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Introduction

@ In type IIA string theory compactified on a Calabi-Yau threefold X,
the BPS spectrum consists of bound states of D6-D4-D2-D0
branes, with charge v € Heven(X, Q).

@ BPS states saturate the bound M(v) > |Z(~)|, where the central
charge Z € Hom(I', C) depends on the complexified Kahler
moduli.

@ The index Q,() counting BPS states is robust under complex
structure deformations, but in general depends on z € M.

@ Mathematically, the Donaldson-Thomas invariant Q,(+) counts
stable objects with ch E = « in the derived category of coherent
sheaves C = DPCoh(X).
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Introduction

@ Q,(v) is locally constant on My, but can jump across real
codimension one walls of marginal stability W(v.,vgr) € Mk,
where the phases of the central charges Z(+,) and Z(yg) with
v = myy. + mryr become aligned [Kontsevich Soibelman’08, Joyce Song’08]

@ Physically, multi-centered black hole solutions with constituent
charges v; = my jy. + mg g (dis)appear across the wall.

(wym) — 2Im[Z(v) Z(vR)] _
LI’R [ Z(w+R) AQ(y) = £y, vR) Q)2 VR)

Denef’'02, Denef Moore ‘07, ..., Manschot BP Sen '11
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Introduction

@ These multi-centered bound states are expected to decay away as
one follows the attractor flow equations jFerrara Kallosh Strominger'9s]

AF. - 2diza__ai_)a_z 2
vyt r ar 9% 0p|Z2(7)

@ |Z,(y)| decreases along the flow until it reaches a local minimum
at the attractor point z,(y), independent of moduli at infinity. We
define the attractor invariant as Q.(v) = Q,(,)(7)-

@ z,(vy) may be a regular attractor point, corresponding to a
spherically symmetric black hole, or a conifold point where
Z;, () () = 0. For non-compact CY3, only the second option is
allowed.
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The Split Attractor Flow Conjecture

@ Starting from z € My, following AF,, and recursively applying the
WCF formula at whenever the flow crosses a wall of marginal
stability, one can in principle express Q,(v) in terms of attractor
invariants.

o)

oy Denef Moore’07

) [
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The Split Attractor Flow Conjecture (SFAC)

@ In terms of the rational DT invariants

() = Y 15 2(1/K)

K~y
the result takes the form
= 9z {71
Q —
207) Aut({vi}) H

i

Y=

where g-({v;}) is a sum over attractor flow trees.

@ The Split Attractor Flow Conjecture [Denef'00, Denef Moore'07] is the
statement that only a finite number of decompositions v = 3 ~;
contribute to the index (7).
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The Split Attractor Flow Conjecture

@ Unfortunately it is not known a priori which constituents ~; can
contribute, except for the obvious constraints

Svi=v D NZe (i)l < |1Z2(y)]
j j

@ In particular, there can be cancellations between D-branes and
anti-D-branes, and contributions from conifold states which are
massless at their attractor point are difficult to bound.

@ Even if SAFC holds, one still has to compute the attractor indices
Q,(7v), a tall order for regular attractor points.
@ Our aim is to investigate the SAFC for one of the simplest

P

examples of CY threefolds, X = K. = C3/Z3, revisiting the
analysis of [Douglas Fiol Romelsberger00].
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@ We show that the only possible constituents are the D4-brane Oy,
the anti-D4-brane Op2[1], and their images thereof under I'¢(3),
each carrying attractor index Q,(v) = 1.

@ In the vicinity of the orbifold point, the only populated states are
bound states of the fractional branes O[—1],Q(1), O(—1)[1].

@ Instead, the full BPS spectrum at large volume arises as bound
states of fluxed D4 and anti-D4-branes O(m), O(m)[1], with
effective bounds on the number and flux of the constituents.

@ A key role is played by scattering diagrams, which provide the
correct mathematical framework for the SAFC, at least for local
CY threefolds.
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Kahler moduli space

@ The Kéahler moduli space of X = K2 is the modular curve
X1(8) = H/I'1(8). It admits two cusps LV, C and one orbifold point
o of order 3.

4
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@ A BPS state on X is a stable object E in the bounded derived
category C of compactly supported sheaves on X, with charge
v(E) = [r,d,chy] ~ [D4, D2, DO
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Central charge as Eichler integral

@ The central charge Z,(vy) is a linear combination
Z.(y)=—rTp(r)+dT(7r) — 1-chy

where Tp, T are multi-valued holomorphic functions on My,

single valued on the universal cover H, satisfying a third order
Picard-Fuchs equation.

@ While T, Tp can be expressed in terms of Meijer G-functions, it is
more efficient to represent them as Eichler-type integrals,

(1) = (ifa) + [, () o

where C(1) = 7;7(;:)93 =1-9g+27¢ +... is aweight 3

Eisenstein series for '{(3).
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Central charge as Eichler integral

@ This provides an computationally efficient analytic continuation of
Z; throughout H, and gives access to monodromies:

1 1 0 0 1
> ar + Z T|l—=| m dc|-|T
T+ TD mp b a TD
dro—b

where (m, mp) are period integrals of C from 7, to Z7%:>.
@ Atlarge volume 7 — ioco, using C = 1 + O(q) one finds

1 1
T=7+0(q), TDZETZ+§+O(q)

in agreement with Z,(v) ~ — [se~"" \/Td(S) ch(E).
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Space of Bridgeland stability conditions

@ Donaldson-Thomas invariants are defined in the larger space of
Bridgeland stability conditions StabC = {o = (Z,.A)}, where
Z:T — Cisalinear map and A C C an Abelian sub category
locally determined by Z. In particular, dim¢ StabC = dim I = 3.

o G= GL(2,R)* acts on Stab( by (Efé) - (j g) (Eﬁg) leaving

Q. () invariant. Using C* C G, one can always set Z([D0]) = —1.

@ The physical moduli space is a particular one-dimensional slice
(Z-, A;) inside StabC, known as [1-stability. Another natural slice
is the large volume slice with central charge

2
fov(v)sz%+dpfchz, p=Ss+it

@ For Im7 large enough, the physical and large volume slices are
related by the action of G.

B. Pioline (LPTHE, Paris) Attractor flow trees 4/10/2023 14 /55



Space of Bridgeland stability conditions

@ Specifically, this holds in the region w > %sz where

(s,w) := (Imlo _m(TIo)y . (7, 1|7/2) above dashed line:

@ The large volume slice does not cover the region around the
orbifold point, and covers only part of the conifold point.
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BPS Spectrum around the orbifold point

@ The category D? Coh¢(Kgz) is isomorphic to the category of
representations of a quiver with potential (Q, W), whose nodes
correspond to fractional branes on €2 /Zs [Douglas Fiol Romelsberger00]

Ei = O[-1], 4 =[-1,0,0]

E2 = 9(1)7 Yo = [27_15_%]
E3 = O(_1)[1]7 73:[_171a_%]
r= 2nn—n—ng
d= na — np
W =Y X2 cho = —3(n2 + )

@ The quiver description is valid in a region where the central
charges Z(E;) lie in a common half-plane. This includes the
vicinity of the orbifold point, where Z; (~;) =1/3 fori =1,2,3.
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Attractor indices for quivers

@ In that region, Q. () coincides with the quiver index Qg(~)
counting d-semi-stable representations of dimension vector ~, for
suitable FI parameters () € R%,

@ Recall that a representation of dimension vector v is §-semi-stable
iff (6,~") < (60, ~) for any subrepresentation. Specifically,

0; = —Re(e ¥ Z(7;)) with Im(e ¥Z(v,)) > 0Vi

@ In the quiver context, the attractor point (aka self-stability
condition) is ,(~y) such that Manschot BP Sen'13; Bridgeland'16]

VY, (0:(7),7) = () = > (M — )

a:i—j

and the (quiver) attractor invariant is defined as Q. (v) := Qy, (1)(7)
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The Flow Tree formula for quivers

@ In [Alexandrov BP'18], we conjectured a precise version of SAFC which
expresses y(~) in terms of the attractor invariants:

A _ 9o {'7/
Qy(v) = = Aut({71}) HQ i)

The coefficients gy({~i}) involve a sum over rooted binary trees,
whose edges are embedded in Fl-space along straight lines
0o + M. (ve), which are the analogue of attractor flows.
@ The sum is manifestly finite, since ~; lie in the positive cone N%.
@ The formula was proven mathematically in jArgiz Bousseau21] using
the formalism of scattering diagrams. See also Mozgovoy’s proof
using operads.
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Scattering diagrams in a nutshell

@ For any quiver with potential (Q, W), the scattering diagram Dg, is
the set of real codimension-one rays {R(7),y € Z%} defined by

R(y) ={0 € R (0,7) =0, Qq(y) # 0}

@ Each point along R(~) is endowed with an automorphism of the
quantum torus algebra generated by X, X, = (—y) &,

Us(7) = exp (402, ) = Exp (52 x,)

@ The WCF ensures that the diagram is consistent: for any generic
closed path P : t € [0,1] € R, L1 Up(yy (i) = 1 [Bridgeland'16]
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Scattering diagram for Kronecker quiver

°°

01> 0,0, <0: dimMy(y)=mniny—né —n3+1

Y1 71 71

72 2 2

m=1 m=2 m=3
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Consistent scattering diagrams

@ At each intersection, outgoing rays (and corresponding DT
invariants) are determined from incoming rays by the consistency
condition. E.g. for Ky = A, this is the famous five-term relation

U Uy = UnyUyys 14,Uy,

@ A consistent scattering diagram is uniquely determined from the
initial rays R.(), defined as those which contain 6,(~).

@ The Flow Tree Formula of jAlexandrov BP'18] determines the indices of
outgoing rays produced by scattering initial rays [Argiiz Bousseau '20]
(see also the operadic approach of Mozgovoy'19))
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Attractor invariants for Kpz

@ In /Beaujard BP Manschot'20], we conjectured that the attractor indices
Q,(v) vanish except for v = v; or v = k(v1 + 72 + 73) = kK[DQO].
This is now a theorem [Bousseau Descombes Le Floch BP’22).
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A 2D slice of the orbifold scattering diagram

Let D, be the restriction of Dq to the hyperplane 61 + 6> + 65 = 1:
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A 2D slice of the orbifold scattering diagram

Let D, be the restriction of Dq to the hyperplane 61 + 6> + 65 = 1:

'
2o
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A 2D slice of the orbifold scattering diagram

Let D, be the restriction of Dq to the hyperplane 61 + 6> + 65 = 1:
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A 2D slice of the orbifold scattering diagram

The full scattering diagram Dg, includes regions with dense set of rays:
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Scattering diagrams on triangulated categories

@ For a general triangulated category C, define the scattering
diagram D,,(C) as the set of codimension-one loci in StabC,

Ry(y) ={o:argZ(y) = ¢ + 5, Qz(7) # 0}

equipped with (a suitable regularization of) the automorphism

Uy () = exp( (j) X. ) = Exp (;2_1(7)/@)

@ The WCF ensures that the diagram D, is still locally consistent at
each codimension-two intersection.
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Flow trees from scattering diagrams

@ To see the relation to SAFC, note that for any local CY threefold,
the central charge Z;(y) is holomorphic in z%, hence its phase is
constant along the flow 92 = —g®d;|Z;(v)[*:

1d Z(7) 1 ha S 1 ha S
77' = = — = Z a T —_ a T =
2% %) 50aZ(1)9%0pZ(7) + 50aZ(7)9%9pZ (7) = O
thus the attractor flow takes place along the ray R(v), and can

only split when R(+.) and R(vg) intersect.

@ Moreover, by holomorphy |Z;(+)|? has no local minima so the only
attractor points are conifold points with Z;(v;) = 0.

@ In complex dimension one, attractor flow lines ~ scattering rays !
Attractor flow trees are subsets of D,, which produce an outgoing
ray R () passing through the desired point z.
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Large volume scattering diagram

@ The scattering diagram D" along the large volume slice

1 .
Z; (1) =—5rp® +dp—chz, p=s+it

was determined for 1) = 0 in Bousseau’19]. Other values of ) are
reached by mapping (s, t) — (s — ttani, t/ cos ).

@ Each ray Ry(v) is a branch of hyperbola asymptoting to
t==+(s— %) for r #£ 0, or a vertical line when r = 0. Walls of
marginal stability WW(v,~’) are half-circles centered on real axis.

L
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Large volume scattering diagram

@ Initial rays correspond to O(m) and O(m)[1], with charge
Ym = £[1, m, 3m?], emanating from (s, t) = (m, 0) on the
boundary where Zé‘v(q/m) = 0 [Bousseau’19]

@ Physically, the BPS spectrum along the large volume slice
originates from bound states of fluxed D4-branes and anti-D4
branes.
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SAFC holds along large volume slice

@ Rays stay inside the ‘forward light-cone’, and
ws(v) = 2(d — sr) = 2ImZ, /t increases along the ray.

e The first scatterings occur after a time ¢ > 1, after each constituent
kiO(m;) has moved by |As| > 1, by which time ¢s(v;) > |kil.

@ Since ¢s(7y) is additive at each vertex, this gives a bound on the
number and charges of constituents contributing to Qs 1 (7):

1
dokiltomiomil=v, s—t<mi<s+t Y [kl < es(y)
i

@ Thus, SAFC holds along the large volume slice !
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Example: Flow trees for v = [0,4, 1)

@ {{-30(-2),20(-1)},0}:
30(-2) = 20(-1) &0 = E
Q1 = K3(2,3)K12(1, 1) —
—156

I ® {—0O(-3),{—-0(-1),20}}:
2N O(-3)2 O(-1) =20 - E
Qo = K3(1,2)Ki2(1,1) — —36

Total: Qu(7) = —192 = GV
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Exact scattering diagram

@ The scattering diagram Dg along the physical slice should
interpolate between D}ZJV and D,, and be invariant under I'¢(3).

@ Under 7 — g7 with n € Z, O — O[n]. Hence there is a doubly
infinite family of initial rays emitted at = = 0, associated to O[n]:

@ Similarly, there must be an infinite family of rays emitted from
T = g with g # 0 mod 3, corresponding to I'{(3)-images of O.
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Exact scattering diagram for small ¢

@ For |¢| small enough, the only rays which reach the large volume
region are those associated to O(m) and O(m)[1]. Thus, the
scattering diagram Dy} is isomorphic to Dg" inside UnF(n):
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Scattering diagram in affine coordinates

@ To see this, one can map both of them to the (x, y)-plane

_ Re(eT) _ Re (e7¥Tp)
- cos N cos

)

such that R, (y) becomes a line segment rx + dy — ch, = 0.

@ The initial rays R,,(O(m)) are tangent to the parabola y = —} x?

at x = m, but the origin of each ray is shifted to x = m+ Vtany
where V is the quantum volume

27 .
V =ImT(0) = —Im [Liz(e2m/3)} ~ 0.463
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Affine scattering diagram, v» = 0
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Exact scattering diagram, ¢» =0
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Exact scattering diagram, ¢» = 0.3
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Exact scattering diagram, v = 0.6




Exact scattering diagram, ¢» = 0.8




Exact scattering diagram, ¢» = 0.824




Exact scattering diagram, ¢» = 0.825
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Exact scattering diagram, ¢ = 1.1
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Exact scattering diagram, ¢» = 1.137
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Exact scattering diagram, ¢ = 7/2
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Exact scattering diagram for ¢ = &5

@ For ¢ = £7, the geometric rays {ImZ; () = 0} coincide with lines

of constant s = "m0 — 9 independent of chy:

¥ V= =58 S

@ Hence, there is no wall-crossing between 7, and 7 = ico when
—1 < ¢ <0, explaining why the Gieseker index Q. () agrees
with the quiver index Q¢(~) in the anti-attractor chamber.

Douglas Fiol Romelsberger'00, Beaujard BP Manschot’20
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Conclusion - outlook

@ Scattering diagrams are the appropriate mathematical framework
for attractor flow trees in the case of local CY3. This is because
Z(~y) is holomorphic on Mg, so the gradient flow preserves the
phase of Z(7).

@ This provides an effective way of computing BPS invariants in any
chamber, and a natural decomposition into elementary
constituents. Does it help e.g. in understanding modularity ?

@ It will be interesting to extend this description to other toric CY3,
such as local del Pezzo surfaces. [Le Floch BP Schimannek, in progress]

@ For compact CY3, Z(v) = €X/2Z,,1(v) is not longer holomorphic,
so arg Z(+y) is not constant along the flow. Can one still use
scattering diagrams to construct the BPS spectrum ?
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Thanks fo attention !
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