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δενδροσκοπια= analyzing the BPS spectrum in terms
of attractor flow trees
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Introduction

In type IIA string theory compactified on a Calabi-Yau threefold X ,
the BPS spectrum consists of bound states of D6-D4-D2-D0
branes with electromagnetic charge γ ∈ Γ ⊂ Heven(X ,Q).
The BPS index Ωz(γ) counts BPS states with charge γ and
complexified Kähler moduli z ∈M at spatial infinity.
Ωz(γ) is locally constant onM, but can jump across real
codimension one walls of marginal stabilityW(γL, γR) ⊂M,
where the central phases Z (γL) and Z (γR) with γ = γL + γR
become aligned. The jump is governed by a universal
wall-crossing formula [Kontsevich Soibelman ’08, Joyce Song’08]

Physically, multi-centered black hole solutions (dis)appear across
the wall [Denef Moore ’07, Manschot BP Sen ’11]. In contrast,
single-centered black holes do not decay.
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DT invariants and Bridgeland stability conditions

Mathematically, Ωz(γ) are generalized Donadson-Thomas
invariants for the derived category of coherent sheaves
C = DbCoh(X ). [Douglas 2010]

The Kähler moduli z determine a point (Z ,A) in the space Stab(C)
of Bridgeland’s stability conditions, where Z is the central charge
function and A a suitable Abelian subcategory of C such that
ImZ (γ) ≥ 0 for all objects in A (and ReZ (γ) < 0 if ImZ (γ) = 0).
The image of the embeddingM ↪→ Stab(C) defines the physical
slice of Π-stability conditions, of complex codimension
beven(X )− b2(X ) = 1 + b4(X ) + b6(X ).

There is an action of G̃L+(2,R) on Stab(C) by
rescaling/rotating/stretching Z . This allows to extend Π-stability
conditions to a slice of complex codimension b4(X ) + b6(X )− 1.
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Bridgeland stability conditions on local surfaces

For a non-compact CY3 of the form X = KS where S is a complex
surface, the derived category Db

c (X ) of compactly supported
coherent sheaves coincides with Db Coh(S).
An object in Db Coh(S) with Chern vector γ = [r , c1, ch2] lifts to a
bound state of Q4 = r D4-branes wrapped on S, Q2 ∼ c1
D2-branes and Q0 ∼ ch2 D0-branes.
The central charge for Π-stability is determined by local mirror
symmetry. At large volume z → i∞,

Z (γ) ∼ −
∫

S
e−zaHa ch E = −r zaQabzb + za ch1,a− ch2

and Ωz(γ)→ Ω∞(γ) counting Gieseker semi-stable sheaves.
Since b6(X ) = 0 and b4(X ) = 1, any subleading corrections to Zγ
can be absorbed by G̃L+(2,R) in a region around large volume.
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Dendroscopy on local CY3 manifolds

Physically, Ωz(γ) counts BPS states in the 5D-dimensional
superconformal field theory engineered by M-theory on X , further
reduced along S1. Macroscopically, they correspond to
multi-centered dyon solutions of 4D N = 2 effective field theory.
Our goal will be to analyze the BPS spectrum in the simplest case
X = KP2 = C3/Z3, corresponding to a non-Lagrangian SCFT in
5D, and categorize it into various types of multi-centered bound
states.
It will emerge that attractor flow trees for non-compact CY3 are
closely connected to scattering diagrams in the space of
Bridgeland stability conditions.
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Attractor flow and attractor indices

The black hole / dyon picture suggests to reconstruct the full BPS
spectrum from the attractor indices Ω?(γ) := Ωz?(γ)(γ), where
z?(γ) is the endpoint of the attractor flow equations onM,

dz i

dµ
= −g i j̄ ∂̄j |Z (γ)|2

Ferrara Kallosh Strominger’95

For spherically symmetric solutions, the moduli z i(µ) reaches an
attractor point z?(γ) as µ→∞ (r → 0), which is independent of
the initial values of the moduli, at least within a given basin of
attraction.
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Split attractor flows

For a large class of multi-centered solutions with hierarchical
structure, the flow splits on walls of marginal stability, leading to
split attractor flow trees,

5

γ1

γ

γ

γ4

γ
3

2

Denef ’00; Denef Greene Raugas ’01; Denef Moore’07; Manschot ’10

Such solutions cease to exist when z∞ crossesW(γL(v0), γR(v0)).
A notable exception are scaling solutions, which do not exhibit any
hierarchical structure nor walls of marginal stability. These
solutions contribute to the attractor index Ω?(γ) = ΩS + scaling.
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The split attractor flow conjecture

The Attractor Flow Tree Formula postulates that the BPS index
Ωz(γ) can be computed by summing over all possible flow trees:
schematically,

Ωz(γ) =
∑

γ=γ1+···+γn


 ∑

T∈Tz ({γi})

∏

v∈VT

〈γL(v ), γR(v )〉




n∏

i=1

Ω?(γi)

Here, a flow tree T is a binary rooted tree, with edges decorated
with charges γe, embedded inM along the gradient flow lines of
|Z (γe)|. The root vertex maps to (γ, z), the leaves to (γi , z?(γi))
and at each vertex, γv = γL(v) + γR(v), zv ∈ W(γL(v), γR(v)).
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Improving the split attractor flow conjecture

This formula is oversimplified on many counts:
Each 2-body interaction contributes (−1)γLR+1|γLR| where
γLR = 〈γL), γR〉. More generally, including a fugacity for angular

momentum, (−1)γLR+1sgnγLR
yγLR−y−γLR

y−1/y

In order to enforce Bose-Fermi statistics whenever two charges
coincide, one should replace Ω(γ) by [Manschot BP Sen’11]

Ω̄z(γ, y) =
∑

d |γ

y − 1/y
d(yd − y−d )

Ωz( γd , y
d )

y→1→
∑

d |γ

1
d2 Ωz( γd )

When the charges of the constituents are not linearly independent,
some splittings can involve higher valency vertices. Those can be
resolved into binary trees by perturbing the charges or the moduli.
One should restrict the possible constituents to those lying in the
Abelian subcategory A ⊂ C, which changes along the tree.
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Flow tree formula for quivers with potential

A precise version of the Attractor Flow Tree Formula was
proposed in the context of quiver quantum mechanics: 0+1 dim
SUSY gauge theory with G =

∏
i∈Q0

U(Ni), bifundamental matter
Φi j̄ for every arrow (i → j) ∈ Q1.
The dimension vector γ = (Ni)i∈Q0 plays the role of the charge
vector, with Dirac product 〈γ, γ′〉 =

∑
i→j(NiN ′j − N ′i Nj).

The index Ωζ(γ) is a locally constant function of the
Fayet-Iliopoulos parameters (aka King stability parameters)
ζ ∈ RQ0/R+ and superpotential W =

∑
w∈Q2

λww , with jumps in
real codimension 1 and 2, respectively.
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Flow tree formula for quivers with potential

The continuous attractor flow is replaced by a discrete version

(ζv , ·) = (ζp(v), ·)−
〈γv , ·〉
〈γv , γL(v)〉

(ζp(v), γL(v))

Manschot’10; Alexandrov BP’18

Since Ni ≥ 0, only a finite number of trees contribute. When
Ni > 1, a small perturbation of ζ is necessary so as to restrict to
binary trees.
The attractor point becomes the self-stability condition
(ζ?(γ), ·) = 〈γ, ·〉. The attractor indices Ω?(γi) depend on W .
The formula is manifestly consistent with wall-crossing. In
addition, there are fake walls where the contributing trees jump but
Ω(γ) stays constant, thanks to Jacobi-type identity

〈γ1, γ2〉 〈γ1 + γ2, γ3〉+ cyc. = 0
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Quivers from tiltings and tilings

For non-compact CY3 admitting a tilting sequence (E1, . . . ,EK ),
there is an isomorphism Db

c Coh(X ) ' DbRepJ(Q,W ), where
nodes of Q correspond to the objets Ei , and arrows i → j to
Ext1(Ei ,Ej).
The abelian category of representations A = RepJ(Q,W ) agrees
with the category of D-branes in the vicinity of ‘orbifold points’
where Z (ch Ei) are nearly aligned.
Such tilting sequences exist for crepant resolutions of toric CY3
singularities, where (Q,W ) can be read off from the brane tiling.
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Quiver for KP2

24 SERGEY MOZGOVOY AND BORIS PIOLINE

of the D-brane charge � =
Pr

i=1 Ni�i on a basis of charges �i 2 H⇤(X) associated to a set

of ‘elementary D-branes’, and the net number of chiral fields |{�↵
ij}| � |{�↵

ji}| going from i

to j is given by (minus) the skew-symmetrized Euler form �h�i, �ji. The full BPS spectrum,

for given stability parameters ✓i, is then obtained as supersymmetric bound states of these

elementary constituents, represented by BPS ground states of the quiver quantum mechanics.

In the presence of an infinitely heavy defect of charge �f , such as a D6-brane wrapping X or

D4-branes wrapping non-compact divisors in X, the quiver quantum mechanics obtains an

additional gauge group U(N1) and arrows �↵1,i,�
↵
i,1, and computes the number of framed BPS

states.

Mathematically, BPS grounds states are cohomology classes on the moduli space of ✓-

semistable representations of the quiver with potential (Q, W ). The ‘elementary D-branes’, or

‘fractional branes’ in the context of orbifolds, correspond to a tilting sequence T =
Lr

i=1 Ti

in the derived category of coherent sheaves Db(coh X), such that Ti generate Db(coh X) and

Extk(T, T ) = 0 for k 6= 0. When X is the total space of the canonical bundle on a complex

surface S, a tilting sequence T can be constructed by lifting a strong exceptional collection of

line bundles on S [54, 11]. Note however that the lifted sequence need not be exceptional, in

particular End(Ti) = �(X, OX) may have dimension > 1. The triangulated category Db(coh X)

is then equivalent to the category of representations of the Jacobian algebra J(Q, W ) for a

quiver with potential (Q, W ) associated to T [10, 9].

For a wide class of toric CY threefolds, the construction of the tilting sequence T can be

by-passed and the quiver (Q, W ) can be read o↵ from a brane tiling [52, 44]. The latter is

a bipartite graph G embedded in a 2-dimensional (real) torus T, or equivalently a periodic

bipartite graph G̃ on R2. Each vertex carries a color, black or white, such that edges connect

only vertices with di↵erent colors. The quiver Q is then the dual graph of G: the vertices i 2 Q0

correspond to faces of G (i.e. the connected components of T\G) and the arrows a : i! j 2 Q1

to edges common to faces i and j. The arrows are oriented so that they go clockwise around

white vertices of G and go anti-clockwise around black vertices of G.

Figure 3. A bipartite graph (in black and white) and the dual quiver (in red and blue)

Let Q2 be the set of connected components of T\Q, or equivalently the set of vertices of G.

Let Q+
2 and Q�

2 correspond to the sets of white and black vertices of G. For any face F 2 Q2,

let wF be the cycle obtained by going along the arrows of F (defined up to a cyclic shift). The

potential W is then

(4.11) W =
X

F2Q+
2

wF �
X

F2Q�
2

wF .

n1

n2

n3

Xi Yj

Zk

W =
∑
εijkXiYjZk

E1 = O γ1 = [1,0,0]

E2 = Ω(1)[1], γ2 = [−2,1, 1
2 ]

E3 = O(−1)[2] γ3 = [1,−1, 1
2 ]

r = 2n2 − n1 − n3
d = n3 − n2
ch2 = −1

2(n2 + n3)
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Attractor conjecture

By examining the expected dimension of the moduli space of
quiver representations in the attractor chamber [Beaujard BP Manschot]

conjectured that all attractor invariants Ω?(γ) vanish except
Ω?(γi) = 1 for i = 1,2,3 and Ω?(k(γ1 + γ2 + γ3)) = −3 for k ≥ 1.
Under this assumption, we observed that the index Ω−ζ?(γ)(γ) for
γ = (n1,n2,n3), in the anti-attractor chamber coincides with the
index Ω∞(r ,d , ch2) counting Gieseker semi-stable sheaves
provided r > 0 and −r ≤ d ≤ 0. But the quiver description is only
supposed to be valid near the orbifold point !
A similar conjecture for Ω?(γ) holds for any toric CY3, giving in
principle access to DT invariants Ωz(γi) at any point in Kähler
moduli space. [Mozgovoy BP’20; Descombes’21]
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Flow tree formula from scattering diagrams

The Attractor Flow Tree formula was established rigorously using
the framework of scattering diagrams [Argüz Bousseau ’20].
For any quiver with potential (Q,W ), the scattering diagram D is
the set of real codimension-one rays {R+(γ), γ ∈ ZQ0} ⊂ RQ0

defined by R+(γ) = {ζ : (ζ, γ) = 0, Ωζ(kγ) 6= 0 for some k ≥ 1}
[Bridgeland’16].
More generally, for any ψ ∈ R/2πZ define

R+
ψ (γ) = {Z : Re(e−iψ)Z (γ)) = 0, Im(e−iψ)Z (γ)) > 0,Ωζ(kγ) 6= 0}

Each point along R+
ψ (γ) is endowed with an automorphism of the

quantum torus algebra, (assume γ primitive)

U(γ) = exp(
∞∑

m=1

Ω̄ζ(kγ,y)

y−1−y Xkγ) , XγXγ′ = (−y)〈γ,γ
′〉Xγ+γ′
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Flow tree formula from scattering diagrams

The WCF ensures that the diagram is consistent, i.e.∏
γi
U(γi) = 1 around any codimension 2 intersection. All DT

invariants are determined from the initial rays, i.e. those
containing the self-stability condition (ζ?(γ), ·) = 〈γ, ·〉.
Since Z (γ) is holomorphic in the Kähler moduli, arg Z (γ) is
preserved along the gradient flow of |Z (γ)|. Hence, the edges of
attractor flow trees lie inside the rays R+

ψ (γe), while vertices lie in
R+
ψ (γL(v)) ∩R−ψ (γL(v)).

Thus, flow trees are subsets of scattering diagrams, determining
which initial data scatter to produce an outgoing ray R+

ψ (γ)
passing through the desired point z, where Ωz(kγ) can be read off.
The Attractor Flow Tree Formula determines outgoing rays from
incoming rays at each vertex. [Argüz Bousseau ’20].
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A 2D slide of the orbifold scattering diagram
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Kähler moduli space of KP2

The Kähler moduli space of KP2 is the modular curve
X1(3) = H/Γ1(3) parametrizing elliptic curves with level structure.
It admits two cusps LV ,C and one elliptic point o of order 3.
The universal cover is parametrized by τ ∈ H:
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Zτ (γ) = −rTD(τ) + dT (τ)− ch2

T =
∫
` λSW

TD =
∫
`D
λSW
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Central charge as Eichler integral

Since ∂τλSW is holormorphic, its periods are proportional to (1, τ).
Integrating on a path from o to τ , one finds the Eichler-type
integral (

T
TD

)
=

(
−1

2
1
3

)
+

∫ τ

τo

(
1
u

)
C(u) du

where C(τ) = η(τ)9

η(3τ)3 is a weight 3 modular form for Γ1(3).

This provides an computationally efficient analytic continuation of
Zτ throughout H, and gives access to monodromies:

τ 7→ aτ + b
cτ + d




1
T
TD


 7→




1 0 0
m d c

mD b a


 ·




1
T
TD




where (m,mD) are period integrals of C from τo to aτo−b
cτo−d .
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Central charge as Eichler integral

At large volume, using C = 1− 9q + . . . one finds

T = τ +O(q), TD =
1
2
τ2 +

1
8

+O(q)

For τ2 large enough, one can use the GL(2,R)+ action on stability
conditions to absorb the O(q) corrections and work with

Z LV
(s,t)(γ) = − r

2
(s + it)2 + d(s + it)− ch2 ,

LV

CC

o'

s =
ImTD

ImT

1
2

(s2 + t2) = − Im(T T̄D)

ImT

A = {E d→ F , µ(E) ≤ s, µ(F ) ≥ s}
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Large volume scattering diagram

For the stability conditions (Z LV(s,t) ,A(s)), [Bousseau’19] constructed
the scattering diagram Dψ in (s, t) upper half-plane for ψ = 0. The
diagram for ψ 6= 0 is obtained by transforming
(s, t) 7→ (s − t tanψ, t/ cosψ). We shall restrict to ψ = 0.
The rays R+(γ) are branches of hyperbola asymptoting to
t = ±(s − d

r ) for r 6= 0, or vertical lines when r = 0. Walls of
marginal stabilityW(γ, γ′) are half-circles centered on real axis.

-� -� -� -� � �

�

�

�

�

�

�

Think of R+(γ) as the worldline of a particle of charge r , mass
m2 = 1

2d2 − r ch2 moving in a constant electric field !
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Large volume scattering diagram

Initial rays correspond to O(m) and O(m)[1], ie (anti)D4-branes
with m units of flux, emanating from (s, t) = (m,0) on the
boundary where the central charge vanishes.

�(-�) �(-�) �(�) �(�) �(�)

-� -� � �
�

���

���

���

�

The first scatterings occur for t ≥ 1
2 , after each constituent has

moved by |∆s| ≥ 1
2 . The monotonicity of the ‘electric potential’

ϕ(γ) = d − sr along the flow, allows to bound the number and
charge of constituents.
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Flow trees for γ = [0,4,1)

-3 O(-2) 2 O(-1) O(0)-O(-3)

-O(-1) 2 O(0)

{{−3O(−2),2O(−1)},O}:
3O(−2)→ 2O(−1)⊕O → E
K3(2,3)K12(1,1)→ −156

{−O(−3), {−O(−1),2O}}:
O(−3)⊕O(−1)→ 2O → E
K3(1,2)K12(1,1)→ −36

Total: Ω∞(γ) = −192 = N(0)
4
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Flow trees for γ = [1,0,−3)

-O(-5) O(-4) O(-1)

-O(-4)

O(-3)

-O(-3)

2 O(-2)

-O(-4)

2 O(-2)

{{−O(−5),O(−4)},O(−1)}
O(−5)→ O(−4)⊕O(−1)→ E
K3(1,1)2 → 9
{{−O(−4),O(−3)},
{−O(−3),2O(−2)}}
O(−4)⊕+O(−3)→
O(−3)⊕+2O(−2)→ E
K3(1,1)2K3(1,2)→ 27
{−O(−4),2O(−2)}
O(−4)→ 2O(−2)→ E
K6(1,2)→ 15

Total: Ω∞(γ) = 51 = χ(P2[4])
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Exact scattering diagram

The full scattering diagram DΠ
ψ on the slice of Π-stability conditions

should interpolate between DLV
ψ around τ = i∞ and Do

ψ around

τ = eiπ/6√
3

+ n, and be invariant under the action of Γ1(3).

Under τ 7→ τ
3nτ+1 with n ∈ Z, O 7→ O[n]. Hence we have an doubly

infinite family of initial rays associated to O(m)[n].

��

���

�

�[-�]
�[-�]

�[�] �[�]

�[�]
�[�]

For | tanψ| < 1
2V where V = ImT (0) = 27

4π2 ImLi2(e2πi/3) ' 0.463
only the rays associated to O(m)[0] and O(m)[1] escape to i∞,
and merge onto rays in the large volume scattering diagram DLV

ψ .
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Exact scattering diagram

In addition, there must be an infinite family of initial rays coming
from τ = p

q with q 6= 0 mod 3, corresponding to Γ1(3)-images of
O(0). This includes initial rays emitted at τ = n − 1

2 , associated to
Ω(n + 1); for ψ ∼ π

2 , these merge onto initial rays of the orbifold
scattering diagram.
Since ∂τZ (γ) = (d − rτ)C(τ) and C 6= 0 for Imτ > 0, it appears
that rays Rψ(γ) can only end at τ = d

r such that Zτ (γ) vanishes.
This can be shown to hold for generic ψ, but when tanψ ∈ Q/V, a
ray R(γ) emitted at τ = d

r might end up at τ ′ = d ′
r ′ .

We conjecture that the only initial rays are the Γ1(3) images of the
structure sheaf O, each of them carrying Ω(kγ) = 1 for k = 1, 0
otherwise.
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Exact scattering diagram - ψ = ±π
2 mod 2π

For ψ = ±π
2 , the diagram DΠ

ψ simplifies dramatically, since the loci
ImZτ (γ) = 0 are lines of constant s := ImTD

ImT = d
r .

Hence, there is no wall-crossing between τo and τ = i∞ when
−1 ≤ d

r ≤ 0, explaining why the Gieseker index Ω∞(γ) agrees
with the index in the anti-attractor chamber (where the orbifold
quiver with potential reduces to the Beilinson quiver with relations)
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Scattering diagram in affine coordinates

For | tanψ| < 1
2V and fixed γ, the flow trees in DΠ

ψ are identical
(topologically) to flow trees in DLV

ψ . One way to show this is to map
both of them to the plane

x =
Re
(
e−iψT

)

cosψ
, y = −Re

(
e−iψTD

)

cosψ
,

such that Rψ(γ) becomes a line segment rx + dy − ch2 = 0.
The initial rays RO(m) are tangent to the parabola y = −1

2x2 at
x = m, but the origin of each ray is shifted to x = m + V tanψ.
In addition, there are initial rays associated to images of O(m)
under Γ1(3), but those don’t play a role if ψ is small enough.
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Exact scattering diagram in (x , y) plane, ψ = 1
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Exact scattering diagram, varying ψ

γ = [0,1,1) = chOC :

γ = [1,0,1) = chO:
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Conclusion - outlook

The scattering diagram is the proper mathematical framework for
the attractor tree conjecture in the case of local CY3. This is
because the central charge is holomorphic, so the gradient flow
preserves the phase of Z (γ). Moreover, initial rays can only start
from the boundary.
This provides an effective way of computing DT invariants in any
chamber, and a natural decomposition into elementary
constituents. Mathematically, different trees should correspond to
different strata inMZ (γ), but the precise relation is not clear.
It would be interesting to extend this description to other toric CY3,
such as local del Pezzo surfaces.
In the compact case, the phase of Z (γ) is no longer constant
along the flow and there can be attractor points with Ω?(γ) 6= 0 at
finite distance in Kähler moduli space...
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Thanks for your attention !
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