BPS Dendroscopy on Local Calabi-Yau Threefolds

Boris Pioline

SORBONNE UNIVERSITÉ

String-Math 2022, 14/07/2022

Work in progress with Pierrick Bousseau, Pierre Descombes and Bruno Le Floch

$\delta \varepsilon v \delta \rho o v=$ tree

Dentrology

Dendrochronology

$\delta \varepsilon v \delta \rho о \sigma к о \pi 1 \alpha=$ analyzing the BPS spectrum in terms of attractor flow trees

Attractor flow trees on $K_{\mathbb{P}^{2}}, \gamma=[1,0,-3), \mathcal{M}=\mathrm{Hilb}_{4} \mathbb{P}^{2}$

Introduction

- In type IIA string theory compactified on a Calabi-Yau threefold X, the BPS spectrum consists of bound states of D6-D4-D2-D0 branes, described mathematically by objects E in the derived category of coherent sheaves $\mathcal{C}=D^{b} \operatorname{Coh}(X)$ [Douglas'01]
- The BPS index or Donaldson-Thomas invariant $\Omega_{z}(\gamma)$ counts stable states with charge $\gamma=\operatorname{ch} E \in H_{\text {even }}(X, \mathbb{Q})$ saturating the BPS bound $M(\gamma) \geq|Z(\gamma)|$, where $Z \in \operatorname{Hom}(\Gamma, \mathbb{C})$ depends on the complexified Kähler moduli $z \in \mathcal{M}$.
- $\Omega_{z}(\gamma)$ is locally constant on \mathcal{M}, but can jump across real codimension one walls of marginal stability $\mathcal{W}\left(\gamma_{1}, \gamma_{2}\right) \subset \mathcal{M}$, where the phases of the central charges $Z\left(\gamma_{1}\right)$ and $Z\left(\gamma_{2}\right)$ with $\gamma=m_{1} \gamma_{1}+m_{2} \gamma_{2}$ become aligned [Kontsevich Soibelman'08, Joyce Song'08]
- Physically, multi-centered black hole solutions (dis)appear across the wall [Denef Moore '07, ..., Manschot BP Sen '11].

BPS spectrum on local surfaces

- For a non-compact CY3 of the form $X=K_{S}$ where S is a complex Fano surface, there is an injection $\iota_{*}: D^{b} \operatorname{Coh}(S) \rightarrow D_{c}^{b}(X)$ lifting an object E with Chern character $\gamma=\left[r, d, \mathrm{ch}_{2}\right]$ to a bound state of r D4-branes wrapped on S, c D2-branes and c_{2} D0-branes.
- At large volume, the central charge is quadratic in complexified Kähler moduli $z^{a}=b^{a}+\mathrm{i} t^{a}$,

$$
Z(\gamma) \sim-\int_{S} e^{-z^{a} H_{a}} \operatorname{ch} E=-r z^{a} Q_{a b} z^{b}+z^{a} d_{a}-\operatorname{ch}_{2}
$$

$\Omega_{z}(\gamma)$ reduces to the Gieseker index $\Omega_{\infty}(\gamma)$, given (up to sign) by the Euler number of the moduli space of Gieseker semi-stable sheaves on S with Chern character γ.

- At finite volume, Z receives worldsheet instanton corrections computable by mirror symmetry. Can we determine $\Omega_{z}(\gamma)$ anywhere, and understand what are BPS states really "made of"?

Kähler moduli space of $K_{\mathbb{P}^{2}}$

- The Kähler moduli space of $K_{\mathbb{P}^{2}}$ is the modular curve $X_{1}(3)=\mathbb{H} / \Gamma_{1}(3)$ parametrizing elliptic curves with level structure. It admits two cusps $L V, C$ and one elliptic point o of order 3.
- The universal cover is parametrized by $\tau \in \mathbb{H}$:

$$
\begin{aligned}
Z_{\tau}(\gamma) & =-r T_{D}(\tau)+d T(\tau)-\mathrm{ch}_{2} \\
T & =\int_{\ell} \lambda \\
T_{D} & =\int_{\ell_{D}} \lambda
\end{aligned}
$$

λ holomorphic one-form with logarithmic singularities on \mathcal{E}_{τ}

Central charge as Eichler integral

- Since $\partial_{\tau} \lambda$ is holomorphic, its periods are proportional to $(1, \tau)$. Integrating on a path from o to τ, one finds the Eichler-type integral

$$
\binom{T}{T_{D}}=\binom{1 / 2}{1 / 3}+\int_{\tau_{0}}^{\tau}\binom{1}{u} C(u) \mathrm{d} u
$$

where $C(\tau)=\frac{\eta(\tau)^{9}}{\eta(3 \tau)^{3}}$ is a weight 3 modular form for $\Gamma_{1}(3)$.

- This provides an computationally efficient analytic continuation of Z_{τ} throughout \mathbb{H}, and gives access to monodromies:

$$
\tau \mapsto \frac{a \tau+b}{c \tau+d} \quad\left(\begin{array}{c}
1 \\
T \\
T_{D}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
m & d & c \\
m_{D} & b & a
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
T \\
T_{D}
\end{array}\right)
$$

where $\left(m, m_{D}\right)$ are period integrals of C from τ_{o} to $\frac{a \tau_{o}-b}{C \tau_{o}-d}$.

Central charge as Eichler integral

- At large volume, using $C=1-9 q+\ldots$ one finds

$$
T=\tau+\mathcal{O}(q), \quad T_{D}=\frac{1}{2} \tau^{2}+\frac{1}{8}+\mathcal{O}(q)
$$

- For τ_{2} large enough, one can use the $\widehat{G L(2, \mathbb{R})}+$ action on space of Bridgeland stability conditions to absorb the $\mathcal{O}(q)$ corrections:

$$
Z_{(s, t)}^{L V}(\gamma)=-\frac{r}{2}(s+\mathrm{i} t)^{2}+d(s+\mathrm{i} t)-\mathrm{ch}_{2}
$$

$$
s=\frac{\operatorname{Im} T_{D}}{\operatorname{Im} T}, \quad \mu=\frac{d}{r}
$$

$$
\frac{1}{2}\left(s^{2}+t^{2}\right)=-\frac{\operatorname{Im}\left(T \bar{T}_{D}\right)}{\operatorname{Im} T}
$$

$$
\mathcal{A}=\{E \xrightarrow{d} F, \mu(E)<\boldsymbol{s}, \mu(F) \geq \boldsymbol{s}\}
$$

[Bayer Macri'11]

Quiver for $K_{\mathbb{P} 2}$

- Near the orbifold point $\tau_{o}=-\frac{1}{2}+\frac{i}{2 \sqrt{3}}$, the BPS spectrum is governed by a quiver with potential:

$$
\begin{array}{cll}
E_{1}= & \mathcal{O} & \gamma_{1}=[1,0,0] \\
E_{2}= & \Omega(1)[1], & \gamma_{2}=\left[-2,1, \frac{1}{2}\right] \\
E_{3}= & \mathcal{O}(-1)[2] & \gamma_{3}=\left[1,-1, \frac{1}{2}\right] \\
& r= & 2 n_{2}-n_{1}-n_{3} \\
& d= & n_{3}-n_{2} \\
& c h_{2}= & -\frac{1}{2}\left(n_{2}+n_{3}\right)
\end{array}
$$

- The BPS index $\Omega_{\tau}(\gamma)$ coincides with the (signed) Euler number $\Omega_{\zeta}(\gamma)$ of the moduli space of King semi-stable representations of dimension $\gamma=\left(n_{1}, n_{2}, n_{3}\right)$, with FI-parameters $\theta_{i}=\operatorname{Im} Z_{\tau}\left(\gamma_{i}\right)$.

Attractor conjecture for $K_{\mathbb{P} 2}$

- In the chamber $\theta_{1}>0, \theta_{3}<0$, the arrows Z_{k} vanish in any stable representation, and (Q, W) reduces to the Beilinson quiver describing normalized torsion-free sheaves on \mathbb{P}^{2} :

$$
\epsilon_{i j k} X^{i} Y^{j}=0
$$

Douglas Fiol Romelsberger'00

- In [Beaujard BP Manschot'20], we showed that the attractor index $\Omega_{\star}(\gamma):=\Omega_{\langle\gamma,-\rangle}(\gamma)$ vanishes except for $\gamma=\gamma_{i}$ or $\gamma \propto \gamma_{1}+\gamma_{2}+\gamma_{3}$.
- Moreover, the anti-attractor index $\Omega_{x}(\gamma):=\Omega_{-\langle\gamma,-\rangle}(\gamma)$ coincide with the Gieseker index $\Omega_{\infty}(\gamma)$, provided $-r<d \leq 0$.
- A similar conjecture for $\Omega_{\star}(\gamma)$ holds for any toric CY3, giving in principle access to DT invariants $\Omega_{\zeta}(\gamma)$ for any $\zeta \in \mathbb{R}^{Q_{0}}$ [Mozgovoy BP'20; Descombes'21]

The Attractor Flow Tree formula for quivers

- The Attractor Flow Tree Formula expresses the BPS index $\Omega_{\theta}(\gamma)$ for any (generic) $\theta \in \mathbb{R}^{Q_{0}}$ in terms of attractor indices by summing over all possible flow trees: schematically,

$$
\Omega_{\theta}(\gamma) \sim \sum_{\gamma=\gamma_{1}+\cdots+\gamma_{n}}\left(\sum_{T \in \mathcal{T}_{\theta}\left(\left\{\gamma_{i}\right\}\right)} \prod_{v \in V_{T}}\left\langle\gamma_{L(v)}, \gamma_{R(v)}\right\rangle\right) \prod_{i=1}^{n} \Omega_{\star}\left(\gamma_{i}\right)
$$

Denef '00; Denef Greene Raugas '01; Denef Moore'07; Manschot '10, Alexandrov BP'18

- Here, a flow tree T is a binary rooted tree, with edges decorated with charges γ_{e}, such that $\gamma_{v}=\gamma_{L(v)}+\gamma_{R(v)}$ at each vertex, with charges γ_{i} assigned to the leaves and γ to the root.
- Each edge is embedded in $\mathbb{R}^{Q_{0}}$ along $\theta_{v}=\theta_{p(v)}+\lambda\left\langle\gamma_{e},-\right\rangle, \lambda \geq 0$, such that the root vertex maps to θ, and $\left(\theta_{v}, \gamma_{L(v)}\right)=\left(\theta_{v}, \gamma_{R(v)}\right)$ $=0$ at each vertex.

Split attractor flows

- The physical picture is that typical multi-centered solutions in $\mathcal{N}=2$ supergravity have a nested structure

- The linear flow in θ originates from gradient flow for spherically symmetric black holes [Ferrara Kallosh Strominger'95]

$$
r^{2} \frac{\mathrm{~d} z^{i}}{\mathrm{~d} r}=-g^{\bar{j}} \partial_{\bar{j}}|Z(\gamma)|^{2}
$$

- At each level v, the average distance between the clusters of charge $\gamma_{L}(v)$ and $\gamma_{R}(v)$ is fixed, but the orientation in S^{2} gives $\left|\left\langle\gamma_{L(v)}, \gamma_{R(v)}\right\rangle\right|$ degrees of freedom. In addition, each center of charge γ_{i} carries internal degrees of freedom counted by $\Omega_{\star}\left(\gamma_{i}\right)$.

Remarks

- In order to enforce Bose-Fermi statistics whenever two charges coincide, one should replace $\Omega_{\theta}(\gamma)$ by the rational index $\bar{\Omega}_{\theta}(\gamma)=\sum_{d \mid \gamma} \frac{1}{d^{2}} \Omega_{\theta}\left(\frac{\gamma}{d}\right)$ and insert a Boltzmann symmetry factor. [Manschot BP Sen'11]
- When the charges γ_{i} are not linearly independent, some splittings can involve higher valency vertices. One can treat them using the full KS wall-crossing formula, or perturb θ such that only binary trees remain.
- The attractor flow tree formula is consistent with wall-crossing: the index jumps when z crosses the wall $\mathcal{W}\left(\gamma_{L\left(v_{0}\right)}, \gamma_{R\left(v_{0}\right)}\right)$ associated to the primary splitting for one of the trees.

Remarks

- There are additional 'fake walls' where the topology of the trees jump but the total index is constant, thanks to the identity

$$
\left\langle\gamma_{1}, \gamma_{2}\right\rangle\left\langle\gamma_{1}+\gamma_{2}, \gamma_{3}\right\rangle+\text { cyc. }=0
$$

- The formula can be refined by replacing

$$
\begin{aligned}
\left\langle\gamma_{L}, \gamma_{R}\right\rangle & \rightarrow \frac{y^{\left.\left(\gamma_{L}, \gamma_{\beta}\right\rangle-y^{-}-\gamma_{L}, \gamma_{R}\right)}}{y-1 / y} \\
\bar{\Omega}_{\theta}(\gamma) & \rightarrow \bar{\Omega}_{\theta}(\gamma, y)=\sum_{d \mid \gamma} \frac{y-1 / y}{d\left(y^{d}-y^{-d}\right)} \Omega_{\theta}\left(\frac{\gamma}{d}, y^{d}\right)
\end{aligned}
$$

Physically, y is a fugacity conjugate to angular momentum in \mathbb{R}^{3}.

Flow tree formula from scattering diagrams

- For any quiver with potential (Q, W), the scattering diagram \mathcal{D} is the set of real codimension-one rays $\left\{\mathcal{R}(\gamma), \gamma \in \mathbb{Z}^{Q_{0}}\right\}$ defined by [Bridgeland'16]

$$
\mathcal{R}(\gamma)=\left\{\zeta \in \mathbb{R}^{Q_{0}}:(\zeta, \gamma)=0, \Omega_{\zeta}(k \gamma) \neq 0 \text { for some } k \geq 1\right\}
$$

- Each point along $\mathcal{R}(\gamma)$ is endowed with an automorphism of the quantum torus algebra, (assume γ primitive)

$$
\mathcal{U}(\gamma)=\exp \left(\sum_{m=1}^{\infty} \frac{\bar{\Omega}_{\zeta}(k \gamma, y)}{y^{-1}-y} \mathcal{X}_{k \gamma}\right), \quad \mathcal{X}_{\gamma} \mathcal{X}_{\gamma^{\prime}}=(-y)^{\left\langle\gamma, \gamma^{\prime}\right\rangle} \mathcal{X}_{\gamma+\gamma^{\prime}}
$$

$\gamma_{1}+\gamma_{2}$ - The WCF ensures that the diagram is consistent, $\gamma_{2} \uparrow \tau_{1} \prod_{\gamma_{i}} \mathcal{U}\left(\gamma_{i}\right)^{ \pm 1}=1$ around any codimension 2 intersection. The Attractor Flow Tree Formula determines outgoing rays from incoming rays at each vertex. [Argüz Bousseau '20].

Orbifold scattering diagram

A 2D slice of the orbifold scattering diagram

A 2D slice of the orbifold scattering diagram

Flow trees from scattering diagrams

- More generally, for any $\psi \in \mathbb{R} / 2 \pi \mathbb{Z}$ define scattering rays as codimension-one loci in the space of Bridgeland stability conditions

$$
\mathcal{R}_{\psi}(\gamma)=\left\{Z: \operatorname{Re}\left(e^{-\mathrm{i} \psi} Z(\gamma)\right)=0, \operatorname{Im}\left(e^{-\mathrm{i} \psi} Z(\gamma)\right)>0, \Omega_{\zeta}(k \gamma) \neq 0\right\}
$$

- For a non-compact CY3, $Z(\gamma)$ is holomorphic in Kähler moduli, thus $\arg Z(\gamma)$ is constant along the gradient flow of $|Z(\gamma)|$.
Choosing ψ such that $z \in \mathcal{R}_{\psi}(\gamma)$, edges of attractor flow trees lie inside $\mathcal{R}_{\psi}\left(\gamma_{e}\right)$, while vertices lie in $\mathcal{R}_{\psi}\left(\gamma_{L(v)}\right) \cap \mathcal{R}_{\psi}\left(\gamma_{R(v)}\right)$.
- Besides, since $Z(\gamma)$ is holomorphic, initial rays must originate from attractor points on the boundary.
- Fflow trees are subsets of scattering diagrams, determining sequences of scatterings which produce an outgoing ray $\mathcal{R}_{\psi}(\gamma)$ passing through the desired point z.

Large volume scattering diagram

- For the large volume stability conditions $Z_{(s, t)}^{L V}$, [Bousseau'19] constructed the scattering diagram \mathcal{D}_{ψ} in (s, t) upper half-plane for $\psi=0$. For $\psi \neq 0$, just map $(s, t) \mapsto(s-t \tan \psi, t / \cos \psi)$.
- The rays $\mathcal{R}(\gamma)$ are branches of hyperbola asymptoting to $t= \pm\left(s-\frac{d}{r}\right)$ for $r \neq 0$, or vertical lines when $r=0$. Walls of marginal stability $\mathcal{W}\left(\gamma, \gamma^{\prime}\right)$ are half-circles centered on real axis.

- Think of $\mathcal{R}(\gamma)$ as the worldline of a fictitious particle of charge r, mass $m^{2}=\frac{1}{2} d^{2}-r \mathrm{ch}_{2}$ moving in a constant electric field!

Large volume scattering diagram

- Initial rays correspond to $\mathcal{O}(m)$ and $\mathcal{O}(m)$ [1], ie (anti)D4-branes with m units of flux, emanating from $(s, t)=(m, 0)$ on the boundary where the central charge vanishes.

- The first scatterings occur for $t \geq \frac{1}{2}$, after each constituent has moved by $|\Delta s| \geq \frac{1}{2}$. Causality and monotonicity of the 'electric potential' $\varphi(\gamma)=d-s r$ along the flow, allow to bound the number and charges of constituents.

Flow trees for $\gamma=[0,4,1)$

Flow trees for $\gamma=[1,0,-3)$

Exact scattering diagram

- The full scattering diagram should interpolate between $\mathcal{D}_{\psi}^{\mathrm{LV}}$ around $\tau=\mathrm{i} \infty$ and $\mathcal{D}_{\psi}^{\circ}$ around $\tau=\tau_{o}$, and be invariant under the action of $\Gamma_{1}(3)$.
- Under $\tau \mapsto \frac{\tau}{3 n \tau+1}$ with $n \in \mathbb{Z}, \mathcal{O} \mapsto \mathcal{O}[n]$. Hence we have an doubly infinite family of initial rays associated to $\mathcal{O}(m)[n]$.

- For $|\tan \psi|<\frac{1}{2 \mathcal{V}}$ where $\mathcal{V}=\operatorname{Im} T(0)=\frac{27}{4 \pi^{2}} \operatorname{mmLi}_{2}\left(e^{2 \pi \mathrm{i} / 3}\right) \simeq 0.463$ only the rays associated to $\mathcal{O}(m)[0]$ and $\mathcal{O}(m)[1]$ escape to i ∞, and merge onto rays in the large volume scattering diagram $\mathcal{D}_{\psi}^{\mathrm{LV}}$.

Exact scattering diagram $-\psi=0$

Exact scattering diagram

- In addition, there must be an infinite family of initial rays coming from $\tau=\frac{p}{q}$ with $q \neq 0 \bmod 3$, corresponding to $\Gamma_{1}(3)$-images of $\mathcal{O}(0)$.
- This includes initial rays emitted at $\tau=n-\frac{1}{2}$, associated to $\Omega(n+1)$; for $\psi \sim \frac{\pi}{2}$, these merge onto initial rays of the orbifold scattering diagram.
- We conjecture that the only initial rays are the $\Gamma_{1}(3)$ images of the structure sheaf \mathcal{O}, each of them carrying $\Omega(k \gamma)=1$ for $k=1,0$ otherwise.

Exact scattering diagram $-\psi= \pm \frac{\pi}{2} \quad \bmod 2 \pi$

- For $\psi= \pm \frac{\pi}{2}$, the diagram \mathcal{D}_{ψ}^{Π} simplifies dramatically, since the loci $\operatorname{Im} Z_{\tau}(\gamma)=0$ are lines of constant $s:=\frac{\operatorname{Im} T_{D}}{\operatorname{Im} T}=\frac{d}{r}$.

- Hence, there is no wall-crossing between τ_{o} and $\tau=\mathrm{i} \infty$ when $-1 \leq \frac{d}{r} \leq 0$, explaining why the Gieseker index $\Omega_{\infty}(\gamma)$ agrees with the index $\Omega_{c}(\gamma)$ in the anti-attractor chamber.

Exact scattering diagram, varying ψ

$$
\gamma=[0,1,1)=\operatorname{ch} \mathcal{O}_{C}:
$$

$\gamma=[1,0,1)=\operatorname{ch} \mathcal{O}:$

Conclusion - outlook

- The scattering diagram is the proper mathematical framework for the attractor flow tree formula in the case of local CY3. This is because $Z(\gamma)$ is holomorphic on \mathcal{M}_{K}, so the gradient flow preserves the phase of $Z(\gamma)$. Moreover, initial rays can only start from the boundary.
- This provides an effective way of computing (unframed) BPS invariants in any chamber, and a natural decomposition into elementary constituents. Mathematically, different trees should correspond to different strata in $\mathcal{M}_{z}(\gamma)$.
- It would be interesting to extend this description to other toric CY3, such as local del Pezzo surfaces, and to framed BPS indices.
- For a compact CY3, $\arg Z(\gamma)$ is no longer constant along the flow and there can be attractor points with $\Omega_{\star}(\gamma) \neq 0$ at finite distance in Kähler moduli space...

Thanks for your attention!

B. Pioline (LPTHE, Paris)

