The global scattering diagram for local P2

Boris Pioline

Q SORBONNE
LPTHE D UNIVERSITE

THEORIQUE ET HAUTES ENERGIES

Workshop on BPS states, mirror symmetry, and exact WKB ||
Sheffield, 07/09/2022

Work in progress with Pierrick Bousseau, Pierre Descombes and Bruno Le Floch

B. Pioline (LPTHE, Paris) Scattering on local P? 07/09/2022 1/48



My amazing co-authors

B. Pioline (LPTHE, Paris) Scattering on local P? 07/09/2022 2/48



Introduction

@ X = Kpz is one of the simplest example of CY 3-folds

@ BPS states in type /IA/ X are described by objects in
C = DPCoh(X)

@ Stable objects are counted by the Donaldson-Thomas invariants
Q. (v) with vy € K(X) and o € StabC

@ Physicists mostly care about the slice of I1 stability conditions
M C StabC, isomorphic to (universal cover of) Kahler moduli
space Mg(X), defined by VHS on the mirror Y.

@ In general, dim¢ M = bo(X) is less than dim¢[StabC/GL(2,R)*]
= beven(X) — 2, but the two agree for X = Ks for any complex
surface S.
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Scattering diagrams

@ The scattering diagram D,, C StabC is (roughly) the union over
v € K(X) of active rays

Ry(v) ={arg Z;(7) = ¢ + 5 ,Qs(7) # 0}
equipped with some element U, () in some pro-unipotent group
keeping track of Q, ().

@ The consistency of D, allows to compute all Q,(v) from initial
rays.

@ Scattering diagrams appear to be the correct mathematical
framework for attacking the Split Attractor Flow Tree Conjecture
[Denef00], at least for local CY3 such that Z, is holomorphic on Il
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Attractor Flows

@ Attractor flow of charge ~ along N: ‘fi—f — —go;|Z(~)2

@ |Z(7)|? decreases along the flow, until it reaches a local minimum
at z = z.(), or hits the boundary of I. The attractor index is
Qi(7) = Qz,(1)(7) (There could be different basins of attraction)

@ A split attractor flow tree is a rooted binary tree T, decorated with
charges . along edges, embedded in 1 along the flow lines of
|Z(ve)| along each edge, satisfying at each vertex

@ charge conservation: v,y = Vi (v) + VARW)
© phase alignment:

Im[Z, (v.v))Zv(vR(v))] = 0,Re[Zy (v1(v))Zv(VR(v))] > O
Q stability: (1), Yaw)) Im[Zpv) (Y2(v)) Zov) (YR(1))] > O

B. Pioline (LPTHE, Paris) Scattering on local P? 07/09/2022 5/48



Split Attractor Flow Tree Conjecture

@ Let 7({i}, z) the set of trees rooted at z, with leaves of charge ;,
and let Q(v) :== >, %Q(’y/k) be the rational DT invariants.

@ The Split Attractor Flow Tree Conjecture roughly says

1
Qz(y) = Z Aut({y,})( Z HVLv)VR )H

Y= TeT({vi},z) veVr i
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Attractor flow trees and scattering diagrams

@ On alocal CY, holomorphy of Z implies that arg Z(~) is conserved
along the flow. Hence flow lines lie along rays R(y) with
argZ(v) =¢+3

@ Vertices lie at the intersection of Ry (v.(v)) and Ry (vr(v))

@ Holomorphy of Z also implies that there are no local minima of
|Z(7)|2, except on boundary or at points where Z(y) = 0

@ When dim¢ M = 1, flow trees essentially coincide with scattering
sequences of initial rays in D, N !

B. Pioline (LPTHE, Paris) Scattering on local P? 07/09/2022 7/48



Towards the scattering diagram for Kpe

@ Our aim is to construct the scattering diagram Dﬂ for
C = DP Coh K2, and use it to demonstrate the Split Attractor Flow
Tree Conjecture in that simple case.

@ We build on /Bridgelana'16] on scattering diagrams for quivers with
potential, and jBousseau’19] for the scattering diagram for coherent
sheaves on PP2.

@ This construction provides an algorithm to compute BPS indices
for local P? at any point in Stab C, and new insights on the
microscopic structure of BPS states (BPS dendroscopy)

@ Hopefully similar ideas can be used for other local CY3, and
perhaps compact CY3.
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@ !ntroduction

© stability conditions on local P2

e Scattering diagram around the orbifold point

0 Scattering diagram around the large volume point

6 Towards the exact scattering diagram
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© stability conditions on local P2
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Stability conditions on local IP?

@ The category C = D? Coh K- is graded by I' = 73
Ew~y(E)=[r,d,x), x=r+3d+chy

@ A stability condition ¢ is a pair (Z,.A) such that
@ Z:1 — Clinear map
@ A heart of t structure
© V0 +#E c A ImZ(E) > 0or (ImZ(E) = 0 and Re(Z) < 0)
© Harder-Narasimhan + support properties
@ StabC/C* is a complex manifold of dim 2, parametrized locally by
(T, Tp) such that Z(y) = —rT + dTp — chy
ImTD

@ Since ImZ(v) = rimT(p — s) with = ¢ and s = ™2, we can
take A = {E — F} with u(E) < sand u(F) > s. [Bayer Macri'11]
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Kahler moduli space

@ The Ké&hler moduli space of Kp: is the modular curve IH/T'1(3)
parametrizing elliptic curves with level structure.

@ It admits two cusps at the large volume and conifold points, and

one orbifold point 7o = —3 + 5= of order 3.
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[1 stability slice inside Stab(C)

@ The universal cover of 1 is embedded in Stab(C)/C* via
Z;(7) = =rTp(7) + dT(r) — chy

(3)-(38)+ (e

o= 1052

@ The group '1(3) acts by auto-equivalences of Stab(C), generated
by T:E— E(1)=E®Oxand V: E: STo(E)—the
Seidel-Thomas twist with respect to the spherical object O = Opz

1 1 0 0 1 r d c 0 r
( T) — ( m d c¢ T , d — b a o0 d
To mp b a To cho m  mp 1 cho
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[ stability slice inside Stab(C)/GL(2,R)*

S=mT 0 9T T TmT T2 )

r

5(s+ it)? 4+ d(s + it) — chy

Z(y) =~ (rq —chp) +i(d — sr) ~
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e Scattering diagram around the orbifold point
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Quivers with potential

@ Let (Q, W) be a quiver with potential, J(Q, W) the Jacobian path
algebra CQ/0w, A the Abelian category of representations of
J(Q, W), graded by the dimension vector v € I = N,

@ Stability conditions are parametrized by Z(~;) € H for simple
representations attached to the node J.

@ Let Mz(v) be the moduli space of semi-stable representations
with dimension vector ~ (i.e. arg Z(y') < arg(Z,) for any E’ C E),
and Qz() its motivic DT invariant. Informally,

Qz(y,y) = (=) MMz 32 bn(Mz(7))(=y)".
° LetQz(1.y) = Yy, k&%%&) 2(7/k, y¥) be the rational DT
invariant.
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Stability scattering diagram

@ Let G be the assomatwe graded algebra spanned by {x,,y € I'}
with Xy Xy = ( y) ") Xy++/ where

() = Ximpea (Minj — nim).
@ Let G = limy_,, exp(Gk) where Gy = G/{xy,>; nj < k}.
@ For v primitive and ¢ € R, define the active ray as the locus in
Sy ={Z:T - H" Im(e " ¥Z(v;)) > 0}
Ry(7) = {Z : Re(67"Z(v)) = 0,3k > 1Qz(kv) # 0}

endowed at any point Z € R(y) with the automorphism

Q(kv.y) — Q(kv,y)
Z/l():exp(E = 7>—Ex (E ——= x7>
z\Y pr y 1 ., —y Xk 1Y) p y 1 y k

@ Elementary ray: Ry (v) = {Re(e7¥Z(v)) = 0,Qz(7) # 0}

{Re(
equipped with Z/z(v) = exp (%XV)
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Stability scattering diagram

@ The scattering diagram Dy = {Ry(7),v € Mpim } is coOnsistent: for
any path [0, 1] — H" crossing Ry(va) at t = ta, [1; Uy (1,)(7a) = 1

@ Let0; = Re(e ¥ Z(y;)). For ¢ = arg Z(y) — %, the semi-stability
condition reduces to King’s stability condition, (6,~’) < 0 for any
R C R. Let 7 : H" — R" be the projection Z — 6.

@ The scattering diagram 7(Dy) = U,{0 : (6,7) = 0,Q¢(y) # 0} is a
complex of convex rational polyhedral cones. [Bridgeland’16]

@ ltis uniquely determined by the initial rays, i.e. those which
contain the self-stability condition 8 = (—, ). [Kontsevich Soibelman]
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Scattering diagram for Kronecker quiver

°°

01> 0,0, <0: dimM=mnin, —ns —n3+1

Y1 71 71

72 2 2

m=1 m=2 m=3
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@ Near the orbifold point 7o = —3 + 5=, the BPS spectrum is
governed by a quiver with potential:

E, = O 1 =1[1,0,0]
E, = 9(1)[1]’ V2 = [_2’ 1’%]
Es = O(-1)[2] wa=[1.—1,3
r= 2no — Ny — N3
= n3 — nNo
W = S X, YiZi o= (et )

@ More precisely, Z,(v;) = § + O(7 — 7o), s0 the heart A, is related
to the category of quiver representations by tilting Z — iZ. To
ensure Im[e~ " Z(v;)] > 0, take —F < ¢ < 0.
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Initial data for the orbifold quiver

Thm (Beaujard Manschot BP’20; P.Descombes’22): The initial rays are
R(vy) with vy € {(1,0,0),(0,1,0),(0,0,1),(n,n,n)}
@ For R a stable representation with v # (n, n, n), all cycles vanish.
@ In chamber 6y > 0,05 < 0, all arrows ¢, =0
@ The moduli space M of representations of Beilinson quiver (a;, b;)

with relations d., W = 0 is cut out by 3nyng relations in a smooth
space of dimension 3nyny + 3nong — N2 — 3 — N3 + 1

@ These relations intersect transversally, otherwise there would exist
non-zero ¢ : V3 — V4 such that (&;, b;, Cx) is a stable
representation of (Q, W).

@ Hence dim M = 3nyny +3nong —3ning —nZ —ng —n3 +1 =
1= 3[(n —n2)2+(n2—n3)2+(n3—ny)?]—2ny (N3 —np) —2n(ny — p)

@ For self-stability condition 6y > 0,63 < 0 implies ny, n3 > n, so
dim M < 0 except for (1,0,0),(0,1,0),(0,0,1).
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Orbifold scattering diagram
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A 2D slice of the orbifold scattering diagram

Or=u—vV3-3.0o=—-2u—% 03=u+vV3-1, O1+02+03=—1
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A 2D slice of the orbifold scattering diagram
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Attractor Flow Trees forv = (n—1,n,n) =[1,0,1 — n)

Q(n—1,n,n)=3,9,22=13+9,51 = 15 + 9 4 27, respectively
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Embeding the quiver scattering diagram inside 1 ?

@ Recall that the King stability parameters (rescaled such that
01 + 02 + 63 = —1) are given by 0; = 7Re(e;;zi(7’)).

@ Parametrizing as before
br=u-vV3-1, fo=-2u-3, O3=u+vV3-}]
and expanding at first order near 7,, we can relate

B 2iv3
C(7o)

T > To

e¥(u+iv) cos
As ¢ — — 7%, all scatterings take place near 7.
2

@ Q: Where do initial rays come from in the full scattering diagram ?
Do outgoing rays ever escape to the large volume region ?
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Intermission

Z(y) = —rTp(r) + dT(7) — chy

(3)- (18) [ () o
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0 Scattering diagram around the large volume point
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Large volume scattering diagram

@ In the large volume region, Z; is well approximated by

r . .
Zisp(v) = —5(3 +it)® + d(s +it) — chy ,

with 7 = s +it, As = {E — F} with u(E) < s,u(F) > s
@ Geometric rays are easy to describe for ) = 0:

r
RCZ(SJ)(”)/) = —5(32 — t2) 4 ds — Chg, ImZ(syt)(’y) = t(d — fS)

hence vertical lines s = % when r = 0, or branches of hyperbola
asymptoting to t = (s — 7), for r # 0 (degenerating to straight
lines when A = a2 — rchy = 0)

@ Walls of marginal stability Im[Z(+")Z(~)] = 0 for {~,~') # 0 are
half-circles.
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Large volume scattering diagram

@ A useful physical analogy: think of R() as the worldline of a
fictitious relativistic particle in two-dimensional Minkovski space
(s, t), with mass m? = A = Jd? — rchy, electric charge r,
immersed in a constant electric field !

@ In particular, rays "stay inside the light-cone" and the electric
potential ps(v) = 2(d — rs) increases along each ray.

@ For vy # 0, just rotate s — s — ttan, t — t/ cos .
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Large volume scattering diagram

Theorem (Arcara, Bertram, Huizenga, Martinez, Wang, Maciocia’'13):
for fixed charge v = [r, d, chy],
@ There is a finite sequence of nested walls, along with a vertical
wallats = 2.
@ Outside the innermost wall, (s 1)() agrees with the DT invariant
for the moduli space of Gieseker-semi-stable sheaves on P?
@ Across each wall, the moduli space Ms 1 (7y) undergoes birational
transformation, until it becomes empty inside the innermost wall

@ Forym=1[1,m, %mZ], the structure sheaf O(m) (fluxed D4-brane
in physics parlance) is stable whenever s < m; its homological
shift O(m)[1] is stable whenever s > m. Note that Z;, 0)(ym) = 0.
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Large volume scattering diagram

Thm (Bousseau, 2019): the only initial rays are associated to O(m)
and O(m)[1] emanating from s = m, t = 0, with index Q.(£ym) = 1

~y

'.\0)‘/ \'/"\0):(“‘\ /'.\f):i("‘\'/'%) :( ‘,: ‘\ /)2:“\
PPN
s0la) 00y xdo 00 0@

@ The absence of incoming rays in intervals |m,m+1[att =0
follows from quiver description.

@ The scattering diagram can be regulated by using monotonicity of
() = 2(d — sr) along the rays.
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Scattering diagram in x, y plane

@ The scattering diagram was originally constructed in coordinates
(x,¥) = (s, (2 — s?)), where rays are straight lines.

%

@ The same scattering diagram arises in the context of
Gromov-Witten invariants on (P2, £) [Carl Pumperla Siebert]
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Scattering diagram in x, y plane (T. Graefnitz)

2 PIERRICK BOUSSEAU
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BPS indices from scattering sequences

@ To compute Qz(7) at (s, t) such that ReZs () = 0, one must find
all sequences of scatterings of initial rays {k;O(m;), k;O(m})[1]}
which produce an elementary ray of charge ~ passing through.

@ Unlike for quivers, charge conservation is not sufficient to a finite
number of possible splittings v = >, i

[I’, d, Cz] = Zkl [17m/7 %mlz] - ijl [17m//" %mllz]
i J

@ Causality restricts possible slopes s —t < m/ . < Mya < S+t
@ Since ps(ym) > 1 at the first scattering, one also has
>iki+ 22 K A 2(Mnax — M + 1) < s(7).
@ The contribution of each scattering sequence can be computed
using the Attractor Flow Tree formula at each vertex.

B. Pioline (LPTHE, Paris) Scattering on local P? 07/09/2022 35/48



Flow trees for v = [0,4, 1)

@ {{-30(-2),20(-1)},0}:
30(-2) - 20(-1)» 0 — E
K3(2,3)K12(1,1) — —156

® {—0O(-3),{-0(-1),20}}:
O(-3)® O(-1) = 20 — E
K3(1,2)K12(1,1) — —36

Total: Qu(7) = —192 = GV

B. Pioline (LPTHE, Paris)

Scattering on local P? 07/09/2022 36/48



Flow trees for v = [1,0, —3)

® {{-0(-5),0(-4)}, O(-1)}
O(-5) = O(-4)80(-1) » E
K3(1,1)2 =9

4

O(—-4)® O(-3) —
O(-3)®20(-2) - E
Ks(1,1)?K3(1,2) — 27

@ {—0(—4),20(-2)}
O(-4) - 20(-2) - E
Ks(1,2) — 15

Total: Quo(7) = 51 = x(HilbsP?)
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6 Towards the exact scattering diagram
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Exact scattering diagram

@ The full scattering diagram be invariant under the action of I'{(3).

@ Under 7 g7 with n € Z, O — O[2n]. Hence we have an
doubly infinite family of initial rays associated to O(m)[n] at 7 = 0.

@ All 7 =p/qwithq# 0 mod 3 are related to 7 = 0 by I'1(3).
Hence a similar set of ray originates from any such r.
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Massless objects at conifold points

T g vc | Alve) E

0 1 [1,0,1) 0 O
1/5 U?T-'| —[5,1,6)| 3/25 E - Q(2)[-1] — 0%3[2]
1/4 uTt [4,1,6) | —3/32 E — O(1) = 0%3[3]
2/5 UT—2| —[5,2,6)| 12/25 E— O(-2) - 0%6
3/7| UT'VT| [7,3,10)| 15/49 E — Q(0)[1] = O%°[1]
1/2 TVT | —[2,1,3) 3/8 Q(2)[1]
4/7 | TVTUT-'| [7,4,12) | 15/49 | O(1)®°[-1] = Q4)[-1] — E
3/5 TVT?| -[5,3,8)| 12/25 0(1)% - 0@B) - E
3/4 TVT—'| [4,3,10)| —3/32 O(1)%3[-3] — O(0) —» E
4/5 TV2T | —[5,4,12) | 3/25| O(1)%3[-2] —» Q(2)[1] — E

1 T [1,1,3) 0 o(1)
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Exact scattering diagram - ¢ = —

s
2

@ For ¢ = £7, the diagram Dg simplifies dramatically, since the loci

ImZ, () = 0 are lines of constant s := If?an’ = %, independent of

cho. They only collide at orbifold points

@ Hence, there is no wall-crossing between 7, and 7 = ico when
—1 < ¢ <0, which implies that the Gieseker index Q..(v) agrees
with the index Qy() for the anti-self-stability condition 6 = —(—, )

Beaujard Manschot BP’20
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Scattering diagram in affine coordinates

@ For -3 < ¢ <0, define affine coordinates

_ Re (e7¥T) _ Re (e7¥Tp) Y, = Vian

- cosy Y= cosy VT
such that geometric rays are straight lines ry + dx = ch,. Let
V =ImT(0) = Z5ImLiy(€?/3) ~ .0462758.

@ Initial rays associated to =O(m) are tangent to y = —%xz and
emitted at x, = m+ V),

@ Initial rays associated to £Q(m + 1) are tangent to y = —%xz -3
and emitted at X, = n— 5 — 2V,

w

@ The orbifold point 7, + nis mapped to x, = n — % along the

parabola y = —1x2 — 2
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Critical phases

@ The coordinates (x, y) are related to (u, v) near 7, via
U=y~ X+ 13,V =—5l=(x+3). Inparticular, initial rays of the
orbifold scattering diagram start from finite distance ~ V,;, !

' 2
' '
' '
' '
' '
' '
' '
N

1

'

'

71

@ For |Vy| < 1/2, only rays O(m) and O(m)[1] escape to 7 = ico, as
in the large volume scattering diagram.

@ For |Vy| > 1/2, initial rays from Q(m+ 1)[1] can interact with O(m)
and O(m — 1)[2] near the orbifold point 7, + m, and produce rays
which escape towards the large volume region.

@ The topology of the trees jumps for a discrete set of phases

Fo+F: 14 11 29 19 1
Vgl = Fetfoce (1 4 11 28 18 1B}
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Exact scattering diagram - ¢) = 0




Exact scattering diagram, varying ¢

v=10,1,1) =chO¢:

~v=[1,0,1) = chO:
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Composite flow trees

{ A0 AS0(2), O 111 {30(1), {2(2), 20[1]}

Y=-12
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Conclusion - outlook

@ Scattering diagrams appear to be the proper mathematical
framework for the attractor flow tree formula in the case of local
CY3, due to holomorphy of Z(~).

@ They provide an effective way of computing (unframed) BPS
invariants in any chamber, and a natural decomposition into
elementary constituents. Mathematically, different trees should
correspond to different strata in Mz(v).

@ It would be interesting to extend this description to other toric CY3,
such as local del Pezzo surfaces.

@ For a compact CY3, arg Z(~) is no longer constant along the flow
and there can be attractor points with ,(~) # 0 at finite distance
in K&hler moduli space...
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Thanks fo attention !
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