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Introduction

BPS states form a rich and tractable sector in string vacua with
N = 2 supersymmetry. They saturate the BPS bound
M(γ) ≥ |Zz(γ)|, where the central charge Zz ∈ Hom(Γ,C) is linear
in the electromagnetic charge, depending on the moduli z.
As a result, BPS states preserve N = 1 supersymmetry, and are
robust under variations of z. The BPS index Ωz(γ) provides a
microscopic underpinning of the entropy of BPS black holes.
In type IIA string theory compactified on a CY3-fold X , BPS states
are described by stable objects in the derived category of coherent
sheaves C = DbCoh(X ), with charge γ = chE ∈ Heven(X ,Q).
The BPS index coincides with the Donaldson-Thomas invariant
Ωσ(γ) with respect to a stability condition σ ∈ Stab C, restricted to
the ‘physical’ slice σ(z) ∈ Π ⊂ Stab C, with Π ∼ M̃K .
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Introduction

Ωσ(γ) is locally constant on Stab C, but can jump across real
codimension one walls of marginal stability W(γ, γ′), where the
phases of the central charges Zσ(γ) and Zσ(γ′) become aligned,
making the decay γ → (γ′) + (γ − γ′) energetically possible.
The jump of Ωz(γ) across the wall is given by a universal
wall-crossing formula [Kontsevich Soibelman’08, Joyce Song’08]. In the
simplest ‘primitive’ case, with γ′′ := γ − γ′,

Ω+(γ)− Ω−(γ) = ⟨γ′, γ′′⟩Ω(γ′) Ω(γ′′)

where ⟨−,−⟩ is the antisymmetrized Euler form, or Dirac pairing.
When X admits a Cx action, one can define refined DT invariants
Ωσ(γ, y), reducing to usual DT as y → 1. A similar WCF holds,

Ω+(γ, y)− Ω−(γ, y) = y⟨γ′,γ′′⟩−y−⟨γ′,γ′′⟩

y−1/y Ω(γ′, y) Ω(γ′′, y)
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Scattering diagrams

Since BPS indices can only jump when the phases of the central
charges of the constituents are aligned, it is convenient to analyze
the BPS spectrum for fixed phase argZσ(γ).
For this purpose, define the scattering diagram Dψ = ∪γRψ(γ) as
the union of the codimension 1 loci (or rays ) in Stab C

Rψ(γ) = {σ ∈ Stab C, Ωσ(γ) ̸= 0, argZσ(γ) = ψ + π
2}

and equip every point z ∈ Rψ(γ) with an automorphism of the
quantum torus algebra (or a suitable completion thereof),

Uσ(γ) = Exp
(
Ωσ(γ,y)
y−1−y Xγ

)
, XγXγ′ = (−y)⟨γ,γ

′⟩Xγ+γ′

Equivalently, take Uσ(γ) = exp
(
Ω̄σ(γ,y)
y−1−y Xγ

)
where

Ω̄σ(γ) :=
∑

k |γ
y−1/y

k(yk−y−k )
Ωσ(

γ
k , y

k ) are the ’rational’ DT invariants.
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Consistent scattering diagrams

The WCF ensures that for any closed path σ(t) : [0,1] → Stab C
intersecting the rays Rψ(γi) at ti , the ordered product is trivial:

∏
i

Uσ(ti )(γi)]
ϵi = 1 , ϵi = sgn Re

[
e−iψ d

dt
Zσ(ti )

]
The WCF formula determines the BPS indices on outgoing rays
(ϵi = 1) in terms of BPS indices on incoming rays (ϵi = −1).
Locally, incoming rays ‘scatter’ to produce outgoing rays:

γ2

γ1

γ1+γ2

+ -

+ -

+
-

+
-

+
-

U(γ1)U(γ2) = U(γ2)U(γ1 + γ2)U(γ1)

⇓
Ω(γ1 + γ2) = ⟨γ1, γ2⟩Ω(γ1)Ω(γ2)
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Physics of scattering diagrams

The rays Rψ(γi) can be understood as walls of marginal stability
for framed BPS states attached to an external probe with
Z (γ∞) = iρeiψ, ρ→ ∞. The U(γ)’s control jumps of framed DT
invariants jumps, but conveniently encode unframed DT invariants.
Along any two-dimensional slice, rays can be identified with
gradient flow lines of |Zz(γ)| = Im(e−iψZz(γ)), oriented in the
direction where |Z (γ)| increases (opposite to attractor flow).
Any ray Rψ(γ) at any point z can be obtained (in multiple ways) by
iterated scattering from a set of initial rays R(γi), as predicted by
the Attractor Flow Tree Conjecture [Denef Green Raugas’01, Denef Moore’07,

Alexandrov BP’18, Argüz Bousseau ’20, Mozgovoy’20]

Ω̄z(γ) =
∑

γ=
∑
γi

gz({γi}, y)
Aut({γi})

∏
i

Ω̄⋆(γi , y)

where gz({γi}, y) is a sum over attractor flow trees, and Ω̄⋆(γi , y)
are the (rational, refined) attractor invariants.
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Outline

In this talk, I will construct (part of) the scattering diagram for the
simplest (yet non-trivial) examples of toric CY3-folds, namely
X = KS for S = P2 and S = F0 = P1 × P1.
For such toric threefolds, C = Db CohX is isomorphic to the
derived category D Rep(Q,W ) of representations for a certain
quiver with potential. I shall first construct the scattering diagram
DQ in the ‘quiver’ region in Stab C, by identifying the set of initial
rays / attractor invariants.
Next I will discuss the large volume slice, where the central charge
is given by the classical expression Zz(γ) = −

∫
S e−zH ch(E).

Finally, I will include corrections from worldsheet instantons and
discuss the scattering diagram on the physical slice Π,
interpolating between the quiver and LV scattering diagrams.
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Scattering diagram for quivers

Let (Q,W ) a quiver with potential, γ = (N1, . . . ,NK ) ∈ NQ0 a
dimension vector and θ = (θ1, . . . , θK ) ∈ RQ0 a stability parameter
(à la [King’93]) such that (θ, γ) :=

∑
Niθi = 0.

This data defines a supersymmetric quantum mechanics with 4
supercharges, gauge group G =

∏
i U(Ni), superpotential W , FI

parameters θi . SUSY ground states are harmonic forms on

Mθ(γ) = {
∑
a:i→j

|Φa|2 −
∑
a:j→i

|Φa|2 = θi , ∂ΦaW = 0}/G

Mathematically, Mθ(γ) is the moduli space of θ-semi-stable
representations of (Q,W ) (i.e. (θ, γ′) ≤ (θ, γ) for any subrep) and
the refined BPS index Ωθ(γ, y) is (roughly) its Poincaré polynomial.
Ωθ(γ, y) may jump on real codimension 1 walls when the
inequality is saturated (and on complex codimension 1 loci when
W is varied, but we shall keep W fixed) .
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Scattering diagram for quivers

The BPS indices are conveniently encoded in the stability
scattering diagram D(Q,W ) [Bridgeland’16], defined as the union of
the real codimension-one rays {R(γ), γ ∈ NQ0}

R(γ) = {θ ∈ RQ0 : (θ, γ) = 0, Ωθ(γ) ̸= 0}

Each point along R(γ) is equipped with an automorphism of the
quantum torus algebra,

Uθ(γ) = Exp
(

Ωθ(γ)
y−1−y Xγ

)
, XγXγ′ = (−y)⟨γ,γ

′⟩Xγ+γ′

where ⟨γ, γ′⟩ :=
∑

a:i→j(NiN ′
j − NjN ′

i ).
The WCF ensures that the diagram is consistent: for any generic
closed path P : t ∈ [0,1] → RQ0 ,

∏
i Uθ(ti )(γi)

ϵi = 1
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Attractor invariants for quivers

Initial rays are defined as those containing the self-stability
condition [Manschot BP Sen’13; Bridgeland’16]

(θ⋆(γ), γ
′) = ⟨γ′, γ⟩ ⇔ θi = −

∑
a:i→j

Nj

Let Ω⋆(γ) := Ωθ⋆(γ)(γ) be the attractor invariant. All other
invariants are uniquely determined by consistency.
Easy fact: For quivers without oriented loops, the only
non-vanishing attractor invariants are supported on basis vectors
associated to simple representations, Ω⋆(γi) = 1. [Bridgeland’16]

More generally, Ω⋆(γ) = 0 unless the restriction Q′ of Q to the
support of γ is strongly connected (i.e. there is a path joining any
pair of nodes in Q′) [Mozgovoy BP’20]
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Scattering diagram for Kronecker quiver

n1 n2
m

θ1 > 0, θ2 < 0 : dimMθ(γ) = mn1n2 − n2
1 − n2

2 + 1

γ2

γ1

γ2

γ1

γ2

γ1

m=1 m=2 m=3
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Quivers for local CY3

Whenever a CY threefold X admits a (strong, full, cyclic)
exceptional collection E , the category Db CohX is isomorphic to
the category Db Rep(Q,W ) of representations of the quiver with
potential associated to E . [Bondal’90]

When X is toric, there is a simple prescription to obtain (Q,W )
from brane tilings/periodic quivers. Eg. for X = KP2 ,

n1

n2

n3

Xi Yj

Zk

W =
∑
ϵijkXiYjZk

γ := [r , c1, ch2]

γ1 = [−1,0,0]
γ2 = [2,−1,−1

2 ]

γ3 = [−1,1,−1
2 ]
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Attractor invariants for KP2

By studying expected dimension of the moduli space of
semi-stable representations Mθ(γ), [Beaujard BP Manschot’20]

conjectured that for quivers associated to Ext-exceptional
collections on local del Pezzo surfaces, the attractor index Ω⋆(γ)
vanishes unless γ = γi or γ lies in the kernel of the Dirac pairing,
⟨γ,−⟩ = 0.
This conjecture was tested and extended for general toric CY3
singularities in [Mozgovoy BP ’20, Descombes’21]. It is now a theorem, at
least for X = KP2 and KF0 [Descombes].
This allows to construct the quiver scattering diagram inductively,
and to describe any BPS state in terms of attractor flow trees.
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Quiver scattering diagram for KP2
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A 2D slice of the orbifold scattering diagram

Let Do be the restriction of D(Q,W ) to the hyperplane θ1 + θ2 + θ3 = 1:

γ1

γ2

γ3

+++

++-

+-+ -+-

-++

+--

--+
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A 2D slice of the orbifold scattering diagram

Let Do be the restriction of D(Q,W ) to the hyperplane θ1 + θ2 + θ3 = 1:

γ1

γ2

γ3

γ1+γ2

γ1+2γ2

2γ1+γ2

γ2+γ3

γ2+2γ3

2γ2+γ3

γ3+γ1
γ3+2γ12γ3+γ1
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A 2D slice of the orbifold scattering diagram

The full scattering diagram Do includes regions with dense set of rays:
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A 2D slice of the orbifold scattering diagram

The BPS index Ωθ(γ) for any γ can be obtained by listing scattering
sequences, or attractor flow trees:

γ1

γ2

γ3

γ1+γ2

γ1+2γ2

2γ1+γ2

γ2+γ3

γ2+2γ3

2γ2+γ3

γ3+γ1
γ3+2γ12γ3+γ1

γ1 + 2 γ2 + γ3
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Bridgeland stability conditions

More generally, Donaldson-Thomas invariants are defined in
Bridgeland’s framework of stability conditions on a triangulated
CY3 category C.
A stability condition is a pair σ = (Z ,A) where Z : Γ → C is a
linear map and A ⊂ C an Abelian subcategory (heart of
t-structure) satisfying various axioms, e.g. ImZ (γ(E)) ≥ 0 ∀E ∈ A.
The space of stability conditions Stab C is a complex manifold of
dimension dimK (C) = dimHeven

cpt (X ). For X = KS, d = b2(S) + 2.
Stab C admits a (right) action by autoequivalences of C, and a (left)
action of ˜GL(2,R)+ via orientation-preserving linear transf. of
(ReZ , ImZ ), reducing the dimension to b2(S) = dimMK . The
Ωσ(γ)

′s stay invariant, but the scattering diagram changes.
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Scattering diagrams on triangulated categories

As before, we define the scattering diagram Dψ(C) as the union of
codimension-one loci in Stab C,

Rψ(γ) = {argZσ(γ) = ψ+π
2 ,Ωσ(γ) ̸= 0} , Uσ(γ) = Exp

(
Ωσ(γ)
y−1−y Xγ

)
The WCF ensures that the diagram Dψ(C) is locally consistent at
each codimension-two intersection.
In the ‘quiver region’ of Stab C where the central charges Z (Ei) of
objects in an exceptional collection lie in a common half-plane, the
heart σ coincides (up to tilt) with the Abelian category of quiver
representations, and Dψ(C) coincides with the quiver scattering
diagram D(Q,W ) upon setting θi = −Re(e−iψZ (γi)).
For local CY3, this covers a finite region near the singular point,
but not the large volume region.
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Large volume scattering diagram for local P2

Consider the large volume slice with central charge

Z LV
(s,t)(γ) = −

∫
S

e−(s+it)H chE = −rTD + dT − ch2

with T = s + it ,TD = 1
2T 2. Set ψ = 0 for simplicity.

Since ReZ (γ) = 1
2 r(t2 − s2) + ds − ch2, each ray R0(γ) is

contained in a branch of hyperbola asymptoting to t = ±(s − d
r )

for r ̸= 0, or a vertical line s = ch2
d when r = 0.

Walls of marginal stability W(γ, γ′) are nested half-circles
centered on the real axis.

-6 -4 -2 2 4

1

2

3

4
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Large volume scattering diagram

The objects O(m) and O(m)[1] for any m ∈ Z are known to be
stable throughout the large volume slice [Arcara Bertram’13]. The
corresponding rays are 45 degree lines ending at s = m.
The region of validity of the orbifold exceptional collection (and its
translates) covers the vicinity of the boundary at t = 0, hence
those are the only initial rays. [Bousseau’19].

±𝓞-2 ±𝓞-1 ±𝓞 ±𝓞1 ±𝓞2

1
2

1

3
2
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Scattering diagram in affine coordinates

Actually, Bousseau used different coordinates such that rays become
line segments rx + dy − ch2 = 0. This works for any ψ:

x :=
Re(e−iψT)

cosψ , y := −Re(e−iψTD)
cosψ > −1

2x2

±𝓞-2

±𝓞-1

±𝓞

±𝓞1

±𝓞2

-2 -1 1 2

-2

-1

1
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Flow tree formula at large radius

This implies that all BPS states at large volume must arise as
bound states of pure D4 and anti D4-branes. How can one find
the possible constituents for given γ and (s, t) ?
Think of R(γ) as the worldline of a fictitious particle of charge r ,
mass M2 = 1

2d2 − r ch2 moving in a constant electric field. This
makes it clear that constituents must lie in the past light cone.
Moreover, the ‘electric potential’ φs(γ) = d − sr = ImZ (γ)/t
increases along the flow. The first scatterings occur after each
constituent kiO(mi) has moved by |∆s| ≥ 1

2 , by which time
φs(γi) ≥ |ki |/2.
Since φs(γ) is additive at each vertex, this gives a bound on the
number and charges of constituents contributing to Ω(s,t)(γ):∑

i

ki [1,mi ,
1
2

m2
i ] = γ , s − t ≤ mi ≤ s + t ,

∑
i

|ki | ≤ 2φs(γ)
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Flow trees for γ = [1,0,−3)

-O(-5) O(-4) O(-1)

-O(-4)

O(-3)

-O(-3)

2 O(-2)

-O(-4)

2 O(-2)

{{−O(−5),O(−4)},O(−1)}
K3(1,1)2 → 9
{{−O(−4),O(−3)},
{−O(−3),2O(−2)}}
K3(1,1)2K3(1,2) → 27
{−O(−4),2O(−2)}
K6(1,2) → 15

Total: Ω∞(γ) = 51 = χ(Hilb4P2)
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Large volume scattering diagram for local F0

For S = P1 × P1, the space of stability conditions (modulo
GL(2,R)+) is parametrized by the Kähler moduli T1,T2. We focus
on the canonical polarization where ImT1 = ImT2, and set
T1 = T = s + it ,T2 = T + m with m real.
The large volume slice is given by

Z LV
x ,t (γ) = −rT (T + m) + d1T + d2(T + m)− ch2

The geometric rays are similar as for local P2, with [r ,d , ch2]
replaced by [2r ,d1 + d2 − mr , ch2 −md2]. Set ψ = 0 for simplicity.
The objects O(d1,d2), O(d1,d2)[1] are stable throughout the large
volume slice [Arcara Miles’14]. The rays R0(O(d1,d2)) start at
s = min(d1 − m,d2) and bend to the left. Similarly,
R0(O(d1,d2)[1]) start at s = max(d1 − m,d2) and bend right.
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Large volume scattering diagram for local F0

The category Db CohX is isomorphic to the derived category of
representations for the quiver (Q,W ) (or one of its mutations)

n1 n2

n3n4

W =
∑

(αβ)∈S2
(γδ)∈S2

sgn(αβ) sgn(γδ)
Φα12 Φ

γ
23 Φ

β
34 Φ

δ
41

γ := [r ,d1,d2, ch2]

γ1 = [1,0,0,0]
γ2 = [−1,1,0,0]
γ3 = [−1,−1,1,1]
γ4 = [1,0,−1,0]
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The quiver (Q,W ) is valid near the orbifold point Conifold/Z2.
The validity of the mutated quiver (and its translates) near t = 0
ensure that the only initial rays in the large volume slice are
O(d1,d2) and O(d1,d2)[1] [Le Floch BP Raj’24]
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Initial rays for local F0 at large volume

In (x , t) coordinates, ψ = 0, m = 1/2:

O
(-
1,
-
1)
[1
]

O
(-
2,
-
1)
[1
]

O
(0,0)

O
(0,1

)

O
(1,0)

O
(2,0

)

O
(0
,-
1)
[1
]

O
(0
,-
2)
[1
]

[0
,0
,1
,0
]

[0
,1
,0
,0
]

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
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Initial rays for local F0 at large volume

In (x , y) coordinates, ψ = 0, m = 1/2:

±O(-1,-1)

±O(0,-1)

±O(0,0)

±O(1,0)

±O(1,1)

-1.5 -1.0 -0.5 0.5 1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

The infinite sets of rays originating from s ∈ Z and s = Z− m come
from the scattering of two rays R(γ1),R(γ2) with ⟨γ1, γ2⟩ = 2 below the
parabola !
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Kähler moduli space

Mirror symmetry selects a particular Lagrangian subspace
Π ⊂ Stab C in the space of Bridgeland stability conditions.
For local del Pezzo surfaces, the mirror CY3 is (a conic bundle
over) a genus one curve Σ. The D2 and D4 central charges
(Ti ,TD) are given by periods of a holomorphic differential with
logarithmic singularities, and satisfy Picard-Fuchs equations.
Rather than working with flat coordinates Ti , it is advantageous to
use (τ,mi) where τ parametrizes the Coulomb branch while mi
are gauge couplings/mass parameters in the 5D gauge theory.
Near the large volume point, mirror symmetry ensures that
Z (γ) ∼ −

∫
S e−J ch(E), up to Todd-class and worldsheet

instantons which may be absorved by ˜GL(2,R)+.
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Modularity in Kähler moduli space

In some cases, the monodromy group is a subgroup Γ ⊂ SL(2,Z),
and the universal cover of MK = H/Γ becomes the Poincaré
half-plane H. [Closset Magureanu’21; Aspman Furrer Manschot’21]

This happens for X = KP2 , where Γ = Γ1(3), and for X = KF0 at
special points m ∈ Z where Γ = Γ0(8). For generic m, Γ = Γ1(4)
with a square root branch cut.
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Central charge as Eichler integral

(∂τT , ∂τTD) are proportional to the periods (1, τ) of the mirror
curve. Integrating along a path from reference point o to τ , one
finds an Eichler integral representation(

T
TD

)
(τ) =

(
T
Td

)
(τo) +

∫ τ

τo

(
1
u

)
C(u) du

where C(τ) is a weight 3 modular form:

CP2 =
η(τ)9

η(3τ)3 , CF0 =
η(τ)4η(2τ)6

η(4τ)4

√
J4 + 8

J4 + 8 cosπm

Here J4(τ) = 8 +
(
η(τ)
η(4τ)

)8
is the Hauptmodul for Γ1(4). This

provides an computationally efficient analytic continuation of Zτ .
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Π-scattering diagram for local P2

The scattering diagram DΠ
ψ along the physical slice should

interpolate between DLV
ψ around τ = i∞ and Do around τ = τo,

and be invariant under the action of Γ1(3).
Under τ 7→ τ

3nτ+1 with n ∈ Z, O 7→ O[n]. Hence there is a doubly
infinite family of initial rays emitted at τ = 0, associated to O[n].

��

���

�

�[-�]
�[-�]

�[�] �[�]

�[�]
�[�]

Similarly, there must be an infinite family of initial rays coming from
τ = p

q with q ̸= 0 mod 3, corresponding to Γ1(3)-images of O,
where an object denoted by Op/q becomes massless.
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Π-scattering diagram for small ψ

For |ψ| small enough, the only rays which reach the large volume
region are those associated to O(m) and O(m)[1]. Thus, the
scattering diagram DΠ

ψ is isomorphic to DLV
ψ inside F and its

translates:
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Scattering diagram in affine coordinates

In affine coordinates (x , y) =
(

Re(e−iψT)
cosψ ,−Re(e−iψTD)

cosψ

)
, the initial

rays Rψ(O(m)) are still tangent to the parabola y = −1
2x2 at

x = m, but the origin of each ray is shifted to x = m + V tanψ
where V is the quantum volume

V = ImT (0) =
27
4π2 Im

[
Li2(e2πi/3)

]
≃ 0.463

The topology of DΠ
ψ jumps at a discrete set of rational values

V tanψ ∈ {F2k+F2k+2
2F2k+1

, k ≥ 0} = {1
2 ,1,

11
10 ,

29
26 ,

19
17 , . . .}

and a dense set of values in [
√

5
2 ,+∞) where secondary rays pass

through a conifold point.
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Affine scattering diagram, |V tanψ| < 1/2

±𝓞-2

±𝓞-1

±𝓞

±𝓞1

±𝓞2

-2 -1 1 2
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Π-scattering diagram, ψ = 0
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Π-scattering diagram, ψ = 0.3
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Π-scattering diagram, ψ = 0.6
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Π-scattering diagram, ψ = 0.8
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Π-scattering diagram, ψ = 0.824
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Π-scattering diagram, ψ = 0.825
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Π-scattering diagram, ψ = 0.9
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Π-scattering diagram, ψ = 1
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Π-scattering diagram, ψ = 1.137
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Π-scattering diagram, ψ = 1.139
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Π-scattering diagram, ψ = π/2
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Π-scattering diagram for ψ = ±π
2

For ψ = ±π
2 , the geometric rays {ImZτ (γ) = 0} coincide with lines

of constant ratio ImTD
ImT = d

r , independent of ch2:

Hence, there is no wall-crossing between τo and τ = i∞ when
−1 ≤ d

r ≤ 0, explaining why the Gieseker index Ω∞(γ) agrees
with the quiver index Ωc(γ) in the anti-attractor chamber.

Douglas Fiol Romelsberger’00, Beaujard BP Manschot’20
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Π-scattering diagram for KF0

For local F0, the Π-scattering diagram is complicated by branch
cuts and m-dependence. The quantum volume is now

T (0,m) = iV(m) =
2
π2

(
Li2(ieiπm/2)− Li2(−ieiπm/2)

)
In (x , y) coordinates, the origin of the initial rays is shifted by
∆x = tanψ ReV(m)− ImV(m). For ∆x small enough, the topology
is the same as for the LV diagram: (here m = 0.4, ψ = 0.4)
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Large volume scattering diagram for KF0

As ψ increases, some of the initial rays curl back to Γ0(4) images
of the LV point, while suitable homological shifts escape to infinity:
(here m = 0.4, ψ = 0.98)
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Large volume scattering diagram for KF0

The region around the branch point reproduces the quiver
scattering diagram, after unfolding:
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Conclusion - outlook

Scattering diagrams provide an efficient way to organize the
(unframed) BPS spectrum on local CY3 manifolds, and suggests a
natural decomposition into elementary constituents. What does it
mean mathematically?
The framed BPS invariants are constant in the complement of the
scattering diagram. It would be interesting to see how they
interpolate between DT/PT invariants at large volume and plane
partition counts near the orbifold point.
One could try to use the same techniques for toric CY4
singularities, for example KX where X is one of the 18 smooth
toric Fano 3-folds, such as P3,P2 × P1,P1 × P1 × P1...

B. Pioline (LPTHE, Paris) Scattering diagrams Utrecht, 25/1/2025 54 / 56



Scattering diagrams for toric CY4 ?

The dynamics of a D1-brane probing the CY4 singularity is
described by a (0,2) quiver gauge theory, with vector, chiral and
Fermi multiplets and relations (Q, J,E) encoded in a 3D-periodic
tiling, or brane brick [Franco Ghim Lee Seong, Yokoyama’15,Franco Seong’22].
These models presumably arise from strong full exceptional
collections of line bundles on X constructed in [Bernardi Tirabassi’10],
or mutations thereof, corresponding to trialities in the (0,2) gauge
theory [Gadde Putrov Gukov’13].
The Witten index of the quiver gauge theory is computable by
localization, provided the superpotential is generic [Hori Kim Yi’14].
What is its precise interpretation in DT4 theory ?
Presumably DT4-invariants can be encoded in a scattering
diagram, with rays equipped with an automorphism of Joyce’s
vertex Lie algebra. Can one use this to say something about
moduli spaces of Gieseker-stable sheaves on Fano threefolds ?
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Thanks for your attention !
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