Attractor flow trees and scattering diagrams

Boris Pioline

SORBONNE UNIVERSITÉ

"Machine Learning, Number Theory and Quantum Black Holes" Newton Institute, Cambridge, 4/10/2023

Based on 'BPS Dendroscopy on Local \mathbb{P}^{2} ' [2210.10712] with Pierrick Bousseau, Pierre Descombes and Bruno Le Floch

Introduction

- In type IIA string theory compactified on a Calabi-Yau threefold X, the BPS spectrum consists of bound states of D6-D4-D2-D0 branes, with charge $\gamma \in H_{\text {even }}(X, \mathbb{Q})$.
- BPS states saturate the bound $M(\gamma) \geq|Z(\gamma)|$, where the central charge $Z \in \operatorname{Hom}(\Gamma, \mathbb{C})$ depends on the complexified Kähler moduli.
- The index $\Omega_{z}(\gamma)$ counting BPS states is robust under complex structure deformations, but in general depends on $z \in \mathcal{M}_{K}$.
- Mathematically, the Donaldson-Thomas invariant $\Omega_{z}(\gamma)$ counts stable objects with ch $E=\gamma$ in the derived category of coherent sheaves $\mathcal{C}=D^{b} \operatorname{Coh}(X)$.

Introduction

- $\Omega_{z}(\gamma)$ is locally constant on \mathcal{M}_{K}, but can jump across real codimension one walls of marginal stability $\mathcal{W}\left(\gamma_{L}, \gamma_{R}\right) \subset \mathcal{M}_{K}$, where the phases of the central charges $Z\left(\gamma_{L}\right)$ and $Z\left(\gamma_{R}\right)$ with $\gamma=m_{L} \gamma_{L}+m_{R} \gamma_{R}$ become aligned [Kontsevich Soibelman'08, Joyce Song'08]
- Physically, multi-centered black hole solutions with constituent charges $\gamma_{i}=m_{L, i} \gamma_{L}+m_{R, i} \gamma_{R}$ (dis)appear across the wall.

$$
\frac{\left\langle\gamma_{L}, \gamma_{R}\right\rangle}{r}=\frac{2 \operatorname{Im}\left[\bar{Z}\left(\gamma_{L}\right) Z\left(\gamma_{R}\right)\right]}{\left|Z\left(\gamma_{L}+\gamma_{R}\right)\right|}, \quad \Delta \Omega(\gamma)= \pm\left|\left\langle\gamma_{L}, \gamma_{R}\right\rangle\right| \Omega\left(\gamma_{L}\right) \Omega\left(\gamma_{R}\right)
$$

Denef'02, Denef Moore '07, ..., Manschot BP Sen '11

Introduction

- These multi-centered bound states are expected to decay away as one follows the attractor flow equations [Ferrara Kallosh Strominger'95]

$$
\mathrm{AF}_{\gamma}: \quad r^{2} \frac{\mathrm{~d} z^{a}}{\mathrm{~d} r}=-g^{a \bar{b}} \partial_{\bar{b}}\left|Z_{z}(\gamma)\right|^{2}
$$

- $\left|Z_{Z}(\gamma)\right|$ decreases along the flow until it reaches a local minimum at the attractor point $z_{\star}(\gamma)$, independent of moduli at infinity. We define the attractor invariant as $\Omega_{\star}(\gamma)=\Omega_{z_{\star}(\gamma)}(\gamma)$.
- $z_{\star}(\gamma)$ may be a regular attractor point, corresponding to a spherically symmetric black hole, or a conifold point where $Z_{Z_{\star}(\gamma)}(\gamma)=0$. For non-compact CY3, only the second option is allowed.

The Split Attractor Flow Conjecture

- Starting from $z \in \mathcal{M}_{K}$, following AF_{γ} and recursively applying the WCF formula at whenever the flow crosses a wall of marginal stability, one can in principle express $\Omega_{z}(\gamma)$ in terms of attractor invariants.

The Split Attractor Flow Conjecture (SFAC)

- In terms of the rational DT invariants

$$
\bar{\Omega}_{z}(\gamma):=\sum_{k \mid \gamma} \frac{1}{k^{2}} \Omega_{z}(\gamma / k)
$$

the result takes the form

$$
\bar{\Omega}_{z}(\gamma)=\sum_{\gamma=\sum \gamma_{i}} \frac{g_{z}\left(\left\{\gamma_{i}\right\}\right)}{\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i} \bar{\Omega}_{\star}\left(\gamma_{i}\right)
$$

where $g_{z}\left(\left\{\gamma_{i}\right\}\right)$ is a sum over attractor flow trees.

- The Split Attractor Flow Conjecture [Denef'00, Denef Moore'07] is the statement that only a finite number of decompositions $\gamma=\sum \gamma_{i}$ contribute to the index $\bar{\Omega}_{z}(\gamma)$.

The Split Attractor Flow Conjecture

- Unfortunately it is not known a priori which constituents γ_{i} can contribute, except for the obvious constraints

$$
\sum_{i} \gamma_{i}=\gamma, \quad \sum_{i}\left|Z_{Z_{\star}\left(\gamma_{i}\right)}\left(\gamma_{i}\right)\right|<\left|Z_{z}(\gamma)\right|
$$

- In particular, there can be cancellations between D-branes and anti-D-branes, and contributions from conifold states which are massless at their attractor point are difficult to bound.
- Even if SAFC holds, one still has to compute the attractor indices $\Omega_{\star}(\gamma)$, a tall order for regular attractor points.
- Our aim is to investigate the SAFC for one of the simplest examples of CY threefolds, $X=K_{\mathbb{P}^{2}}=\mathbb{C}^{3} / \mathbb{Z}_{3}$, revisiting the analysis of [Douglas Fiol Romelsberger'oo].

Summary

- We show that the only possible constituents are the D4-brane $\mathcal{O}_{\mathbb{P}^{2}}$, the anti-D4-brane $\mathcal{O}_{\mathbb{P}^{2}}[1]$, and their images thereof under $\Gamma_{1}(3)$, each carrying attractor index $\Omega_{\star}(\gamma)=1$.
- In the vicinity of the orbifold point, the only populated states are bound states of the fractional branes $\mathcal{O}[-1], \Omega(1), \mathcal{O}(-1)[1]$.
- Instead, the full BPS spectrum at large volume arises as bound states of fluxed D4 and anti-D4-branes $\mathcal{O}(m), \mathcal{O}(m)[1]$, with effective bounds on the number and flux of the constituents.
- A key role is played by scattering diagrams, which provide the correct mathematical framework for the SAFC, at least for local CY threefolds.

Kähler moduli space

- The Kähler moduli space of $X=K_{\mathbb{P}^{2}}$ is the modular curve $X_{1}(3)=\mathbb{H} / \Gamma_{1}(3)$. It admits two cusps $L V, C$ and one orbifold point o of order 3.

- A BPS state on X is a stable object E in the bounded derived category \mathcal{C} of compactly supported sheaves on X, with charge $\gamma(E)=\left[r, d, \mathrm{ch}_{2}\right] \sim[D 4, D 2, D 0]$

Central charge as Eichler integral

- The central charge $Z_{\tau}(\gamma)$ is a linear combination

$$
Z_{\tau}(\gamma)=-r T_{D}(\tau)+d T(\tau)-1 \cdot \mathrm{ch}_{2}
$$

where T_{D}, T are multi-valued holomorphic functions on \mathcal{M}_{K}, single valued on the universal cover \mathbb{H}, satisfying a third order Picard-Fuchs equation.

- While T, T_{D} can be expressed in terms of Meijer G-functions, it is more efficient to represent them as Eichler-type integrals,

$$
\binom{T}{T_{D}}=\binom{1 / 2}{1 / 3}+\int_{\tau_{0}}^{\tau}\binom{1}{\rho} C(\rho) \mathrm{d} \rho
$$

where $C(\tau)=\frac{\eta(\tau)^{9}}{\eta(3 \tau)^{3}}=1-9 q+27 q^{2}+\ldots$ is a weight 3
Eisenstein series for $\Gamma_{1}(3)$.

Central charge as Eichler integral

- This provides an computationally efficient analytic continuation of Z_{τ} throughout \mathbb{H}, and gives access to monodromies:

$$
\tau \mapsto \frac{a \tau+b}{c \tau+d} \quad\left(\begin{array}{c}
1 \\
T \\
T_{D}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
m & d & c \\
m_{D} & b & a
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
T \\
T_{D}
\end{array}\right)
$$

where $\left(m, m_{D}\right)$ are period integrals of C from τ_{0} to $\frac{d \tau_{0}-b}{a-c \tau_{0}}$.

- At large volume $\tau \rightarrow \mathrm{i} \infty$, using $C=1+\mathcal{O}(q)$ one finds

$$
T=\tau+\mathcal{O}(q), \quad T_{D}=\frac{1}{2} \tau^{2}+\frac{1}{8}+\mathcal{O}(q)
$$

in agreement with $Z_{\tau}(\gamma) \sim-\int_{S} e^{-\tau H} \sqrt{\operatorname{Td}(S)} \operatorname{ch}(E)$.

Space of Bridgeland stability conditions

- Donaldson-Thomas invariants are defined in the larger space of Bridgeland stability conditions $\operatorname{Stab} \mathcal{C}=\{\sigma=(Z, \mathcal{A})\}$, where $Z: \Gamma \rightarrow \mathbb{C}$ is a linear map and $\mathcal{A} \subset \mathcal{C}$ an Abelian sub category locally determined by Z. In particular, $\operatorname{dim}_{\mathbb{C}} \operatorname{Stab} \mathcal{C}=\operatorname{dim} \Gamma=3$.
- $G=G \widetilde{G(2, \mathbb{R})}+$ acts on $\operatorname{Stab} \mathcal{C}$ by $\binom{\mathrm{Re} Z}{\operatorname{Im} Z} \mapsto\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)\binom{\mathrm{Re} Z}{\operatorname{Im} Z}$, leaving $\Omega_{\sigma}(\gamma)$ invariant. Using $\mathbb{C}^{\times} \subset G$, one can always set $Z([D 0])=-1$.
- The physical moduli space is a particular one-dimensional slice $\left(Z_{\tau}, \mathcal{A}_{\tau}\right)$ inside $\operatorname{Stab} \mathcal{C}$, known as Π-stability. Another natural slice is the large volume slice with central charge

$$
Z_{\rho}^{L V}(\gamma)=-r \frac{\rho^{2}}{2}+d \rho-\operatorname{ch}_{2}, \quad \rho=s+\mathrm{i} t
$$

- For $\operatorname{Im} \tau$ large enough, the physical and large volume slices are related by the action of G.

Space of Bridgeland stability conditions

- Specifically, this holds in the region $w>\frac{1}{2} s^{2}$ where $(s, w):=\left(\frac{\operatorname{Im} T_{D}}{\operatorname{Im} T},-\frac{\operatorname{Im}\left(T \bar{T}_{D}\right)}{\operatorname{Im} T}\right) \simeq\left(\tau_{1}, \frac{1}{2}|\tau|^{2}\right)$ above dashed line:

- The large volume slice does not cover the region around the orbifold point, and covers only part of the conifold point.

BPS Spectrum around the orbifold point

- The category $D^{b} \operatorname{Coh}_{c}\left(K_{\mathbb{P}^{2}}\right)$ is isomorphic to the category of representations of a quiver with potential (Q, W), whose nodes correspond to fractional branes on $\mathbb{C}^{3} / \mathbb{Z}_{3}$ [Douglas Fiol Romelsberger'00]

$$
\begin{array}{cll}
E_{1}=\mathcal{O}[-1], & \gamma_{1}=[-1,0,0] \\
E_{2}= & \Omega(1), & \gamma_{2}=\left[2,-1,-\frac{1}{2}\right] \\
E_{3}= & \mathcal{O}(-1)[1], & \gamma_{3}=\left[-1,1,-\frac{1}{2}\right] \\
& r=2 n_{2}-n_{1}-n_{3} \\
d= & n_{3}-n_{2} \\
c h_{2}= & -\frac{1}{2}\left(n_{2}+n_{3}\right)
\end{array}
$$

- The quiver description is valid in a region where the central charges $Z\left(E_{i}\right)$ lie in a common half-plane. This includes the vicinity of the orbifold point, where $Z_{\tau_{0}}\left(\gamma_{i}\right)=1 / 3$ for $i=1,2,3$.

Attractor indices for quivers

- In that region, $\Omega_{\tau}(\gamma)$ coincides with the quiver index $\Omega_{\theta}(\gamma)$ counting θ-semi-stable representations of dimension vector γ, for suitable Fl parameters $\theta(\tau) \in \mathbb{R}^{Q_{0}}$.
- Recall that a representation of dimension vector γ is θ-semi-stable iff $\left(\theta, \gamma^{\prime}\right) \leq(\theta, \gamma)$ for any subrepresentation. Specifically,

$$
\theta_{i}=-\operatorname{Re}\left(e^{-\mathrm{i} \psi} \boldsymbol{Z}\left(\gamma_{i}\right)\right) \quad \text { with } \quad \operatorname{Im}\left(e^{-\mathrm{i} \psi} \boldsymbol{Z}\left(\gamma_{i}\right)\right)>0 \forall i
$$

- In the quiver context, the attractor point (aka self-stability condition) is $\theta_{\star}(\gamma)$ such that [Manschot BP Sen'13; Bridgeland'16]

$$
\forall \gamma^{\prime}, \quad\left(\theta_{\star}(\gamma), \gamma^{\prime}\right)=\left\langle\gamma^{\prime}, \gamma\right\rangle:=\sum_{a: i \rightarrow j}\left(n_{i}^{\prime} n_{j}-n_{j}^{\prime} n_{i}\right)
$$

and the (quiver) attractor invariant is defined as $\Omega_{\star}(\gamma):=\Omega_{\theta_{\star}(\gamma)}(\gamma)$

The Flow Tree formula for quivers

- In [Alexandrov BP'18], we conjectured a precise version of SAFC which expresses $\bar{\Omega}_{\theta}(\gamma)$ in terms of the attractor invariants:

$$
\bar{\Omega}_{\theta}(\gamma)=\sum_{\gamma=\sum \gamma_{i}} \frac{g_{\theta}\left(\left\{\gamma_{i}\right\}\right)}{\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i} \bar{\Omega}_{\star}\left(\gamma_{i}\right)
$$

The coefficients $g_{\theta}\left(\left\{\gamma_{i}\right\}\right)$ involve a sum over rooted binary trees, whose edges are embedded in FI-space along straight lines $\theta_{0}+\lambda \theta_{\star}\left(\gamma_{e}\right)$, which are the analogue of attractor flows.

- The sum is manifestly finite, since γ_{i} lie in the positive cone $\mathbb{N}^{Q_{0}}$.
- The formula was proven mathematically in [Argüz Bousseau'21] using the formalism of scattering diagrams. See also Mozgovoy's proof using operads.

Scattering diagrams in a nutshell

- For any quiver with potential (Q, W), the scattering diagram \mathcal{D}_{Q} is the set of real codimension-one rays $\left\{\mathcal{R}(\gamma), \gamma \in \mathbb{Z}^{Q_{0}}\right\}$ defined by

$$
\mathcal{R}(\gamma)=\left\{\theta \in \mathbb{R}^{Q_{0}}:(\theta, \gamma)=0, \bar{\Omega}_{\theta}(\gamma) \neq 0\right\}
$$

- Each point along $\mathcal{R}(\gamma)$ is endowed with an automorphism of the quantum torus algebra generated by $\mathcal{X}_{\gamma} \mathcal{X}_{\gamma^{\prime}}=(-y)^{\left\langle\gamma, \gamma^{\prime}\right\rangle} \mathcal{X}_{\gamma+\gamma^{\prime}}$,

$$
\mathcal{U}_{\theta}(\gamma)=\exp \left(\frac{\bar{\Omega}_{\theta}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right)=\operatorname{Exp}\left(\frac{\Omega_{\theta}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right)
$$

- The WCF ensures that the diagram is consistent: for any generic closed path $\mathcal{P}: t \in[0,1] \in \mathbb{R}^{Q_{0}}, \prod_{i} \mathcal{U}_{\theta\left(t_{i}\right)}\left(\gamma_{i}\right)^{\epsilon_{i}}=1$ [Bridgeland'16]

Scattering diagram for Kronecker quiver

Consistent scattering diagrams

- At each intersection, outgoing rays (and corresponding DT invariants) are determined from incoming rays by the consistency condition. E.g. for $K_{1}=A_{2}$, this is the famous five-term relation

$$
\mathcal{U}_{\gamma_{1}} \mathcal{U}_{\gamma_{2}}=\mathcal{U}_{\gamma_{2}} \mathcal{U}_{\gamma_{1}+\gamma_{2}} \mathcal{U}_{\gamma_{1}}
$$

- A consistent scattering diagram is uniquely determined from the initial rays $\mathcal{R}_{\star}(\gamma)$, defined as those which contain $\theta_{\star}(\gamma)$.
- The Flow Tree Formula of [Alexandrov BP'18] determines the indices of outgoing rays produced by scattering initial rays [Argüz Bousseau '20] (see also the operadic approach of [Mozgovoy'19])

Attractor invariants for $K_{\mathrm{P}^{2}}$

- In [Beaujard BP Manschot'20], we conjectured that the attractor indices $\Omega_{\star}(\gamma)$ vanish except for $\gamma=\gamma_{i}$ or $\gamma=k\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)=k[D 0]$. This is now a theorem [Bousseau Descombes Le Floch BP'22].

A 2D slice of the orbifold scattering diagram

Let \mathcal{D}_{0} be the restriction of \mathcal{D}_{Q} to the hyperplane $\theta_{1}+\theta_{2}+\theta_{3}=1$:

A 2D slice of the orbifold scattering diagram

Let \mathcal{D}_{0} be the restriction of \mathcal{D}_{Q} to the hyperplane $\theta_{1}+\theta_{2}+\theta_{3}=1$:

A 2D slice of the orbifold scattering diagram

Let \mathcal{D}_{0} be the restriction of \mathcal{D}_{Q} to the hyperplane $\theta_{1}+\theta_{2}+\theta_{3}=1$:

A 2D slice of the orbifold scattering diagram

The full scattering diagram \mathcal{D}_{Q} includes regions with dense set of rays:

Scattering diagrams on triangulated categories

- For a general triangulated category \mathcal{C}, define the scattering diagram $\mathcal{D}_{\psi}(\mathcal{C})$ as the set of codimension-one loci in $\operatorname{Stab} \mathcal{C}$,

$$
\mathcal{R}_{\psi}(\gamma)=\left\{\sigma: \arg Z(\gamma)=\psi+\frac{\pi}{2}, \bar{\Omega}_{Z}(\gamma) \neq 0\right\}
$$

equipped with (a suitable regularization of) the automorphism

$$
\mathcal{U}_{\sigma}(\gamma)=\exp \left(\frac{\bar{\Omega}_{\sigma}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right)=\operatorname{Exp}\left(\frac{\Omega_{\sigma}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right)
$$

- The WCF ensures that the diagram \mathcal{D}_{ψ} is still locally consistent at each codimension-two intersection.

Flow trees from scattering diagrams

- To see the relation to SAFC, note that for any local CY threefold, the central charge $Z_{z}(\gamma)$ is holomorphic in z^{a}, hence its phase is constant along the flow $\frac{\mathrm{dz}{ }^{a}}{\mathrm{~d} \mu}=-g^{a \bar{b}} \partial_{\bar{b}}\left|Z_{z}(\gamma)\right|^{2}$:

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu} \log \frac{Z(\gamma)}{\bar{Z}(\gamma)}=-\frac{1}{2} \partial_{a} Z(\gamma) g^{a \bar{b}} \partial_{\bar{b}} \bar{Z}(\gamma)+\frac{1}{2} \partial_{a} Z(\gamma) g^{a \bar{b}} \partial_{\bar{b}} \bar{Z}(\gamma)=0
$$

thus the attractor flow takes place along the ray $\mathcal{R}_{\psi}(\gamma)$, and can only split when $\mathcal{R}\left(\gamma_{L}\right)$ and $\mathcal{R}\left(\gamma_{R}\right)$ intersect.

- Moreover, by holomorphy $\left|Z_{z}(\gamma)\right|^{2}$ has no local minima so the only attractor points are conifold points with $Z_{z}\left(\gamma_{i}\right)=0$.
- In complex dimension one, attractor flow lines \simeq scattering rays! Attractor flow trees are subsets of \mathcal{D}_{ψ} which produce an outgoing ray $\mathcal{R}_{\psi}(\gamma)$ passing through the desired point z.

Large volume scattering diagram

- The scattering diagram $\mathcal{D}_{\psi}^{\text {LV }}$ along the large volume slice

$$
Z_{\rho}^{L V}(\gamma)=-\frac{1}{2} r \rho^{2}+d \rho-\mathrm{ch}_{2}, \quad \rho=s+\mathrm{i} t
$$

was determined for $\psi=0$ in [Bousseau'19]. Other values of ψ are reached by mapping $(s, t) \mapsto(s-t \tan \psi, t / \cos \psi)$.

- Each ray $\mathcal{R}_{0}(\gamma)$ is a branch of hyperbola asymptoting to $t= \pm\left(s-\frac{d}{r}\right)$ for $r \neq 0$, or a vertical line when $r=0$. Walls of marginal stability $\mathcal{W}\left(\gamma, \gamma^{\prime}\right)$ are half-circles centered on real axis.

Large volume scattering diagram

- Initial rays correspond to $\mathcal{O}(m)$ and $\mathcal{O}(m)[1]$, with charge $\gamma_{m}= \pm\left[1, m, \frac{1}{2} m^{2}\right]$, emanating from $(s, t)=(m, 0)$ on the boundary where $Z_{\rho}^{L V}\left(\gamma_{m}\right)=0$ [Bousseau'19]

- Physically, the BPS spectrum along the large volume slice originates from bound states of fluxed D4-branes and anti-D4 branes.

SAFC holds along large volume slice

- Rays stay inside the 'forward light-cone', and $\varphi_{s}(\gamma)=2(d-s r)=2 \operatorname{Im} Z_{\gamma} / t$ increases along the ray.
- The first scatterings occur after a time $t \geq \frac{1}{2}$, after each constituent $k_{i} \mathcal{O}\left(m_{i}\right)$ has moved by $|\Delta s| \geq \frac{1}{2}$, by which time $\varphi_{s}\left(\gamma_{i}\right) \geq\left|k_{i}\right|$.
- Since $\varphi_{s}(\gamma)$ is additive at each vertex, this gives a bound on the number and charges of constituents contributing to $\Omega_{(s, t)}(\gamma)$:

$$
\sum_{i} k_{i}\left[1, m_{i}, \frac{1}{2} m_{i}^{2}\right]=\gamma, \quad s-t \leq m_{i} \leq s+t, \quad \sum\left|k_{i}\right| \leq \varphi_{s}(\gamma)
$$

- Thus, SAFC holds along the large volume slice!

Example: Flow trees for $\gamma=[0,4,1)$

Exact scattering diagram

- The scattering diagram \mathcal{D}_{ψ}^{Π} along the physical slice should interpolate between $\mathcal{D}_{\psi}^{\mathrm{LV}}$ and \mathcal{D}_{0}, and be invariant under $\Gamma_{1}(3)$.
- Under $\tau \mapsto \frac{\tau}{3 n \tau+1}$ with $n \in \mathbb{Z}, \mathcal{O} \mapsto \mathcal{O}[n]$. Hence there is a doubly infinite family of initial rays emitted at $\tau=0$, associated to $\mathcal{O}[n]$:

- Similarly, there must be an infinite family of rays emitted from $\tau=\frac{p}{q}$ with $q \neq 0 \bmod 3$, corresponding to $\Gamma_{1}(3)$-images of \mathcal{O}.

Exact scattering diagram for small ψ

- For $|\psi|$ small enough, the only rays which reach the large volume region are those associated to $\mathcal{O}(m)$ and $\mathcal{O}(m)[1]$. Thus, the scattering diagram $\mathcal{D}_{\psi}^{\Gamma}$ is isomorphic to $\mathcal{D}_{0}^{\mathrm{LV}}$ inside $\cup_{n} \mathcal{F}(n)$:

Scattering diagram in affine coordinates

- To see this, one can map both of them to the (x, y)-plane

$$
x=\frac{\operatorname{Re}\left(e^{-\mathrm{i} \psi} T\right)}{\cos \psi}, \quad y=-\frac{\operatorname{Re}\left(e^{-\mathrm{i} \psi} T_{D}\right)}{\cos \psi}
$$

such that $\mathcal{R}_{\psi}(\gamma)$ becomes a line segment $r x+d y-\mathrm{ch}_{2}=0$.

- The initial rays $\mathcal{R}_{\psi}(\mathcal{O}(m))$ are tangent to the parabola $y=-\frac{1}{2} x^{2}$ at $x=m$, but the origin of each ray is shifted to $x=m+\mathcal{V} \tan \psi$ where \mathcal{V} is the quantum volume

$$
\mathcal{V}=\operatorname{Im} T(0)=\frac{27}{4 \pi^{2}} \operatorname{Im}\left[\operatorname{Li}_{2}\left(e^{2 \pi i / 3}\right)\right] \simeq 0.463
$$

Affine scattering diagram, $\psi=0$

Affine scattering diagram, $|\mathcal{V} \tan \psi|<1 / 2$

Exact scattering diagram, $\psi=0$

Exact scattering diagram, $\psi=0.3$

Exact scattering diagram, $\psi=0.6$

Exact scattering diagram, $\psi=0.8$

Exact scattering diagram, $\psi=0.824$

Exact scattering diagram, $\psi=0.825$

Exact scattering diagram, $\psi=0.9$

Exact scattering diagram, $\psi=1.1$

Exact scattering diagram, $\psi=1.137$

Exact scattering diagram, $\psi=1.139$

Exact scattering diagram, $\psi=1.3$

Exact scattering diagram, $\psi=\pi / 2$

Exact scattering diagram for $\psi= \pm \frac{\pi}{2}$

- For $\psi= \pm \frac{\pi}{2}$, the geometric rays $\left\{\operatorname{Im} Z_{\tau}(\gamma)=0\right\}$ coincide with lines of constant $s=\frac{\operatorname{Im} T_{D}}{\operatorname{Im} T}=\frac{d}{r}$, independent of ch_{2} :

- Hence, there is no wall-crossing between τ_{0} and $\tau=\mathrm{i} \infty$ when $-1 \leq \frac{d}{r} \leq 0$, explaining why the Gieseker index $\Omega_{\infty}(\gamma)$ agrees with the quiver index $\Omega_{c}(\gamma)$ in the anti-attractor chamber.

Douglas Fiol Romelsberger'00, Beaujard BP Manschot'20

Conclusion - outlook

- Scattering diagrams are the appropriate mathematical framework for attractor flow trees in the case of local CY3. This is because $Z(\gamma)$ is holomorphic on \mathcal{M}_{K}, so the gradient flow preserves the phase of $Z(\gamma)$.
- This provides an effective way of computing BPS invariants in any chamber, and a natural decomposition into elementary constituents. Does it help e.g. in understanding modularity ?
- It will be interesting to extend this description to other toric CY3, such as local del Pezzo surfaces. [Le Floch BP Schimannek, in progress]
- For compact CY3, $Z(\gamma)=e^{K / 2} Z_{\text {hol }}(\gamma)$ is not longer holomorphic, so $\arg Z(\gamma)$ is not constant along the flow. Can one still use scattering diagrams to construct the BPS spectrum ?

Thanks for your attention!

