma_{R(v)}$$

2 phase alignment:

 $\operatorname{Im}[Z_{\nu}(\gamma_{L(\nu)})\overline{Z_{\nu}(\gamma_{R(\nu)})}] = 0, \operatorname{Re}[Z_{\nu}(\gamma_{L(\nu)})\overline{Z_{\nu}(\gamma_{R(\nu)})}] > 0$ 

3 stability: 
$$\langle \gamma_{L(v)}, \gamma_{R(v)} \rangle \operatorname{Im}[Z_{\rho(v)}(\gamma_{L(v)})\overline{Z_{\rho(v)}(\gamma_{R(v)})}] > 0$$

- Let  $\mathcal{T}(\{\gamma_i\}, z)$  the set of trees rooted at z, with leaves of charge  $\gamma_i$ , and let  $\overline{\Omega}(\gamma) := \sum_{k|\gamma} \frac{1}{k^2} \Omega(\gamma/k)$  be the rational DT invariants.
- The Split Attractor Flow Tree Conjecture roughly says

$$\Omega_{z}(\gamma) = \sum_{\gamma = \sum_{i} \gamma_{i}} \frac{1}{|\operatorname{Aut}(\{\gamma_{i}\})|} \left( \sum_{T \in \mathcal{T}(\{\gamma_{i}\}, z)} \prod_{\nu \in V_{T}} \langle \gamma_{L(\nu)}, \gamma_{R(\nu)} \rangle \right) \prod_{i} \bar{\Omega}_{\star}(\gamma_{i})$$

- On a local CY, holomorphy of Z implies that arg Z(γ) is conserved along the flow. Hence flow lines lie along rays R<sub>ψ</sub>(γ) with arg Z(γ) = ψ + π/2
- Vertices lie at the intersection of  $\mathcal{R}_{\psi}(\gamma_{L(\nu)})$  and  $\mathcal{R}_{\psi}(\gamma_{R(\nu)})$
- Holomorphy of Z also implies that there are no local minima of  $|Z(\gamma)|^2$ , except on boundary or at points where  $Z(\gamma) = 0$
- When dim<sub>C</sub> Π = 1, flow trees essentially coincide with scattering sequences of initial rays in D<sub>ψ</sub> ∩ Π !

- Our aim is to construct the scattering diagram  $\mathcal{D}_{\psi}^{\Pi}$  for  $\mathcal{C} = D^b \operatorname{Coh} K_{\mathbb{P}^2}$ , and use it to demonstrate the Split Attractor Flow Tree Conjecture in that simple case.
- We build on [Bridgeland'16] on scattering diagrams for quivers with potential, and [Bousseau'19] for the scattering diagram for coherent sheaves on  $\mathbb{P}^2$ .
- This construction provides an algorithm to compute BPS indices for local P<sup>2</sup> at any point in Stab C, and new insights on the microscopic structure of BPS states (BPS dendroscopy)
- Hopefully similar ideas can be used for other local CY3, and perhaps compact CY3.

## Introduction

- 2 Stability conditions on local  $\mathbb{P}^2$
- Scattering diagram around the orbifold point
- Scattering diagram around the large volume point
- 5 Towards the exact scattering diagram

#### Introduction

- 2 Stability conditions on local  $\mathbb{P}^2$
- 3 Scattering diagram around the orbifold point
- Scattering diagram around the large volume point
- 5 Towards the exact scattering diagram

38 N

• The category  $\mathcal{C} = D^b \operatorname{Coh} \mathcal{K}_{\mathbb{P}^2}$  is graded by  $\Gamma = \mathbb{Z}^3$ 

 $E \mapsto \gamma(E) = [r, d, \chi), \quad \chi = r + \frac{3}{2}d + ch_2$ 

- A stability condition  $\sigma$  is a pair (Z, A) such that
  - $\bigcirc Z: \Gamma \to \mathbb{C} \text{ linear map}$
  - 2  $\mathcal{A}$  heart of *t* structure
  - 3  $\forall 0 \neq E \in \mathcal{A}, \operatorname{Im}Z(E) > 0 \text{ or } (\operatorname{Im}Z(E) = 0 \text{ and } \operatorname{Re}(Z) < 0)$
  - Harder-Narasimhan + support properties
- Stab  $C/\mathbb{C}^{\times}$  is a complex manifold of dim 2, parametrized locally by  $(T, T_D)$  such that  $Z(\gamma) = -rT + dT_D ch_2$
- Since  $\operatorname{Im} Z(\gamma) = r \operatorname{Im} T(\mu s)$  with  $\mu = \frac{d}{r}$  and  $s = \frac{\operatorname{Im} T_D}{\operatorname{Im} T}$ , we can take  $\mathcal{A} = \{E \to F\}$  with  $\mu(E) \leq s$  and  $\mu(F) > s$ . [Bayer Macri'11]

## Kähler moduli space

• The Kähler moduli space of  $K_{\mathbb{P}^2}$  is the modular curve  $IH/\Gamma_1(3)$  parametrizing elliptic curves with level structure.



• It admits two cusps at the large volume and conifold points, and one orbifold point  $\tau_o = -\frac{1}{2} + \frac{i}{2\sqrt{3}}$  of order 3.

## $\Pi$ stability slice inside Stab(C)

• The universal cover of  $\Pi$  is embedded in  $Stab(\mathcal{C})/\mathbb{C}^{\times}$  via

$$Z_{\tau}(\gamma) = -rT_D(\tau) + dT(\tau) - ch_2$$

$$\begin{pmatrix} T\\T_D \end{pmatrix} = \begin{pmatrix} -1/2\\1/3 \end{pmatrix} + \int_{\tau_o}^{\tau} \begin{pmatrix} 1\\u \end{pmatrix} C(u) \,\mathrm{d}u$$
$$C(\tau) = \frac{\eta(\tau)^9}{\eta(3\tau)^3} = 1 - 9 \sum_{n=0}^{\infty} \frac{(\frac{n}{-3})q^n}{1-q^n}$$

The group Γ<sub>1</sub>(3) acts by auto-equivalences of Stab(C), generated by T : E → E(1) = E ⊗ O<sub>X</sub> and V : E : ST<sub>O</sub>(E) – the Seidel-Thomas twist with respect to the spherical object O = O<sub>P<sup>2</sup></sub>

$$\begin{pmatrix} 1\\T\\T_D \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0\\m & d & c\\m_D & b & a \end{pmatrix} \begin{pmatrix} 1\\T\\T_D \end{pmatrix}, \quad \begin{pmatrix} r\\d\\ch_2 \end{pmatrix} \mapsto \begin{pmatrix} d & c & 0\\b & a & 0\\m' & m'_D & 1 \end{pmatrix} \begin{pmatrix} r\\d\\ch_2 \end{pmatrix}$$

## $\Pi$ stability slice inside Stab(C)/ $GL(2, \mathbb{R})^+$

$$s := rac{\operatorname{Im} T_D}{\operatorname{Im} T}$$
,  $q := -rac{\operatorname{Im} (TT_D)}{\operatorname{Im} T} := rac{1}{2}(s^2 + t^2)$   
 $Z(\gamma) \approx (rq - \operatorname{ch}_2) + \mathrm{i}(d - sr) \approx -rac{r}{2}(s + \mathrm{i}t)^2 + d(s + \mathrm{i}t) - \operatorname{ch}_2$ 



< D > < P > < P >

#### Introduction

2 Stability conditions on local  $\mathbb{P}^2$ 

#### Scattering diagram around the orbifold point

- 4 Scattering diagram around the large volume point
- 5 Towards the exact scattering diagram

- Let (Q, W) be a quiver with potential, J(Q, W) the Jacobian path algebra CQ/∂<sub>W</sub>, A the Abelian category of representations of J(Q, W), graded by the dimension vector γ ∈ Γ = N<sup>Q<sub>0</sub></sup>.
- Stability conditions are parametrized by Z(γ<sub>i</sub>) ∈ ℍ for simple representations attached to the node *i*.
- Let M<sub>Z</sub>(γ) be the moduli space of semi-stable representations with dimension vector γ (i.e. arg Z(γ') ≤ arg(Z<sub>γ</sub>) for any E' ⊂ E), and Ω<sub>Z</sub>(γ) its motivic DT invariant. Informally, Ω<sub>Z</sub>(γ, y) = (-y)<sup>dim M<sub>Z</sub>(γ)</sup> ∑<sub>n</sub> b<sub>n</sub>(M<sub>Z</sub>(γ))(-y)<sup>n</sup>.
- Let  $\overline{\Omega}_{Z}(\gamma, y) = \sum_{k|\gamma} \frac{y-1/y}{k(y^{k}-1/y^{k})} \Omega_{Z}(\gamma/k, y^{k})$  be the rational DT invariant.

- 4 同 2 4 回 2 4 回 2 4

## Stability scattering diagram

- Let  $\mathcal{G}$  be the associative graded algebra spanned by  $\{x_{\gamma}, \gamma \in \Gamma\}$ with  $x_{\gamma}x_{\gamma'} = (-y)^{\langle \gamma, \gamma' \rangle}x_{\gamma+\gamma'}$ , where  $\langle \gamma, \gamma' \rangle = \sum_{(i \to j) \in Q_1} (n'_i n_j - n_i n'_j)$ .
- Let  $G = \lim_{k \to \infty} \exp(\mathcal{G}_k)$  where  $\mathcal{G}_k = \mathcal{G}/\{x_{\gamma}, \sum_i n_i \leq k\}$ .
- For  $\gamma$  primitive and  $\psi \in \mathbb{R}$ , define the active ray as the locus in  $S_{\psi} = \{Z : \Gamma \to \mathbb{H}^n, \operatorname{Im}(e^{-i\psi}Z(\gamma_i)) > 0\}$

 $\mathcal{R}_{\psi}(\gamma) = \{ Z : \operatorname{Re}(e^{-\mathrm{i}\psi}Z(\gamma)) = 0, \exists k \geq 1\Omega_{Z}(k\gamma) \neq 0 \}$ 

endowed at any point  $Z \in \mathcal{R}_{\psi}(\gamma)$  with the automorphism

$$\mathcal{U}_{Z}(\gamma) = \exp\left(\sum_{k=1}^{\infty} \frac{\bar{\Omega}(k\gamma, y)}{y^{-1} - y} x_{k\gamma}\right) = \operatorname{Exp}\left(\sum_{k=1}^{\infty} \frac{\Omega(k\gamma, y)}{y^{-1} - y} x_{k\gamma}\right)$$

- The scattering diagram D<sub>ψ</sub> = {R<sub>ψ</sub>(γ), γ ∈ Γ<sub>prim</sub>} is consistent: for any path [0, 1] → ℍ<sup>n</sup> crossing R<sub>ψ</sub>(γ<sub>a</sub>) at t = t<sub>a</sub>, ∏<sub>i</sub> U<sub>σ(t<sub>a</sub>)</sub>(γ<sub>a</sub>)<sup>ε<sub>a</sub></sup> = 1
- Let θ<sub>i</sub> = Re(e<sup>-iψ</sup>Z(γ<sub>i</sub>)). For ψ = arg Z(γ) π/2, the semi-stability condition reduces to King's stability condition, (θ, γ') ≤ 0 for any R' ⊂ R. Let π : ℍ<sup>n</sup> → ℝ<sup>n</sup> be the projection Z ↦ θ.
- The scattering diagram π(D<sub>ψ</sub>) = ∪<sub>γ</sub> {θ : (θ, γ) = 0, Ω<sub>θ</sub>(γ) ≠ 0} is a complex of convex rational polyhedral cones. [Bridgeland'16]
- It is uniquely determined by the initial rays, i.e. those which contain the self-stability condition  $\theta = \langle -, \gamma \rangle$ . [Kontsevich Soibelman]

- 4 目 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 1 4 H 2 4 H 2 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H 1 4 H

#### Scattering diagram for Kronecker quiver



 $\theta_1 > 0, \theta_2 < 0: \quad \dim \mathcal{M} = mn_1n_2 - n_1^2 - n_2^2 + 1$ 



• Near the orbifold point  $\tau_o = -\frac{1}{2} + \frac{i}{2\sqrt{3}}$ , the BPS spectrum is governed by a quiver with potential:



More precisely, Z<sub>τ</sub>(γ<sub>i</sub>) = <sup>1</sup>/<sub>3</sub> + O(τ − τ<sub>o</sub>), so the heart A<sub>τ</sub> is related to the category of quiver representations by tilting Z → iZ. To ensure Im[e<sup>-iψ</sup>Z(γ<sub>i</sub>)] > 0, take -<sup>π</sup>/<sub>2</sub> < ψ < 0.</li>

< ロ > < 同 > < 回 > < 回 > < 回 > <

## Initial data for the orbifold quiver

Thm (Beaujard Manschot BP'20; P.Descombes'22): The initial rays are  $\mathcal{R}(\gamma)$  with  $\gamma \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (n, n, n)\}$ 

- For *R* a stable representation with  $\gamma \neq (n, n, n)$ , all cycles vanish.
- In chamber  $\theta_1 > 0, \theta_3 < 0$ , all arrows  $c_k = 0$
- The moduli space  $\mathcal{M}$  of representations of Beilinson quiver  $(a_i, b_j)$  with relations  $\partial_{c_k} W = 0$  is cut out by  $3n_1n_3$  relations in a smooth space of dimension  $3n_1n_2 + 3n_2n_3 n_1^2 n_2^2 n_3^2 + 1$
- These relations intersect transversally, otherwise there would exist non-zero  $\tilde{c}_k : V_3 \to V_1$  such that  $(a_i, b_j, \tilde{c}_k)$  is a stable representation of (Q, W).
- Hence dim  $\mathcal{M} = 3n_1n_2 + 3n_2n_3 3n_1n_3 n_1^2 n_2^2 n_3^2 + 1 = 1 \frac{1}{2}[(n_1 n_2)^2 + (n_2 n_3)^2 + (n_3 n_1)^2] 2n_1(n_3 n_2) 2n_3(n_1 n_2)$
- For self-stability condition θ<sub>1</sub> > 0, θ<sub>3</sub> < 0 implies n<sub>1</sub>, n<sub>3</sub> > n<sub>2</sub> so dim M < 0 except for (1, 0, 0), (0, 1, 0), (0, 0, 1).</li>

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

#### Orbifold scattering diagram



## A 2D slice of the orbifold scattering diagram



 $\theta_1 = u - v\sqrt{3} - \frac{1}{3}, \theta_2 = -2u - \frac{1}{3}, \theta_3 = u + v\sqrt{3} - \frac{1}{3}, \quad \theta_1 + \theta_2 + \theta_3 = -1$ 

## A 2D slice of the orbifold scattering diagram



B. Pioline (LPTHE, Paris)

## Attractor Flow Trees for $\gamma = (n - 1, n, n) = [1, 0, 1 - n)$



 $\Omega(n-1, n, n) = 3, 9, 22 = 13 + 9, 51 = 15 + 9 + 27$ , respectively

# Embeding the quiver scattering diagram inside $\Pi$ ?

- Recall that the King stability parameters (rescaled such that  $\theta_1 + \theta_2 + \theta_3 = -1$ ) are given by  $\theta_i = \frac{\text{Re}(e^{-i\psi}Z(\gamma_i))}{\cos \psi}$ .
- Parametrizing as before

$$\theta_1 = u - v\sqrt{3} - \frac{1}{3}, \quad \theta_2 = -2u - \frac{1}{3}, \quad \theta_3 = u + v\sqrt{3} - \frac{1}{3}$$

and expanding at first order near  $\tau_o$ , we can relate

$$au \simeq au_o - rac{2\mathrm{i}\sqrt{3}}{C( au_o)} e^{\mathrm{i}\psi}(u+\mathrm{i}v)\cos\psi$$

As  $\psi \to -\frac{\pi}{2}$ , all scatterings take place near  $\tau_o$ .

 Q: Where do initial rays come from in the full scattering diagram ? Do outgoing rays ever escape to the large volume region ?



 $Z_{\tau}(\gamma) = -rT_D(\tau) + dT(\tau) - ch_2$  $\begin{pmatrix} T \\ T_D \end{pmatrix} = \begin{pmatrix} -1/2 \\ 1/3 \end{pmatrix} + \int_{\tau_0}^{\tau} \begin{pmatrix} 1 \\ u \end{pmatrix} C(u) \, \mathrm{d}u$ 

ъ

< D > < A > < B >

## Introduction

- 2 Stability conditions on local P<sup>2</sup>
- 3 Scattering diagram around the orbifold point
- Scattering diagram around the large volume point
- 5 Towards the exact scattering diagram

## Large volume scattering diagram

• In the large volume region,  $Z_{\tau}$  is well approximated by

$$Z_{(s,t)}(\gamma) = -rac{r}{2}(s+\mathrm{i}t)^2 + {\sf d}(s+\mathrm{i}t) - {\sf ch}_2 \; ,$$

with  $\tau = s + it$ ,  $A_s = \{E \rightarrow F\}$  with  $\mu(E) \le s, \mu(F) > s$ 

• Geometric rays are easy to describe for  $\psi = 0$ :

$$\operatorname{Re} Z_{(s,t)}(\gamma) = -\frac{r}{2}(s^2 - t^2) + ds - \operatorname{ch}_2, \quad \operatorname{Im} Z_{(s,t)}(\gamma) = t(d - rs)$$

hence vertical lines  $s = \frac{ch_2}{d}$  when r = 0, or branches of hyperbola asymptoting to  $t = \pm (s - \frac{d}{r})$ , for  $r \neq 0$  (degenerating to straight lines when  $\Delta = \frac{1}{2}d^2 - r ch_2 = 0$ )

Walls of marginal stability Im[Z(γ')Z(γ)] = 0 for ⟨γ, γ'⟩ ≠ 0 are half-circles.

## Large volume scattering diagram



- A useful physical analogy: think of  $\mathcal{R}(\gamma)$  as the worldline of a fictitious relativistic particle in two-dimensional Minkovski space (s, t), with mass  $m^2 = \Delta = \frac{1}{2}d^2 r \operatorname{ch}_2$ , electric charge r, immersed in a constant electric field !
- In particular, rays "stay inside the light-cone" and the electric potential  $\varphi_s(\gamma) = 2(d rs)$  increases along each ray.
- For  $\psi \neq 0$ , just rotate  $s \mapsto s t \tan \psi$ ,  $t \mapsto t / \cos \psi$ .

Theorem (Arcara, Bertram, Huizenga, Martinez, Wang, Maciocia'13): for fixed charge  $\gamma = [r, d, ch_2]$ ,

- There is a finite sequence of nested walls, along with a vertical wall at s = <sup>d</sup>/<sub>r</sub>.
- Outside the innermost wall,  $\Omega_{(s,t)}(\gamma)$  agrees with the DT invariant for the moduli space of Gieseker-semi-stable sheaves on  $\mathbb{P}^2$
- Across each wall, the moduli space *M*<sub>(s,t)</sub>(γ) undergoes birational transformation, until it becomes empty inside the innermost wall
- For  $\gamma_m = [1, m, \frac{1}{2}m^2]$ , the structure sheaf  $\mathcal{O}(m)$  (fluxed D4-brane in physics parlance) is stable whenever s < m; its homological shift  $\mathcal{O}(m)[1]$  is stable whenever s > m. Note that  $Z_{(m,0)}(\gamma_m) = 0$ .

A (1) > A (2) > A

## Large volume scattering diagram

Thm (Bousseau, 2019): the only initial rays are associated to  $\mathcal{O}(m)$  and  $\mathcal{O}(m)[1]$  emanating from s = m, t = 0, with index  $\Omega_*(\pm \gamma_m) = 1$ 



- The absence of incoming rays in intervals ]m, m + 1[ at t = 0 follows from quiver description.
- The scattering diagram can be regulated by using monotonicity of  $\varphi(\gamma) = 2(d sr)$  along the rays.

## Scattering diagram in x, y plane

• The scattering diagram was originally constructed in coordinates  $(x, y) = (s, \frac{1}{2}(t^2 - s^2))$ , where rays are straight lines.



 The same scattering diagram arises in the context of Gromov-Witten invariants on (P<sup>2</sup>, *E*) [Carl Pumperla Siebert]

## Scattering diagram in *x*, *y* plane (T. Graefnitz)

PIERRICK BOUSSEAU



2

## BPS indices from scattering sequences

- To compute Ω<sub>Z</sub>(γ) at (s, t) such that ReZ<sub>(s,t)</sub>(γ) = 0, one must find all sequences of scatterings of initial rays {k<sub>i</sub>O(m<sub>i</sub>), k<sub>i</sub>'O(m'<sub>i</sub>)[1]} which produce an elementary ray of charge γ passing through.
- Unlike for quivers, charge conservation is not sufficient to a finite number of possible splittings  $\gamma = \sum_{i} \gamma_{i}$ :

$$[r, d, c_2] = \sum_i k_i \left[1, m_i, \frac{1}{2}m_i^2\right] - \sum_j k'_j \left[1, m'_j, \frac{1}{2}m'_j^2\right]$$

- Causality restricts possible slopes  $s t \le m'_{min} < m_{max} \le s + t$
- Since  $\varphi_s(\gamma_m) \ge 1$  at the first scattering, one also has  $\sum_i k_i + \sum_j k'_j + 2(m_{\max} m'_{\min} + 1) \le \varphi_s(\gamma)$ .
- The contribution of each scattering sequence can be computed using the Attractor Flow Tree formula at each vertex.



- {{ $-3\mathcal{O}(-2), 2\mathcal{O}(-1)$ },  $\mathcal{O}$ }: 3 $\mathcal{O}(-2) \rightarrow 2\mathcal{O}(-1) \oplus \mathcal{O} \rightarrow E$  $K_3(2,3)K_{12}(1,1) \rightarrow -156$
- { $-\mathcal{O}(-3)$ , { $-\mathcal{O}(-1)$ , 2 $\mathcal{O}$ }}:  $\mathcal{O}(-3) \oplus \mathcal{O}(-1) \to 2\mathcal{O} \to E$  $K_3(1,2)K_{12}(1,1) \to -36$

Total: 
$$\Omega_\infty(\gamma) = -192 = GV_4^{(0)}$$



- {{ $-\mathcal{O}(-5), \mathcal{O}(-4)$ },  $\mathcal{O}(-1)$ }  $\mathcal{O}(-5) \rightarrow \mathcal{O}(-4) \oplus \mathcal{O}(-1) \rightarrow E$  $K_3(1,1)^2 \rightarrow 9$
- {{ $-\mathcal{O}(-4), \mathcal{O}(-3)$ }, { $-\mathcal{O}(-3), 2\mathcal{O}(-2)$ }}  $\mathcal{O}(-4) \oplus \mathcal{O}(-3) \rightarrow$  $\mathcal{O}(-3) \oplus 2\mathcal{O}(-2) \rightarrow E$  $K_3(1,1)^2 K_3(1,2) \rightarrow 27$

• 
$$\{-\mathcal{O}(-4), 2\mathcal{O}(-2)\}$$
  
 $\mathcal{O}(-4) \rightarrow 2\mathcal{O}(-2) \rightarrow E$   
 $K_6(1,2) \rightarrow 15$ 

Total:  $\Omega_{\infty}(\gamma) = 51 = \chi(\text{Hilb}_4 \mathbb{P}^2)$ 

< 同 > < 三 > < 三 >

## Introduction

- 2 Stability conditions on local  $\mathbb{P}^2$
- 3 Scattering diagram around the orbifold point
- Scattering diagram around the large volume point
- 5 Towards the exact scattering diagram

## Exact scattering diagram

- The full scattering diagram be invariant under the action of  $\Gamma_1(3)$ .
- Under τ → τ/(3nτ+1) with n ∈ Z, O → O[2n]. Hence we have an doubly infinite family of initial rays associated to O(m)[n] at τ = 0.



 All τ = p/q with q ≠ 0 mod 3 are related to τ = 0 by Γ<sub>1</sub>(3). Hence a similar set of ray originates from any such τ.

| $\tau$ | g                   | $\gamma_{\mathcal{C}}$ | $\Delta(\gamma_{C})$ | E                                                                       |
|--------|---------------------|------------------------|----------------------|-------------------------------------------------------------------------|
| 0      | 1                   | [1,0,1)                | 0                    | Ø                                                                       |
| 1/5    | $U^2 T^{-1}$        | -[5, 1, 6)             | 3/25                 | $E  ightarrow \Omega(2)[-1]  ightarrow \mathcal{O}^{\oplus 3}[2]$       |
| 1/4    | UT                  | [4, 1, 6)              | -3/32                | $E  ightarrow \mathcal{O}(1)  ightarrow \mathcal{O}^{\oplus 3}[3]$      |
| 2/5    | UT-2                | -[5, 2, 6)             | 12/25                | $E 	o \mathcal{O}(-2) 	o \mathcal{O}^{\oplus 6}$                        |
| 3/7    | $UT^{-1}VT$         | [7, 3, 10)             | 15/49                | $E  ightarrow \Omega(0)[1]  ightarrow \mathcal{O}^{\oplus 9}[1]$        |
| 1/2    | TVT                 | -[2, 1, 3)             | 3/8                  | Ω(2)[1]                                                                 |
| 4/7    | TVTUT <sup>-1</sup> | [7, 4, 12)             | 15/49                | $\mathcal{O}(1)^{\oplus 9}[-1] \rightarrow \Omega(4)[-1] \rightarrow E$ |
| 3/5    | TVT <sup>2</sup>    | -[5, 3, 8)             | 12/25                | $\mathcal{O}(1)^{\oplus 6} 	o \mathcal{O}(3) 	o E$                      |
| 3/4    | TVT <sup>-1</sup>   | [4, 3, 10)             | -3/32                | $\mathcal{O}(1)^{\oplus 3}[-3] 	o \mathcal{O}(0) 	o E$                  |
| 4/5    | $TV^2T$             | -[5, 4, 12)            | 3/25                 | $\mathcal{O}(1)^{\oplus 3}[-2] 	o \Omega(2)[1] 	o E$                    |
| 1      | T                   | [1, 1, 3)              | 0                    | $\mathcal{O}(1)$                                                        |

-

## Exact scattering diagram - $\psi = -\frac{\pi}{2}$

For ψ = ±<sup>π</sup>/<sub>2</sub>, the diagram D<sup>Π</sup><sub>ψ</sub> simplifies dramatically, since the loci ImZ<sub>τ</sub>(γ) = 0 are lines of constant s := ImT<sub>D</sub>/ImT = d/r, independent of ch<sub>2</sub>. They only collide at orbifold points



• Hence, there is no wall-crossing between  $\tau_o$  and  $\tau = i\infty$  when  $-1 \leq \frac{d}{r} \leq 0$ , which implies that the Gieseker index  $\Omega_{\infty}(\gamma)$  agrees with the index  $\Omega_{\theta}(\gamma)$  for the anti-self-stability condition  $\theta = -\langle -, \gamma \rangle$ 

Beaujard Manschot BP'20

## Scattering diagram in affine coordinates

• For  $-\frac{\pi}{2} < \psi \leq$  0, define affine coordinates

$$x = \frac{\operatorname{Re}\left(e^{-\mathrm{i}\psi}T\right)}{\cos\psi}, \quad y = -\frac{\operatorname{Re}\left(e^{-\mathrm{i}\psi}T_{D}\right)}{\cos\psi}, \quad \mathcal{V}_{\psi} := \mathcal{V}\tan\psi$$

such that geometric rays are straight lines  $ry + dx = ch_2$ . Let  $\mathcal{V} = \text{Im}T(0) = \frac{27}{4\pi^2} \text{ImLi}_2(e^{2\pi i/3}) \simeq .0462758.$ 

- Initial rays associated to  $\pm O(m)$  are tangent to  $y = -\frac{1}{2}x^2$  and emitted at  $x_m = m + V_{\psi}$
- Initial rays associated to  $\pm \Omega(m+1)$  are tangent to  $y = -\frac{1}{2}x^2 \frac{3}{8}$ and emitted at  $x_m = n - \frac{1}{2} - 2V_{\psi}$
- The orbifold point  $\tau_o + n$  is mapped to  $x_n = n \frac{1}{2}$  along the parabola  $y = -\frac{1}{2}x^2 \frac{5}{24}$

< 🗇 > < 🖻 > <

## **Critical phases**

• The coordinates (x, y) are related to (u, v) near  $\tau_o$  via  $u = y - \frac{1}{2}x + \frac{1}{12}, v = -\frac{1}{2\sqrt{3}}(x + \frac{1}{2})$ . In particular, initial rays of the orbifold scattering diagram start from finite distance  $\simeq V_{\psi}$  !



- For |V<sub>ψ</sub>| < 1/2, only rays O(m) and O(m)[1] escape to τ = i∞, as in the large volume scattering diagram.
- For  $|\mathcal{V}_{\psi}| > 1/2$ , initial rays from  $\Omega(m+1)[1]$  can interact with  $\mathcal{O}(m)$  and  $\mathcal{O}(m-1)[2]$  near the orbifold point  $\tau_o + m$ , and produce rays which escape towards the large volume region.
- The topology of the trees jumps for a discrete set of phases  $|\mathcal{V}_{\psi}| = \frac{F_{2k} + F_{2k+2}}{2F_{2k+1}} \in \{\frac{1}{2}, 1, \frac{11}{10}, \frac{29}{26}, \frac{19}{17}, \dots \rightarrow \frac{1}{2}\sqrt{5}\}.$

### Exact scattering diagram - $\psi = 0$



-

・日・ ・ ヨ・ ・

## Exact scattering diagram, varying $\psi$





 $\gamma = [1, 0, 1) = \operatorname{ch} \mathcal{O}$ :



#### Composite flow trees



 $\{\{\{2\mathcal{O}(-1)[1], \Omega(1)\}, \{4\mathcal{O}[1], \{3\Omega(2), \mathcal{O}(1)[-1]\}\}\}, \{3\mathcal{O}(1), \{\Omega(2), 2\mathcal{O}[1]\}\}$ 

$$\psi = -1.2$$

B. Pioline (LPTHE, Paris)

-

< A >

- Scattering diagrams appear to be the proper mathematical framework for the attractor flow tree formula in the case of local CY3, due to holomorphy of  $Z(\gamma)$ .
- They provide an effective way of computing (unframed) BPS invariants in any chamber, and a natural decomposition into elementary constituents. Mathematically, different trees should correspond to different strata in *M<sub>Z</sub>*(*γ*).
- It would be interesting to extend this description to other toric CY3, such as local del Pezzo surfaces.
- For a compact CY3, arg Z(γ) is no longer constant along the flow and there can be attractor points with Ω<sub>\*</sub>(γ) ≠ 0 at finite distance in Kähler moduli space...

・ロト ・同ト ・ヨト ・ヨト

#### Thanks for your attention !



B. Pioline (LPTHE, Paris)