BPS Dendroscopy on Local \mathbb{P}^{2}

Boris Pioline

Geometry and QFT, 20/10/2022

Based on [2210.10712] with Pierrick Bousseau, Pierre Descombes and Bruno Le Floch

My amazing co-authors

Introduction

- In type IIA string theory compactified on a Calabi-Yau threefold X, the BPS spectrum consists of bound states of D6-D4-D2-D0 branes, with charge $\gamma \in H_{\text {even }}(X, \mathbb{Q})$.

Introduction

- In type IIA string theory compactified on a Calabi-Yau threefold X, the BPS spectrum consists of bound states of D6-D4-D2-D0 branes, with charge $\gamma \in H_{\text {even }}(X, \mathbb{Q})$.
- The BPS index $\Omega_{z}(\gamma)$ counts states saturating the BPS bound $M(\gamma) \geq|Z(\gamma)|$, where $Z \in \operatorname{Hom}(\Gamma, \mathbb{C})$ depends on the complexified Kähler moduli $z \in \mathcal{M}_{K}$.

Introduction

- In type IIA string theory compactified on a Calabi-Yau threefold X, the BPS spectrum consists of bound states of D6-D4-D2-D0 branes, with charge $\gamma \in H_{\text {even }}(X, \mathbb{Q})$.
- The BPS index $\Omega_{z}(\gamma)$ counts states saturating the BPS bound $M(\gamma) \geq|Z(\gamma)|$, where $Z \in \operatorname{Hom}(\Gamma, \mathbb{C})$ depends on the complexified Kähler moduli $z \in \mathcal{M}_{K}$.
- Mathematically, the Donaldson-Thomas invariant $\Omega_{z}(\gamma)$ counts stable objects with ch $E=\gamma$ in the derived category of coherent sheaves $\mathcal{C}=D^{b} \operatorname{Coh}(X)$.

Introduction

- $\Omega_{z}(\gamma)$ is locally constant on \mathcal{M}_{K}, but can jump across real codimension one walls of marginal stability $\mathcal{W}\left(\gamma_{L}, \gamma_{R}\right) \subset \mathcal{M}_{K}$, where the phases of the central charges $Z\left(\gamma_{L}\right)$ and $Z\left(\gamma_{R}\right)$ with $\gamma=m_{L} \gamma_{L}+m_{R} \gamma_{R}$ become aligned [Kontsevich Soibelman'08, Joyce Song'08]

Introduction

- $\Omega_{z}(\gamma)$ is locally constant on \mathcal{M}_{K}, but can jump across real codimension one walls of marginal stability $\mathcal{W}\left(\gamma_{L}, \gamma_{R}\right) \subset \mathcal{M}_{K}$, where the phases of the central charges $Z\left(\gamma_{L}\right)$ and $Z\left(\gamma_{R}\right)$ with $\gamma=m_{L} \gamma_{L}+m_{R} \gamma_{R}$ become aligned [Kontsevich Soibelman'08, Joyce Song'08]
- Physically, multi-centered black hole solutions with charges $\gamma_{i}=m_{L, i} \gamma_{L}+m_{R, i} \gamma_{R}$ (dis)appear across the wall [Denef Moore '07, ..., Manschot BP Sen '11].

Introduction

- $\Omega_{z}(\gamma)$ is locally constant on \mathcal{M}_{K}, but can jump across real codimension one walls of marginal stability $\mathcal{W}\left(\gamma_{L}, \gamma_{R}\right) \subset \mathcal{M}_{K}$, where the phases of the central charges $Z\left(\gamma_{L}\right)$ and $Z\left(\gamma_{R}\right)$ with $\gamma=m_{L} \gamma_{L}+m_{R} \gamma_{R}$ become aligned [Kontsevich Soibelman'08, Joyce Song'08]
- Physically, multi-centered black hole solutions with charges $\gamma_{i}=m_{L, i} \gamma_{L}+m_{R, i} \gamma_{R}$ (dis)appear across the wall [Denef Moore '07, ..., Manschot BP Sen '111.
- Most of these multi-centered bound states are expected to be absent at the attractor point $z_{\star}(\gamma)$, defined as the endpoint of the attractor flow [Ferrara Kallosh Strominger'95]

$$
\mathrm{AF}_{\gamma}: \quad r^{2} \frac{\mathrm{~d} z^{a}}{\mathrm{~d} r}=-g^{\mathrm{a}} \partial_{\bar{b}}\left|Z_{z}(\gamma)\right|^{2}
$$

The Split Attractor Flow Conjecture

- Since $Z_{z}(\gamma)$ decreases along the flow, $\boldsymbol{Z}_{\star}(\gamma)$ is either a local minimum of $\left|Z_{z}(\gamma)\right|>0$, or a conifold point if $Z_{Z_{\star}(\gamma)}(\gamma)=0$. We define the attractor invariant as $\Omega_{\star}(\gamma)=\Omega_{z_{\star}(\gamma)}(\gamma)$.

The Split Attractor Flow Conjecture

- Since $Z_{z}(\gamma)$ decreases along the flow, $Z_{\star}(\gamma)$ is either a local minimum of $\left|Z_{z}(\gamma)\right|>0$, or a conifold point if $Z_{z_{\star}(\gamma)}(\gamma)=0$. We define the attractor invariant as $\Omega_{\star}(\gamma)=\Omega_{z_{\star}(\gamma)}(\gamma)$.
- Starting from $z \in \mathcal{M}_{K}$, following AF_{γ} and recursively applying the WCF formula at whenever the flow crosses a wall of marginal stability, one can in principle express $\Omega_{z}(\gamma)$ in terms of attractor invariants.

The Split Attractor Flow Conjecture (SFAC)

- In terms of the rational DT invariants

$$
\bar{\Omega}_{z}(\gamma):=\sum_{k \mid \gamma} \frac{y-1 / y}{k\left(y^{k}-y^{-k}\right)} \Omega_{z}(\gamma / k)_{y \rightarrow y^{k}}
$$

the result takes the form

$$
\bar{\Omega}_{z}(\gamma)=\sum_{\gamma=\sum \gamma_{i}} \frac{g_{z}\left(\left\{\gamma_{i}\right\}\right)}{\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i} \bar{\Omega}_{\star}\left(\gamma_{i}\right)
$$

where $g_{z}\left(\left\{\gamma_{i}\right\}\right)$ is a sum over 'attractor flow trees'.

The Split Attractor Flow Conjecture (SFAC)

- In terms of the rational DT invariants

$$
\bar{\Omega}_{z}(\gamma):=\sum_{k \mid \gamma} \frac{y-1 / y}{k\left(y^{k}-y^{-k}\right)} \Omega_{z}(\gamma / k)_{y \rightarrow y^{k}}
$$

the result takes the form

$$
\bar{\Omega}_{z}(\gamma)=\sum_{\gamma=\sum \gamma_{i}} \frac{g_{z}\left(\left\{\gamma_{i}\right\}\right)}{\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i} \bar{\Omega}_{\star}\left(\gamma_{i}\right)
$$

where $g_{z}\left(\left\{\gamma_{i}\right\}\right)$ is a sum over 'attractor flow trees'.

- The Split Attractor Flow Conjecture [Denef'00, Denef Moore'07] is the statement that only a finite number of decompositions $\gamma=\sum \gamma_{i}$ contribute to the index $\bar{\Omega}_{z}(\gamma)$.

The Split Attractor Flow Conjecture

- The problem is that one does not know a priori which constituents γ_{i} can contribute, except for the constraints

$$
\sum_{i} \gamma_{i}=\gamma, \quad \sum_{i}\left|Z_{z_{\star}\left(\gamma_{i}\right)}\left(\gamma_{i}\right)\right|<\left|Z_{z}(\gamma)\right|
$$

The Split Attractor Flow Conjecture

- The problem is that one does not know a priori which constituents γ_{i} can contribute, except for the constraints

$$
\sum_{i} \gamma_{i}=\gamma, \quad \sum_{i}\left|Z_{Z_{\star}\left(\gamma_{i}\right)}\left(\gamma_{i}\right)\right|<\left|Z_{z}(\gamma)\right|
$$

- In particular, there can be cancellations between D-branes and anti-D-branes, and contribution from conifold states which are massless at their attractor point are hard to bound.

The Split Attractor Flow Conjecture

- The problem is that one does not know a priori which constituents γ_{i} can contribute, except for the constraints

$$
\sum_{i} \gamma_{i}=\gamma, \quad \sum_{i}\left|Z_{Z_{\star}\left(\gamma_{i}\right)}\left(\gamma_{i}\right)\right|<\left|Z_{z}(\gamma)\right|
$$

- In particular, there can be cancellations between D-branes and anti-D-branes, and contribution from conifold states which are massless at their attractor point are hard to bound.
- Even if SAFC holds, one still has to compute the attractor indices $\Omega_{\star}(\gamma)$, a tall order for regular attractor points.

The Split Attractor Flow Conjecture

- The problem is that one does not know a priori which constituents γ_{i} can contribute, except for the constraints

$$
\sum_{i} \gamma_{i}=\gamma, \quad \sum_{i}\left|Z_{Z_{\star}\left(\gamma_{i}\right)}\left(\gamma_{i}\right)\right|<\left|Z_{z}(\gamma)\right|
$$

- In particular, there can be cancellations between D-branes and anti-D-branes, and contribution from conifold states which are massless at their attractor point are hard to bound.
- Even if SAFC holds, one still has to compute the attractor indices $\Omega_{\star}(\gamma)$, a tall order for regular attractor points.
- Besides single-centered black holes, $\Omega_{\star}(\gamma)$ also gets contributions multi-centered scaling solutions. The Coulomb Branch Formula [Manschot BP Sen'12] allows to disentangle them, but suffers from same difficulties as SAFC.

Summary

- Our aim is to investigate the Split Attractor Flow Conjecture for one of the simplest examples of CY threefolds, namely

Summary

- Our aim is to investigate the Split Attractor Flow Conjecture for one of the simplest examples of CY threefolds, namely $X=K_{\mathbb{P}^{2}}=\mathbb{C}^{3} / \mathbb{Z}_{3}$ [Douglas Fiol Romelsberger'00].
- We show that the only possible constituents are the $\Gamma_{1}(3)$ images of the D4-brane $\mathcal{O}_{\mathbb{P}^{2}}$ and anti-D4-brane $\mathcal{O}_{\mathbb{P}^{2}}$ [1], each carrying attractor index $\Omega_{\star}(\gamma)=1$.

Summary

- Our aim is to investigate the Split Attractor Flow Conjecture for one of the simplest examples of CY threefolds, namely $X=K_{\mathbb{P}^{2}}=\mathbb{C}^{3} / \mathbb{Z}_{3}$ [Douglas Fiol Romelsberger'00].
- We show that the only possible constituents are the $\Gamma_{1}(3)$ images of the D4-brane $\mathcal{O}_{\mathbb{P}^{2}}$ and anti-D4-brane $\mathcal{O}_{\mathbb{P}^{2}}$ [1], each carrying attractor index $\Omega_{\star}(\gamma)=1$.
- In particular, in the large volume region the full BPS spectrum arises as bound states of fluxed D4 and anti-D4-brane, with effective bounds on the number and flux of the constituents.

Summary

- Our aim is to investigate the Split Attractor Flow Conjecture for one of the simplest examples of CY threefolds, namely $X=K_{\mathbb{P}^{2}}=\mathbb{C}^{3} / \mathbb{Z}_{3}$ [Douglas Fiol Romelsberger'00].
- We show that the only possible constituents are the $\Gamma_{1}(3)$ images of the D4-brane $\mathcal{O}_{\mathbb{P}^{2}}$ and anti-D4-brane $\mathcal{O}_{\mathbb{P}^{2}}$ [1], each carrying attractor index $\Omega_{\star}(\gamma)=1$.
- In particular, in the large volume region the full BPS spectrum arises as bound states of fluxed D4 and anti-D4-brane, with effective bounds on the number and flux of the constituents.
- A key role is played by scattering diagrams, which provide the correct mathematical framework for the SAFC, at least for local CY threefolds.

Outline

(1) Introduction
(2) Kähler moduli space of $K_{\mathbb{P}^{2}}$
(3) Orbifold region
(4) Large volume slice
(5) Physical slice of Π stability conditions

Outline

(1) Introduction

(2) Kähler moduli space of $K_{\mathbb{P}^{2}}$
(3) Orbifold region

4 Large volume slice
(5) Physical slice of Π stability conditions

Kähler moduli space

- By local mirror symmetry, the Kähler moduli space of $X=K_{\mathbb{P}^{2}}$ is the quotient $X_{1}(3)=\mathbb{H} / \Gamma_{1}(3)$ parametrizing elliptic curves with level structure. It admits two cusps $L V, C$ and one orbifold point o.

Kähler moduli space

- By local mirror symmetry, the Kähler moduli space of $X=K_{\mathbb{P}^{2}}$ is the quotient $X_{1}(3)=\mathbb{H} / \Gamma_{1}(3)$ parametrizing elliptic curves with level structure. It admits two cusps $L V, C$ and one orbifold point o.

- A BPS state on X is an object E in the derived category \mathcal{C} of compactly supported sheaves on X, with charge

$$
\gamma(E)=\operatorname{ch}\left(\pi_{*}(E)\right)=\left[r, d, \mathrm{ch}_{2}\right] \sim[D 4, D 2, D 0]
$$

Central charge as Eichler integral

- The central charge $Z_{\tau}(\gamma)$ is a linear combination

$$
Z_{\tau}(\gamma)=-r T_{D}(\tau)+d T(\tau)-\mathrm{ch}_{2}
$$

where T_{D}, T are single-valued functions on \mathbb{H} (but not on \mathcal{M}_{K}). They are periods of a one-form λ with logarithmic singularities on the mirror curve, satisfying a Picard-Fuchs equation of degree 3.

Central charge as Eichler integral

- The central charge $Z_{\tau}(\gamma)$ is a linear combination

$$
Z_{\tau}(\gamma)=-r T_{D}(\tau)+d T(\tau)-\mathrm{ch}_{2}
$$

where T_{D}, T are single-valued functions on \mathbb{H} (but not on \mathcal{M}_{K}). They are periods of a one-form λ with logarithmic singularities on the mirror curve, satisfying a Picard-Fuchs equation of degree 3.

- It turns out that $\partial_{\tau} \lambda$ is holomorphic, so its periods are proportional to $(1, \tau)$. Integrating along a path from o to τ, one can establish the Eichler-type integral representation

$$
\binom{T}{T_{D}}=\binom{1 / 2}{1 / 3}+\int_{\tau_{0}}^{\tau}\binom{1}{u} C(u) \mathrm{d} u
$$

where $C(\tau)=\frac{\eta(\tau)^{9}}{\eta(3 \tau)^{3}}$ is a weight 3 modular form for $\Gamma_{1}(3)$.

Central charge as Eichler integral

- This provides an computationally efficient analytic continuation of Z_{τ} throughout \mathbb{H}, and gives access to monodromies:

$$
\tau \mapsto \frac{a \tau+b}{c \tau+d} \quad\left(\begin{array}{c}
1 \\
T \\
T_{D}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
m & d & c \\
m_{D} & b & a
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
T \\
T_{D}
\end{array}\right)
$$

where $\left(m, m_{D}\right)$ are period integrals of C from τ_{0} to $\frac{d \tau_{0}-b}{a-C \tau_{0}}$.

Central charge as Eichler integral

- This provides an computationally efficient analytic continuation of Z_{τ} throughout \mathbb{H}, and gives access to monodromies:

$$
\tau \mapsto \frac{a \tau+b}{c \tau+d} \quad\left(\begin{array}{c}
1 \\
T \\
T_{D}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
m & d & c \\
m_{D} & b & a
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
T \\
T_{D}
\end{array}\right)
$$

where $\left(m, m_{D}\right)$ are period integrals of C from τ_{0} to $\frac{d \tau_{0}-b}{a-C \tau_{0}}$.

- At large volume $\tau \rightarrow \mathrm{i} \infty$, using $C=1+\mathcal{O}(q)$ one finds

$$
T=\tau+\mathcal{O}(q), \quad T_{D}=\frac{1}{2} \tau^{2}+\frac{1}{8}+\mathcal{O}(q)
$$

in agreement with $Z(\gamma) \sim-\int_{S} e^{-z H}$ ch $E \operatorname{Td}(S)$.

Space of Bridgeland stability conditions

- Donaldson-Thomas invariants are defined in the larger space of Bridgeland stability conditions $\operatorname{Stab} \mathcal{C}=\{\sigma=(Z, \mathcal{A})\}$, where $Z: \Gamma \rightarrow \mathbb{C}$ is a linear map and $\mathcal{A} \subset \mathcal{C}$ an Abelian category (heart of t-structure) satisfying various axioms, e.g. $\operatorname{Im} Z(\gamma(E)) \geq 0 \forall E \in \mathcal{A}$.

Space of Bridgeland stability conditions

- Donaldson-Thomas invariants are defined in the larger space of Bridgeland stability conditions $\operatorname{Stab} \mathcal{C}=\{\sigma=(Z, \mathcal{A})\}$, where $Z: \Gamma \rightarrow \mathbb{C}$ is a linear map and $\mathcal{A} \subset \mathcal{C}$ an Abelian category (heart of t-structure) satisfying various axioms, e.g. $\operatorname{Im} Z(\gamma(E)) \geq 0 \forall E \in \mathcal{A}$.
- The group $G L(2, \mathbb{R})^{+}$acts on $\operatorname{Stab} \mathcal{C}$ by linear transformations of $(\operatorname{Re} Z, \operatorname{Im} Z)$ with positive determinant, leaving $\Omega_{\sigma}(\gamma)$ invariant.

Space of Bridgeland stability conditions

- Donaldson-Thomas invariants are defined in the larger space of Bridgeland stability conditions $\operatorname{Stab} \mathcal{C}=\{\sigma=(Z, \mathcal{A})\}$, where $Z: \Gamma \rightarrow \mathbb{C}$ is a linear map and $\mathcal{A} \subset \mathcal{C}$ an Abelian category (heart of t-structure) satisfying various axioms, e.g. $\operatorname{Im} Z(\gamma(E)) \geq 0 \forall E \in \mathcal{A}$.
- The group $G \widetilde{L(2, \mathbb{R})}+$ acts on $\operatorname{Stab} \mathcal{C}$ by linear transformations of $(\operatorname{Re} Z, \operatorname{Im} Z)$ with positive determinant, leaving $\Omega_{\sigma}(\gamma)$ invariant.
- For τ_{2} large enough, one can use $G \mathscr{L (2 , \mathbb { R }) ^ { + }}$ to absorb the $1 / 8$ and $\mathcal{O}(q)$ corrections and reach the large volume slice

$$
Z_{(s, t)}^{L V}(\gamma)=-\frac{r}{2}(s+\mathrm{i} t)^{2}+d(s+\mathrm{i} t)-\mathrm{ch}_{2}
$$

with $\tau \simeq s+\mathrm{i} t$.

Space of Bridgeland stability conditions

- Specifically, this holds in the region $w>\frac{1}{2} s^{2}$ where $(s, w):=\left(\frac{\operatorname{Im} T_{D}}{\operatorname{Im} T},-\frac{\operatorname{Im}\left(T \bar{T}_{D}\right)}{\operatorname{Im} T}\right)$ and $t=\sqrt{2 w-s^{2}}$.

Space of Bridgeland stability conditions

- Specifically, this holds in the region $w>\frac{1}{2} s^{2}$ where $(s, w):=\left(\frac{\operatorname{Im} T_{D}}{\operatorname{Im} T},-\frac{\operatorname{Im}\left(T \bar{T}_{D}\right)}{\operatorname{Im} T}\right)$ and $t=\sqrt{2 w-s^{2}}$.

- The large volume slice does not cover the region around the orbifold point, and covers only part of the conifold point.

Outline

(1) Introduction

(2) Kähler moduli space of $K_{\mathbb{P}^{2}}$

(3) Orbifold region

4 Large volume slice
(5) Physical slice of Π stability conditions
B. Pioline (LPTHE, Paris)

Quiver for $K_{\mathbb{P} 2}$

- The category $D^{b} \operatorname{Coh}_{c}\left(K_{\mathbb{P}^{2}}\right)$ is isomorphic to the category of representations a quiver with potential (Q, W), whose nodes correspond to fractional branes on $\mathbb{C}^{3} / \mathbb{Z}_{3}$:

- The quiver description is valid in a region where the central charges $Z\left(E_{i}\right)$ lie in a common half-plane, which includes the orbifold point $\tau_{0}=-\frac{1}{2}+\frac{i}{2 \sqrt{3}}$, where $Z_{\tau_{0}}\left(\gamma_{i}\right)=1 / 3$ for $i=1,2,3$.

Attractor flow tree formula for quivers

- In that region, $\Omega_{\tau}(\gamma)$ coincides with the quiver index $\Omega_{\theta}(\gamma)$ counting θ-semi-stable representations of dimension vector γ, upon setting $\theta_{i}=-\operatorname{Re}\left(e^{-\mathrm{i} \psi} Z_{\tau}\left(\gamma_{i}\right)\right)$ with ψ s.t. $\operatorname{Im}\left(e^{-\mathrm{i} \psi} Z_{\tau}\left(\gamma_{i}\right)\right)>0$.

Attractor flow tree formula for quivers

- In that region, $\Omega_{\tau}(\gamma)$ coincides with the quiver index $\Omega_{\theta}(\gamma)$ counting θ-semi-stable representations of dimension vector γ, upon setting $\theta_{i}=-\operatorname{Re}\left(e^{-\mathrm{i} \psi} Z_{\tau}\left(\gamma_{i}\right)\right)$ with ψ s.t. $\operatorname{Im}\left(e^{-\mathrm{i} \psi} Z_{\tau}\left(\gamma_{i}\right)\right)>0$.
- For $\theta \in \mathbb{R}^{Q_{0}}, \theta$-semi-stable representations are such that $\left(\theta, \gamma^{\prime}\right) \leq(\theta, \gamma)$ for any subrepresentation.

Attractor flow tree formula for quivers

- In that region, $\Omega_{\tau}(\gamma)$ coincides with the quiver index $\Omega_{\theta}(\gamma)$ counting θ-semi-stable representations of dimension vector γ, upon setting $\theta_{i}=-\operatorname{Re}\left(e^{-\mathrm{i} \psi} Z_{\tau}\left(\gamma_{i}\right)\right)$ with ψ s.t. $\operatorname{Im}\left(e^{-\mathrm{i} \psi} Z_{\tau}\left(\gamma_{i}\right)\right)>0$.
- For $\theta \in \mathbb{R}^{Q_{0}}, \theta$-semi-stable representations are such that $\left(\theta, \gamma^{\prime}\right) \leq(\theta, \gamma)$ for any subrepresentation.
- In the quiver context, there is a notion of attractor stability condition (aka self-stability condition)

$$
\left(\theta_{\star}(\gamma), \gamma^{\prime}\right)=\left\langle\gamma^{\prime}, \gamma\right\rangle:=\sum_{\mathrm{a}: i \rightarrow j}\left(n_{i}^{\prime} n_{j}-n_{j}^{\prime} n_{i}\right)
$$

The (quiver) attractor invariant is defined as $\Omega_{\star}(\gamma):=\Omega_{\theta_{\star}(\gamma)}(\gamma)$

The Flow Tree formula for quivers

- In [Alexandrov BP'18], we conjectured a precise version of SAFC which expresses $\bar{\Omega}_{\theta}(\gamma)$ in terms of the attractor invariants:

$$
\bar{\Omega}_{\theta}(\gamma)=\sum_{\gamma=\sum \gamma_{i}} \frac{g_{\theta}\left(\left\{\gamma_{i}\right\}\right)}{\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i} \bar{\Omega}_{\star}\left(\gamma_{i}\right)
$$

The coefficients $g_{\theta}\left(\left\{\gamma_{i}\right\}\right)$ involve a sum over rooted binary trees, whose edges are embedded in $\mathbb{R}^{Q_{0}}$ along straight lines $\theta_{0}+\lambda \theta_{\star}\left(\gamma_{e}\right)$, which are the analogue of attractor flows.

The Flow Tree formula for quivers

- In [Alexandrov BP'18], we conjectured a precise version of SAFC which expresses $\bar{\Omega}_{\theta}(\gamma)$ in terms of the attractor invariants:

$$
\bar{\Omega}_{\theta}(\gamma)=\sum_{\gamma=\sum \gamma_{i}} \frac{g_{\theta}\left(\left\{\gamma_{i}\right\}\right)}{\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i} \bar{\Omega}_{\star}\left(\gamma_{i}\right)
$$

The coefficients $g_{\theta}\left(\left\{\gamma_{i}\right\}\right)$ involve a sum over rooted binary trees, whose edges are embedded in $\mathbb{R}^{Q_{0}}$ along straight lines $\theta_{0}+\lambda \theta_{\star}\left(\gamma_{e}\right)$, which are the analogue of attractor flows.

- The sum is manifestly finite, since γ_{i} lie in the positive cone $\mathbb{Z}_{+}^{Q_{0}}$.

The Flow Tree formula for quivers

- In [Alexandrov BP'18], we conjectured a precise version of SAFC which expresses $\bar{\Omega}_{\theta}(\gamma)$ in terms of the attractor invariants:

$$
\bar{\Omega}_{\theta}(\gamma)=\sum_{\gamma=\sum \gamma_{i}} \frac{g_{\theta}\left(\left\{\gamma_{i}\right\}\right)}{\operatorname{Aut}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i} \bar{\Omega}_{\star}\left(\gamma_{i}\right)
$$

The coefficients $g_{\theta}\left(\left\{\gamma_{i}\right\}\right)$ involve a sum over rooted binary trees, whose edges are embedded in $\mathbb{R}^{Q_{0}}$ along straight lines $\theta_{0}+\lambda \theta_{\star}\left(\gamma_{e}\right)$, which are the analogue of attractor flows.

- The sum is manifestly finite, since γ_{i} lie in the positive cone $\mathbb{Z}_{+}^{Q_{0}}$.
- The formula was proven mathematically in [Argüz Bousseau'21] using the formalism of scattering diagrams.

Flow tree formula from scattering diagrams

- For any quiver with potential (Q, W), the scattering diagram \mathcal{D}_{Q} is the set of real codimension-one rays $\left\{\mathcal{R}(\gamma), \gamma \in \mathbb{Z}^{Q_{0}}\right\}$ defined by

$$
\mathcal{R}(\gamma)=\left\{\theta \in \mathbb{R}^{Q_{0}}:(\theta, \gamma)=0, \bar{\Omega}_{\theta}(\gamma) \neq 0\right\}
$$

Flow tree formula from scattering diagrams

- For any quiver with potential (Q, W), the scattering diagram \mathcal{D}_{Q} is the set of real codimension-one rays $\left\{\mathcal{R}(\gamma), \gamma \in \mathbb{Z}^{Q_{0}}\right\}$ defined by

$$
\mathcal{R}(\gamma)=\left\{\theta \in \mathbb{R}^{Q_{0}}:(\theta, \gamma)=0, \bar{\Omega}_{\theta}(\gamma) \neq 0\right\}
$$

- Each point along $\mathcal{R}(\gamma)$ is endowed with an automorphism of the quantum torus algebra,

$$
\mathcal{U}_{\theta}(\gamma)=\exp \left(\frac{\bar{\Omega}_{\theta}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right), \quad \mathcal{X}_{\gamma} \mathcal{X}_{\gamma^{\prime}}=(-y)^{\left\langle\gamma, \gamma^{\prime}\right\rangle} \mathcal{X}_{\gamma+\gamma^{\prime}}
$$

Flow tree formula from scattering diagrams

- For any quiver with potential (Q, W), the scattering diagram \mathcal{D}_{Q} is the set of real codimension-one rays $\left\{\mathcal{R}(\gamma), \gamma \in \mathbb{Z}^{Q_{0}}\right\}$ defined by

$$
\mathcal{R}(\gamma)=\left\{\theta \in \mathbb{R}^{Q_{0}}:(\theta, \gamma)=0, \bar{\Omega}_{\theta}(\gamma) \neq 0\right\}
$$

- Each point along $\mathcal{R}(\gamma)$ is endowed with an automorphism of the quantum torus algebra,

$$
\mathcal{U}_{\theta}(\gamma)=\exp \left(\frac{\bar{\Omega}_{\theta}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right), \quad \mathcal{X}_{\gamma} \mathcal{X}_{\gamma^{\prime}}=(-y)^{\left\langle\gamma, \gamma^{\prime}\right\rangle} \mathcal{X}_{\gamma+\gamma^{\prime}}
$$

- The WCF ensures that the diagram is consistent: for any generic closed path $\mathcal{P}: t \in[0,1] \in \mathbb{R}^{Q_{0}}, \prod_{i} \mathcal{U}_{\theta\left(t_{i}\right)}\left(\gamma_{i}\right)^{\epsilon_{i}}=1$ [Bridgeland'16]

Flow tree formula from scattering diagrams

- For any quiver with potential (Q, W), the scattering diagram \mathcal{D}_{Q} is the set of real codimension-one rays $\left\{\mathcal{R}(\gamma), \gamma \in \mathbb{Z}^{Q_{0}}\right\}$ defined by

$$
\mathcal{R}(\gamma)=\left\{\theta \in \mathbb{R}^{Q_{0}}:(\theta, \gamma)=0, \bar{\Omega}_{\theta}(\gamma) \neq 0\right\}
$$

- Each point along $\mathcal{R}(\gamma)$ is endowed with an automorphism of the quantum torus algebra,

$$
\mathcal{U}_{\theta}(\gamma)=\exp \left(\frac{\bar{\Omega}_{\theta}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right), \quad \mathcal{X}_{\gamma} \mathcal{X}_{\gamma^{\prime}}=(-y)^{\left\langle\gamma, \gamma^{\prime}\right\rangle} \mathcal{X}_{\gamma+\gamma^{\prime}}
$$

- The WCF ensures that the diagram is consistent: for any generic closed path $\mathcal{P}: t \in[0,1] \in \mathbb{R}^{Q_{0}}, \prod_{i} \mathcal{U}_{\theta\left(t_{i}\right)}\left(\gamma_{i}\right)^{\epsilon_{i}}=1$ [Bridgeland'16]
- A consistent scattering diagram is uniquely determined from the initial rays $\mathcal{R}_{\star}(\gamma)$, defined as those which contain $\theta_{\star}(\gamma)$.

Flow tree formula from scattering diagrams

- For any quiver with potential (Q, W), the scattering diagram \mathcal{D}_{Q} is the set of real codimension-one rays $\left\{\mathcal{R}(\gamma), \gamma \in \mathbb{Z}^{Q_{0}}\right\}$ defined by

$$
\mathcal{R}(\gamma)=\left\{\theta \in \mathbb{R}^{Q_{0}}:(\theta, \gamma)=0, \bar{\Omega}_{\theta}(\gamma) \neq 0\right\}
$$

- Each point along $\mathcal{R}(\gamma)$ is endowed with an automorphism of the quantum torus algebra,

$$
\mathcal{U}_{\theta}(\gamma)=\exp \left(\frac{\bar{\Omega}_{\theta}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right), \quad \mathcal{X}_{\gamma} \mathcal{X}_{\gamma^{\prime}}=(-y)^{\left\langle\gamma, \gamma^{\prime}\right\rangle} \mathcal{X}_{\gamma+\gamma^{\prime}}
$$

- The WCF ensures that the diagram is consistent: for any generic closed path $\mathcal{P}: t \in[0,1] \in \mathbb{R}^{Q_{0}}, \prod_{i} \mathcal{U}_{\theta\left(t_{i}\right)}\left(\gamma_{i}\right)^{\epsilon_{i}}=1$ [Bridgeland'16]
- A consistent scattering diagram is uniquely determined from the initial rays $\mathcal{R}_{\star}(\gamma)$, defined as those which contain $\theta_{\star}(\gamma)$.
- The Flow Tree Formula of [Alexandrov BP'18] determines the indices of outgoing rays produced by scattering initial rays [Argüz Bousseau '20].

Scattering diagram for Kronecker quiver

Attractor conjecture for $K_{\mathbb{P}^{2}}$

- By studying expected dimension of $\mathcal{M}_{\theta}(\gamma)$ for the orbifold quiver, [Beaujard BP Manschot'20] conjectured that the attractor index $\Omega_{\star}(\gamma)$ vanishes unless for $\gamma=\gamma_{i}$ or $\gamma=k\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)$. This is now a theorem.

Attractor conjecture for $K_{\mathbb{P}^{2}}$

- By studying expected dimension of $\mathcal{M}_{\theta}(\gamma)$ for the orbifold quiver, [Beaujard BP Manschot'20] conjectured that the attractor index $\Omega_{\star}(\gamma)$ vanishes unless for $\gamma=\gamma_{i}$ or $\gamma=k\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)$. This is now a theorem.

Attractor conjecture for $K_{\mathbb{R}^{2}}$

- By studying expected dimension of $\mathcal{M}_{\theta}(\gamma)$ for the orbifold quiver, [Beaujard BP Manschot'20] conjectured that the attractor index $\Omega_{\star}(\gamma)$ vanishes unless for $\gamma=\gamma_{i}$ or $\gamma=k\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)$. This is now a theorem.

A 2D slice of the orbifold scattering diagram

Let \mathcal{D}_{0} be the restriction of \mathcal{D}_{Q} to the hyperplane $\theta_{1}+\theta_{2}+\theta_{3}=1$:

A 2D slice of the orbifold scattering diagram

Let \mathcal{D}_{0} be the restriction of \mathcal{D}_{Q} to the hyperplane $\theta_{1}+\theta_{2}+\theta_{3}=1$:

A 2D slice of the orbifold scattering diagram

The full scattering diagram \mathcal{D}_{Q} includes regions with dense set of rays:

Scattering diagrams on triangulated categories

- For a general triangulated category \mathcal{C}, define the scattering diagram $\mathcal{D}_{\psi}(\mathcal{C})$ as the set of codimension-one loci in $\operatorname{Stab} \mathcal{C}$,

$$
\mathcal{R}_{\psi}(\gamma)=\left\{\sigma: \arg Z(\gamma)=\psi+\frac{\pi}{2}, \bar{\Omega}_{Z}(\gamma) \neq 0\right\}
$$

equipped with (a suitable regularization of) the automorphism

$$
\mathcal{U}_{\sigma}(\gamma)=\exp \left(\frac{\bar{\Omega}_{\sigma}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right)
$$

Scattering diagrams on triangulated categories

- For a general triangulated category \mathcal{C}, define the scattering diagram $\mathcal{D}_{\psi}(\mathcal{C})$ as the set of codimension-one loci in $\operatorname{Stab} \mathcal{C}$,

$$
\mathcal{R}_{\psi}(\gamma)=\left\{\sigma: \arg Z(\gamma)=\psi+\frac{\pi}{2}, \bar{\Omega}_{Z}(\gamma) \neq 0\right\}
$$

equipped with (a suitable regularization of) the automorphism

$$
\mathcal{U}_{\sigma}(\gamma)=\exp \left(\frac{\bar{\Omega}_{\sigma}(\gamma)}{y^{-1}-y} \mathcal{X}_{\gamma}\right)
$$

- The WCF ensures that the diagram \mathcal{D}_{ψ} is still locally consistent at each codimension-two intersection.

Flow trees from scattering diagrams

- To see the relation to SAFC, note that for any local CY threefold, the central charge $Z_{z}(\gamma)$ is holomorphic in z^{a}, hence its argument is constant along $\frac{\mathrm{d} z^{a}}{\mathrm{~d} \mu}=-g^{a \bar{b}} \partial_{\bar{b}}\left|Z_{z}(\gamma)\right|^{2}$:

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu} \log \frac{Z(\gamma)}{\bar{Z}(\gamma)}=-\frac{1}{2} \partial_{a} Z(\gamma) g^{a \bar{b}} \partial_{\bar{b}} \bar{Z}(\gamma)+\frac{1}{2} \partial_{a} Z(\gamma) g^{a \bar{b}} \partial_{\bar{b}} \bar{Z}(\gamma)=0
$$

Moreover, $\left|Z_{z}(\gamma)\right|^{2}$ has no local minima so the only attractor points are conifold points with $Z_{z}\left(\gamma_{i}\right)=0$.

Flow trees from scattering diagrams

- To see the relation to SAFC, note that for any local CY threefold, the central charge $Z_{z}(\gamma)$ is holomorphic in z^{a}, hence its argument is constant along $\frac{\mathrm{d} z^{a}}{\mathrm{~d} \mu}=-g^{a \bar{b}} \partial_{\bar{b}}\left|Z_{z}(\gamma)\right|^{2}$:

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu} \log \frac{Z(\gamma)}{\bar{Z}(\gamma)}=-\frac{1}{2} \partial_{a} Z(\gamma) g^{a \bar{b}} \partial_{\bar{b}} \bar{Z}(\gamma)+\frac{1}{2} \partial_{a} Z(\gamma) g^{a \bar{b}} \partial_{\bar{b}} \bar{Z}(\gamma)=0
$$

Moreover, $\left|Z_{z}(\gamma)\right|^{2}$ has no local minima so the only attractor points are conifold points with $Z_{z}\left(\gamma_{i}\right)=0$.

- Thus, the restriction of $\mathcal{R}_{\psi}(\gamma)$ to the physical slice is preserved by the attractor flow. Moreover, the flow can only split when $\mathcal{R}\left(\gamma_{L}\right)$ and $\mathcal{R}\left(\gamma_{R}\right)$ intersect, and end on an initial ray $\mathcal{R}_{\psi}\left(\gamma_{i}\right)$.

Flow trees from scattering diagrams

- To see the relation to SAFC, note that for any local CY threefold, the central charge $Z_{z}(\gamma)$ is holomorphic in z^{a}, hence its argument is constant along $\frac{\mathrm{d} z^{a}}{\mathrm{~d} \mu}=-g^{a \bar{b}} \partial_{\bar{b}}\left|Z_{z}(\gamma)\right|^{2}$:

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu} \log \frac{Z(\gamma)}{\bar{Z}(\gamma)}=-\frac{1}{2} \partial_{a} Z(\gamma) g^{a \bar{b}} \partial_{\bar{b}} \bar{Z}(\gamma)+\frac{1}{2} \partial_{a} Z(\gamma) g^{a \bar{b}} \partial_{\bar{b}} \bar{Z}(\gamma)=0
$$

Moreover, $\left|Z_{z}(\gamma)\right|^{2}$ has no local minima so the only attractor points are conifold points with $Z_{z}\left(\gamma_{i}\right)=0$.

- Thus, the restriction of $\mathcal{R}_{\psi}(\gamma)$ to the physical slice is preserved by the attractor flow. Moreover, the flow can only split when $\mathcal{R}\left(\gamma_{L}\right)$ and $\mathcal{R}\left(\gamma_{R}\right)$ intersect, and end on an initial ray $\mathcal{R}_{\psi}\left(\gamma_{i}\right)$.
- In complex dimension one, attractor flow lines and scattering rays coincide. Attractor flow trees are subsets of \mathcal{D}_{ψ} which produce an outgoing ray $\mathcal{R}_{\psi}(\gamma)$ with desired charge γ, passing through the desired point z.

Outline

(1) Introduction

(2) Kähler moduli space of $K_{\mathbb{P}^{2}}$

(3) Orbifold region

4 Large volume slice
(5) Physical slice of Π stability conditions
B. Pioline (LPTHE, Paris)

Large volume scattering diagram

- The scattering diagram $\mathcal{D}_{\psi}^{\mathrm{LV}}$ along the large volume slice

$$
Z_{(s, t)}^{L V}=-\frac{1}{2} r(s+\mathrm{i} t)^{2}+d(s+\mathrm{i} t)-\mathrm{ch}_{2}
$$

was determined for $\psi=0$ in [Bousseau'19], using a different set of coordinates. The construction extends to any ψ by just mapping $(s, t) \mapsto(s-t \tan \psi, t / \cos \psi)$.

Large volume scattering diagram

- The scattering diagram $\mathcal{D}_{\psi}^{\text {LV }}$ along the large volume slice

$$
Z_{(s, t)}^{L V}=-\frac{1}{2} r(s+\mathrm{i} t)^{2}+d(s+\mathrm{i} t)-\mathrm{ch}_{2}
$$

was determined for $\psi=0$ in [Bousseau'19], using a different set of coordinates. The construction extends to any ψ by just mapping $(s, t) \mapsto(s-t \tan \psi, t / \cos \psi)$.

- Since $\operatorname{Re} Z(\gamma)=\frac{1}{2} r\left(t^{2}-s^{2}\right)+d s-h_{2}$, each ray $\mathcal{R}_{0}(\gamma)$ is contained in a branch of hyperbola asymptoting to $t= \pm\left(s-\frac{d}{r}\right)$ for $r \neq 0$, or vertical a line when $r=0$. Walls of marginal stability $\mathcal{W}\left(\gamma, \gamma^{\prime}\right)$ are half-circles centered on real axis.

Large volume scattering diagram

It is useful to think of $\mathcal{R}(\gamma)$ as the worldline of a fictitious particle of charge r, mass $M^{2}=\frac{1}{2} d^{2}-r \mathrm{ch}_{2}$ moving in a constant electric field:

- The particle travels inside the forward light-cone

Large volume scattering diagram

It is useful to think of $\mathcal{R}(\gamma)$ as the worldline of a fictitious particle of charge r, mass $M^{2}=\frac{1}{2} d^{2}-r \mathrm{ch}_{2}$ moving in a constant electric field:

- The particle travels inside the forward light-cone
- the 'electric potential' $\varphi_{s}(\gamma)=2(d-s r)=2 \operatorname{Im} Z_{\gamma} / t$ increases along the flow.

Large volume scattering diagram

- Initial rays correspond to $\mathcal{O}(m)$ and $\mathcal{O}(m)[1]$, with charge $\gamma_{m}= \pm\left[1, m, \frac{1}{2} m^{2}\right]$, emanating from $(s, t)=(m, 0)$ on the boundary where $Z_{(s, t)}^{L V}\left(\gamma_{m}\right)=0$. [Bousseau'19]

Large volume scattering diagram

- Initial rays correspond to $\mathcal{O}(m)$ and $\mathcal{O}(m)[1]$, with charge $\gamma_{m}= \pm\left[1, m, \frac{1}{2} m^{2}\right]$, emanating from $(s, t)=(m, 0)$ on the boundary where $Z_{(s, t)}^{L V}\left(\gamma_{m}\right)=0$. [Bousseau'19]

- Physically, the BPS spectrum along the large volume slice originates from bound states of fluxed D4-branes and anti-D4 branes.

SAFC holds along large volume slice

- The first scatterings occur after a time $t \geq \frac{1}{2}$, after each constituent $k_{i} \mathcal{O}\left(m_{i}\right)$ has moved by $|\Delta s| \geq \frac{1}{2}$, by which time $\varphi_{s}\left(\gamma_{i}\right) \geq\left|k_{i}\right|$.

SAFC holds along large volume slice

- The first scatterings occur after a time $t \geq \frac{1}{2}$, after each constituent $k_{i} \mathcal{O}\left(m_{i}\right)$ has moved by $|\Delta s| \geq \frac{1}{2}$, by which time $\varphi_{s}\left(\gamma_{i}\right) \geq\left|k_{i}\right|$.
- Since $\varphi_{s}(\gamma)$ is additive at each vertex, this allows to bound the number and charges of constituents contributing to $\Omega_{(s, t)}(\gamma)$:

$$
\sum_{i} k_{i}\left[1, m_{i}, \frac{1}{2} m_{i}^{2}\right]=\gamma, \quad s-t \leq m_{i} \leq s+t, \quad \sum\left|k_{i}\right| \leq \varphi_{s}(\gamma)
$$

SAFC holds along large volume slice

- The first scatterings occur after a time $t \geq \frac{1}{2}$, after each constituent $k_{i} \mathcal{O}\left(m_{i}\right)$ has moved by $|\Delta s| \geq \frac{1}{2}$, by which time $\varphi_{s}\left(\gamma_{i}\right) \geq\left|k_{i}\right|$.
- Since $\varphi_{s}(\gamma)$ is additive at each vertex, this allows to bound the number and charges of constituents contributing to $\Omega_{(s, t)}(\gamma)$:

$$
\sum_{i} k_{i}\left[1, m_{i}, \frac{1}{2} m_{i}^{2}\right]=\gamma, \quad s-t \leq m_{i} \leq s+t, \quad \sum\left|k_{i}\right| \leq \varphi_{s}(\gamma)
$$

- Thus, SAFC holds along the large volume slice!

Flow trees for $\gamma=[0,4,1)$

Flow trees for $\gamma=[1,0,-3)$

Outline

(1) Introduction

(2) Kähler moduli space of $K_{\mathbb{P}^{2}}$

(3) Orbifold region

4 Large volume slice
(5) Physical slice of Π stability conditions

Exact scattering diagram

- The scattering diagram \mathcal{D}_{ψ}^{Π} along the physical slice should interpolate between $\mathcal{D}_{\psi}^{\mathrm{LV}}$ around $\tau=\mathrm{i} \infty$ and \mathcal{D}_{0} around $\tau=\tau_{0}$, and be invariant under the action of $\Gamma_{1}(3)$.

Exact scattering diagram

- The scattering diagram \mathcal{D}_{ψ}^{Π} along the physical slice should interpolate between $\mathcal{D}_{\psi}^{\mathrm{LV}}$ around $\tau=\mathrm{i} \infty$ and \mathcal{D}_{0} around $\tau=\tau_{0}$, and be invariant under the action of $\Gamma_{1}(3)$.
- Under $\tau \mapsto \frac{\tau}{3 n \tau+1}$ with $n \in \mathbb{Z}, \mathcal{O} \mapsto \mathcal{O}[n]$. Hence there is a doubly infinite family of initial rays emitted at $\tau=0$, associated to $\mathcal{O}[n]$.

Exact scattering diagram

- The scattering diagram \mathcal{D}_{ψ}^{Π} along the physical slice should interpolate between $\mathcal{D}_{\psi}^{\mathrm{LV}}$ around $\tau=\mathrm{i} \infty$ and \mathcal{D}_{o} around $\tau=\tau_{0}$, and be invariant under the action of $\Gamma_{1}(3)$.
- Under $\tau \mapsto \frac{\tau}{3 n \tau+1}$ with $n \in \mathbb{Z}, \mathcal{O} \mapsto \mathcal{O}[n]$. Hence there is a doubly infinite family of initial rays emitted at $\tau=0$, associated to $\mathcal{O}[n]$.

- Similarly, there must be an infinite family of initial rays coming from $\tau=\frac{p}{q}$ with $q \neq 0 \bmod 3$, corresponding to $\Gamma_{1}(3)$-images of $\mathcal{O}[n]$. In particular, from the conifold points $\tau=0,1 / 2,1$, where the objects E_{i} in the orbifold quiver become massless.

Exact scattering diagram for small ψ

- For $|\psi|$ small enough, the only rays which reach the large volume region are those associated to $\mathcal{O}(m)$ and $\mathcal{O}(m)[1]$. Thus, the scattering diagram \mathcal{D}_{ψ}^{Π} is isomorphic to $\mathcal{D}_{0}^{\mathrm{LV}}$ inside \mathcal{F} and its translates:

Exact scattering diagram for $\psi= \pm \frac{\pi}{2}$

- For $\psi= \pm \frac{\pi}{2}$, the geometric rays $\left\{\operatorname{Im} Z_{\tau}(\gamma)=0\right\}$ coincide with lines of constant $s=\frac{\operatorname{Im} T_{D}}{\operatorname{Im} T}=\frac{d}{r}$, independent of ch_{2} :

Exact scattering diagram for $\psi= \pm \frac{\pi}{2}$

- For $\psi= \pm \frac{\pi}{2}$, the geometric rays $\left\{\operatorname{Im} Z_{\tau}(\gamma)=0\right\}$ coincide with lines of constant $s=\frac{\operatorname{Im} T_{D}}{\operatorname{Im} T}=\frac{d}{r}$, independent of ch_{2} :

- Hence, there is no wall-crossing between τ_{0} and $\tau=\mathrm{i} \infty$ when $-1 \leq \frac{d}{r} \leq 0$, explaining why the Gieseker index $\Omega_{\infty}(\gamma)$ agrees with the quiver index $\Omega_{c}(\gamma)$ in the anti-attractor chamber.

Douglas Fiol Romelsberger'00, Beaujard BP Manschot'20

Exact scattering diagram, $\mathcal{V}_{\psi}=1 / 2$

As $|\psi|$ reaches a critical value $\simeq .082406$, the topology changes, as the rays $\left.\mathcal{R}_{\psi}(\mathcal{O}(m)[1])\right)$ end up at the conifold point $\tau=m+1$ rather than $\tau=\mathrm{i} \infty$.

Critical phases for the exact scattering diagram

- More generally, let $\mathcal{V}_{\psi}=\mathcal{V} \tan \psi$ where \mathcal{V} is the quantum volume

$$
\mathcal{V}=\operatorname{Im} T(0)=\frac{27}{4 \pi^{2}} \operatorname{ImLi}_{2}\left(e^{2 \pi \mathrm{i} / 3}\right) \simeq 0.463
$$

Critical phases for the exact scattering diagram

- More generally, let $\mathcal{V}_{\psi}=\mathcal{V} \tan \psi$ where \mathcal{V} is the quantum volume

$$
\mathcal{V}=\operatorname{Im} T(0)=\frac{27}{4 \pi^{2}} \operatorname{ImLi}_{2}\left(e^{2 \pi \mathrm{i} / 3}\right) \simeq 0.463
$$

- The topology of \mathcal{D}_{ψ}^{Π} jumps at a discrete set of rational values

$$
\mathcal{V}_{\psi} \in\left\{\frac{F_{2 k}+F_{2 k+2}}{2 F_{2 k+1}}, k \geq 0\right\}=\left\{\frac{1}{2}, 1, \frac{11}{10}, \frac{29}{26}, \frac{19}{17}, \ldots\right\}
$$

and a dense set of values in $\left[\frac{\sqrt{5}}{2},+\infty\right)$ where secondary rays pass through a conifold point.

Case studies

$$
\gamma=[0,1,1)=\operatorname{ch} \mathcal{O}_{C}:
$$

$$
\gamma=[1,0,1)=\operatorname{ch} \mathcal{O}:
$$

SAFC along the physical slice

- In general, trees reaching the large volume region have a two-stage structure, with initial rays from a finite set of exceptional collections $\left\{E_{1}\left(m_{i}\right), E_{2}\left(m_{i}\right), E_{3}\left(m_{i}\right)\right\}$, which scatter in the vicinity of orbifold points $\tau=\tau_{o}+m_{i}$, and then further interact in the large volume region.

SAFC along the physical slice

- In general, trees reaching the large volume region have a two-stage structure, with initial rays from a finite set of exceptional collections $\left\{E_{1}\left(m_{i}\right), E_{2}\left(m_{i}\right), E_{3}\left(m_{i}\right)\right\}$, which scatter in the vicinity of orbifold points $\tau=\tau_{o}+m_{i}$, and then further interact in the large volume region.

- The full proof of SFAC along physical slice will appear 'soon'.

Conclusion - outlook

- The scattering diagram is the proper mathematical framework for the attractor flow tree formula in the case of local CY3. This is because $Z(\gamma)$ is holomorphic on \mathcal{M}_{K}, so the gradient flow preserves $\arg Z(\gamma)$.

Conclusion - outlook

- The scattering diagram is the proper mathematical framework for the attractor flow tree formula in the case of local CY3. This is because $Z(\gamma)$ is holomorphic on \mathcal{M}_{K}, so the gradient flow preserves $\arg Z(\gamma)$.
- This provides an effective way of computing (unframed) BPS invariants in any chamber, and a natural decomposition into elementary constituents. Is this mathematically meaningful ? Does it help e.g. in understanding modularity ?

Conclusion - outlook

- The scattering diagram is the proper mathematical framework for the attractor flow tree formula in the case of local CY3. This is because $Z(\gamma)$ is holomorphic on \mathcal{M}_{K}, so the gradient flow preserves $\arg Z(\gamma)$.
- This provides an effective way of computing (unframed) BPS invariants in any chamber, and a natural decomposition into elementary constituents. Is this mathematically meaningful? Does it help e.g. in understanding modularity ?
- It would be interesting to extend this description to other toric CY3, such as local del Pezzo surfaces.

Conclusion - outlook

- The scattering diagram is the proper mathematical framework for the attractor flow tree formula in the case of local CY3. This is because $Z(\gamma)$ is holomorphic on \mathcal{M}_{K}, so the gradient flow preserves $\arg Z(\gamma)$.
- This provides an effective way of computing (unframed) BPS invariants in any chamber, and a natural decomposition into elementary constituents. Is this mathematically meaningful ? Does it help e.g. in understanding modularity ?
- It would be interesting to extend this description to other toric CY3, such as local del Pezzo surfaces.
- For compact CY3, $Z(\gamma)=e^{K / 2} Z_{\text {hol }}(\gamma)$ is not longer holomorphic, so $\arg Z(\gamma)$ is not constant along the flow. Can scattering diagrams on $\operatorname{Stab} \mathcal{C}$ still be useful in that context ?

Thanks for your attention!

