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Introduction

In type IIA string theory compactified on a Calabi-Yau threefold X ,
the BPS spectrum consists of bound states of D6-D4-D2-D0
branes, with charge γ ∈ Heven(X ,Q).
BPS states saturate the bound M(γ) ≥ |Z (γ)|, where the central
charge Z ∈ Hom(Γ,C) depends on the complexified Kähler
moduli.
The index Ωz(γ) counting BPS states is robust under complex
structure deformations, but in general depends on z ∈MK .
Mathematically, the Donaldson-Thomas invariant Ωz(γ) counts
stable objects with ch E = γ in the derived category of coherent
sheaves C = DbCoh(X ).
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Introduction

Ωz(γ) is locally constant onMK , but can jump across real
codimension one walls of marginal stabilityW(γL, γR) ⊂MK ,
where the phases of the central charges Z (γL) and Z (γR) with
γ = mLγL + mRγR become aligned [Kontsevich Soibelman’08, Joyce Song’08]

Physically, multi-centered black hole solutions with charges
γi = mL,iγL + mR,iγR (dis)appear across the wall [Denef’02, Denef Moore

’07, ..., Manschot BP Sen ’11].

〈γL, γR〉
r

=
2 Im[Z̄ (γL) Z (γR)]

|Z (γL + γR)|
, ∆Ω(γ) = ±|〈γL, γR〉|Ω(γL)Ω(γR)
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Introduction

These multi-centered bound states are expected to decay away as
one follows the attractor flow equations [Ferrara Kallosh Strominger’95]

AFγ : r2 dza

dr
= −gab̄∂b̄|Zz(γ)|2

Let z?(γ) be the endpoint of the flow, or attractor point. Since
Zz(γ) decreases along the flow, z?(γ) can either be a regular local
minimum of |Zz(γ)| with |Zz?(γ)(γ)| > 0, or a conifold point if
Zz?(γ)(γ) = 0.
We define the attractor invariant as Ω?(γ) = Ωz?(γ)(γ).
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The Split Attractor Flow Conjecture

Starting from z ∈MK , following AFγ and recursively applying the
WCF formula at whenever the flow crosses a wall of marginal
stability, one can in principle express Ωz(γ) in terms of attractor
invariants.

-1.5 -1 -0.5 0.5 1 1.5

2

4

6

8

10

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

0.25

0.5

0.75

1

1.25

1.5

1Γ

2Γ

3Γ

1Γ

2Γ
Denef Moore’07

B. Pioline (LPTHE, Paris) BPS Dendroscopy 8/9/2023 7 / 62



The Split Attractor Flow Conjecture (SFAC)

In terms of the rational DT invariants

Ω̄z(γ) :=
∑
k |γ

y−1/y
k(yk−y−k )

Ωz(γ/k)y→yk

the result takes the form

Ω̄z(γ) =
∑

γ=
∑
γi

gz({γi})
Aut({γi})

∏
i

Ω̄?(γi)

where gz({γi}) is a sum over attractor flow trees.
The Split Attractor Flow Conjecture [Denef’00, Denef Moore’07] is the
statement that only a finite number of decompositions γ =

∑
γi

contribute to the index Ω̄z(γ).
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The Split Attractor Flow Conjecture

Unfortunately one does not know a priori which constituents γi can
contribute, except for the obvious constraints∑

i

γi = γ ,
∑

i

|Zz?(γi )(γi)| < |Zz(γ)|

In particular, there can be cancellations between D-branes and
anti-D-branes, and contributions from conifold states which are
massless at their attractor point are difficult to bound.
Even if SAFC holds, one still has to compute the attractor indices
Ω?(γ), a tall order for regular attractor points.
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Summary

Our aim is to investigate the Split Attractor Flow Conjecture for
one of the simplest examples of CY threefolds, namely

X = KP2 = C̃3/Z3 [Douglas Fiol Romelsberger’00].
We show that the only possible constituents are the D4-brane OP2

and anti-D4-brane OP2 [1], and images thereof under Γ1(3), each
carrying attractor index Ω?(γ) = 1.
In particular, in the large volume region the full BPS spectrum
arises as bound states of fluxed D4 and anti-D4-brane, with
effective bounds on the number and flux of the constituents.
A key role is played by scattering diagrams, which provide the
correct mathematical framework for the SAFC, at least for local
CY threefolds.
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Kähler moduli space

By local mirror symmetry, the Kähler moduli space of X = KP2 is
the quotient X1(3) = H/Γ1(3). It admits two cusps LV ,C and one
orbifold point o of order 3.
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A BPS state on X is a stable object E in the bounded derived
category C of compactly supported sheaves on X , with charge
γ(E) = ch(π∗(E)) = [r ,d , ch2] ∼ [D4,D2,D0]

B. Pioline (LPTHE, Paris) BPS Dendroscopy 8/9/2023 13 / 62



Central charge as Eichler integral

The central charge Zτ (γ) is a linear combination

Zτ (γ) = −rTD(τ) + dT (τ)− ch2

where TD,T are single-valued functions on H (but not onMK ).
They are periods of a one-form λ with logarithmic singularities on
the mirror curve, satisfying a Picard-Fuchs equation of degree 3.
It turns out that ∂τλ is holomorphic, so its periods are proportional
to (1, τ). Integrating along a path from o to τ , one can establish
the Eichler-type integral representation(

T
TD

)
=

(
1/2
1/3

)
+

∫ τ

τo

(
1
u

)
C(u) du

where C(τ) = η(τ)9

η(3τ)3 = 1− 9q + . . . is a weight 3 Eisenstein series
for Γ1(3).
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Central charge as Eichler integral

This provides an computationally efficient analytic continuation of
Zτ throughout H, and gives access to monodromies:

τ 7→ aτ + b
cτ + d

 1
T
TD

 7→
 1 0 0

m d c
mD b a

 ·
 1

T
TD


where (m,mD) are period integrals of C from τo to dτo−b

a−cτo
.

At large volume τ → i∞, using C = 1 +O(q) one finds

T = τ +O(q), TD =
1
2
τ2 +

1
8

+O(q)

in agreement with Zτ (γ) ∼ −
∫

S e−τH
√

Td(S) ch(E).
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Space of Bridgeland stability conditions

Donaldson-Thomas invariants are defined in the larger space of
Bridgeland stability conditions Stab C = {σ = (Z ,A)}, where
Z : Γ→ C is a linear map and A ⊂ C an Abelian category (heart of
t-structure) satisfying various axioms, e.g. ImZ (γ(E)) ≥ 0 ∀E ∈ A.

The group ˜GL(2,R)+ acts on Stab C by linear transformations of
(ReZ , ImZ ) with positive determinant, leaving Ωσ(γ) invariant.

For τ2 large enough, one can use ˜GL(2,R)+ to absorb the 1/8
and O(q) corrections to Zτ (γ) and reach the large volume slice

Z LV
(s,t)(γ) = − r

2
(s + it)2 + d(s + it)− ch2 ,

with τ ' s + it .
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Space of Bridgeland stability conditions

Specifically, this holds in the region w > 1
2s2 where

(s,w) := ( ImTD
ImT ,−

Im(T T̄D)
ImT ). In (s, t =

√
2w − s2) plane:

LV

CC

o

The large volume slice does not cover the region around the
orbifold point, and covers only part of the conifold point.
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Quiver for KP2

The category Db Cohc(KP2) is isomorphic to the category of
representations a quiver with potential (Q,W ), whose nodes
correspond to fractional branes on C3/Z3:

n1

n2

n3

Xi Yj

Zk

W =
∑
εijkXiYjZk

E1 = O[−1] γ1 = [−1,0,0]

E2 = Ω(1), γ2 = [2,−1,−1
2 ]

E3 = O(−1)[1] γ3 = [−1,1,−1
2 ]

r = 2n2 − n1 − n3
d = n3 − n2
ch2 = −1

2(n2 + n3)

The quiver description is valid in a region where the central
charges Z (Ei) lie in a common half-plane, which includes the
orbifold point τo = −1

2 + i
2
√

3
, where Zτo (γi) = 1/3 for i = 1,2,3.
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Attractor flow tree formula for quivers

In that region, Ωτ (γ) coincides with the quiver index Ωθ(γ)
counting θ-semi-stable representations of dimension vector γ,
upon setting θi = −Re(e−iψZτ (γi)) with ψ s.t. Im(e−iψZτ (γi)) > 0.
For fixed FI parameters θ ∈ RQ0 , a representation of dim γ is
θ-semi-stable iff (θ, γ′) ≤ (θ, γ) for any subrepresentation.
In the quiver context, there is a notion of attractor stability
condition (aka self-stability condition) [Manschot BP Sen’13; Bridgeland’16]

(θ?(γ), γ′) = 〈γ′, γ〉 :=
∑
a:i→j

(n′inj − n′jni)

The (quiver) attractor invariant is defined as Ω?(γ) := Ωθ?(γ)(γ)
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The Flow Tree formula for quivers

In [Alexandrov BP’18], we conjectured a precise version of SAFC which
expresses Ω̄θ(γ) in terms of the attractor invariants:

Ω̄θ(γ) =
∑

γ=
∑
γi

gθ({γi})
Aut({γi})

∏
i

Ω̄?(γi)

The coefficients gθ({γi}) involve a sum over rooted binary trees,
whose edges are embedded in RQ0 along straight lines
θ0 + λθ?(γe), which are the analogue of attractor flows.

The sum is manifestly finite, since γi lie in the positive cone ZQ0
+ .

The formula was proven mathematically in [Argüz Bousseau’21] using
the formalism of scattering diagrams.
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Flow tree formula from scattering diagrams

For any quiver with potential (Q,W ), the scattering diagram DQ is
the set of real codimension-one rays {R(γ), γ ∈ ZQ0} defined by

R(γ) = {θ ∈ RQ0 : (θ, γ) = 0, Ω̄θ(γ) 6= 0}

Each point along R(γ) is endowed with an automorphism of the
quantum torus algebra,

Uθ(γ) = exp
(

Ω̄θ(γ)
y−1−yXγ

)
, XγXγ′ = (−y)〈γ,γ

′〉Xγ+γ′

The WCF ensures that the diagram is consistent: for any generic
closed path P : t ∈ [0,1] ∈ RQ0 ,

∏
i Uθ(ti )(γi)

εi = 1 [Bridgeland’16]

A consistent scattering diagram is uniquely determined from the
initial rays R?(γ), defined as those which contain θ?(γ).
The Flow Tree Formula of [Alexandrov BP’18] determines the indices of
outgoing rays produced by scattering initial rays [Argüz Bousseau ’20].
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Scattering diagram for Kronecker quiver

n1 n2
m

θ1 > 0, θ2 < 0 : dimMθ(γ) = mn1n2 − n2
1 − n2

2 + 1

γ2

γ1

γ2

γ1

γ2

γ1

m=1 m=2 m=3
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Attractor invariants for KP2

By studying expected dimension of the moduli space of
semi-stable representationsMθ(γ), [Beaujard BP Manschot’20]

conjectured that the attractor index Ω?(γ) vanishes unless for
γ = γi or γ = k(γ1 + γ2 + γ3). This is now a theorem [Bousseau

Descombes Le Floch BP’22].
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A 2D slice of the orbifold scattering diagram

Let Do be the restriction of DQ to the hyperplane θ1 + θ2 + θ3 = 1:

γ1

γ2

γ3

+++

++-

+-+ -+-

-++

+--

--+
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A 2D slice of the orbifold scattering diagram

Let Do be the restriction of DQ to the hyperplane θ1 + θ2 + θ3 = 1:

γ1

γ2

γ3

γ1+γ2

γ1+2γ2

2γ1+γ2

γ2+γ3

γ2+2γ3

2γ2+γ3

γ3+γ1
γ3+2γ12γ3+γ1
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A 2D slice of the orbifold scattering diagram

Let Do be the restriction of DQ to the hyperplane θ1 + θ2 + θ3 = 1:

γ1

γ2

γ3

γ1+γ2

γ1+2γ2

2γ1+γ2

γ2+γ3

γ2+2γ3

2γ2+γ3

γ3+γ1
γ3+2γ12γ3+γ1

γ1 + 2 γ2 + γ3
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A 2D slice of the orbifold scattering diagram

The full scattering diagram DQ includes regions with dense set of rays:
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Scattering diagrams on triangulated categories

For a general triangulated category C, define the scattering
diagram Dψ(C) as the set of codimension-one loci in Stab C,

Rψ(γ) = {σ : arg Z (γ) = ψ + π
2 , Ω̄Z (γ) 6= 0}

equipped with (a suitable regularization of) the automorphism

Uσ(γ) = exp
(

Ω̄σ(γ)
y−1−yXγ

)
= Exp

(
Ωσ(γ)
y−1−yXγ

)

The WCF ensures that the diagram Dψ is still locally consistent at
each codimension-two intersection.
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Flow trees from scattering diagrams

To see the relation to SAFC, note that for any local CY threefold,
the central charge Zz(γ) is holomorphic in za, hence its phase is
constant along the flow dza

dµ = −gab̄∂b̄|Zz(γ)|2:

1
2

d
dµ

log
Z (γ)

Z̄ (γ)
= −1

2
∂aZ (γ)gab̄∂b̄Z̄ (γ) +

1
2
∂aZ (γ)gab̄∂b̄Z̄ (γ) = 0

Moreover, |Zz(γ)|2 has no local minima so the only attractor points
are conifold points with Zz(γi) = 0.
Thus, the restriction of Rψ(γ) to the physical slice is preserved by
the attractor flow. Moreover, the flow can only split when R(γL)
and R(γR) intersect, and end on an initial ray Rψ(γi).
In complex dimension one, attractor flow lines and scattering rays
coincide. Attractor flow trees are subsets of Dψ which produce an
outgoing ray Rψ(γ) with desired charge γ, passing through the
desired point z.
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Large volume scattering diagram

The scattering diagram DLV
ψ along the large volume slice

Z LV
(s,t) = −1

2
r(s + it)2 + d(s + it)− ch2

was determined for ψ = 0 in [Bousseau’19], using a different set of
coordinates. The construction extends to any ψ by just mapping
(s, t) 7→ (s − t tanψ, t/ cosψ).
Since ReZ (γ) = 1

2 r(t2 − s2) + ds − ch2, each ray R0(γ) is
contained in a branch of hyperbola asymptoting to t = ±(s − d

r )
for r 6= 0, or vertical a line when r = 0. Walls of marginal stability
W(γ, γ′) are half-circles centered on real axis.
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Large volume scattering diagram

-6 -4 -2 2 4

1

2

3

4

It is useful to think of R(γ) as the worldline of a fictitious particle of
charge r , mass M2 = 1

2d2 − r ch2 moving in a constant electric field:

The particle travels inside the forward light-cone
the ‘electric potential’ ϕs(γ) = 2(d − sr) = 2ImZγ/t increases
along the flow.

B. Pioline (LPTHE, Paris) BPS Dendroscopy 8/9/2023 33 / 62



Large volume scattering diagram

Initial rays correspond to O(m) and O(m)[1], with charge
γm = ±[1,m, 1

2m2], emanating from (s, t) = (m,0) on the
boundary where Z LV

(s,t)(γm) = 0. [Bousseau’19]

±𝓞-2 ±𝓞-1 ±𝓞 ±𝓞1 ±𝓞2

1
2

1

3
2

Physically, the BPS spectrum along the large volume slice
originates from bound states of fluxed D4-branes and anti-D4
branes.
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SAFC holds along large volume slice

The first scatterings occur after a time t ≥ 1
2 , after each constituent

kiO(mi) has moved by |∆s| ≥ 1
2 , by which time ϕs(γi) ≥ |ki |.

Since ϕs(γ) is additive at each vertex, this gives a bound on the
number and charges of constituents contributing to Ω(s,t)(γ):

∑
i

ki [1,mi ,
1
2

m2
i ] = γ , s − t ≤ mi ≤ s + t ,

∑
|ki | ≤ ϕs(γ)

Thus, SAFC holds along the large volume slice !
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Flow trees for γ = [0,4,1)

-3 O(-2) 2 O(-1) O(0)-O(-3)

-O(-1) 2 O(0)

{{−3O(−2),2O(−1)},O}:
3O(−2)→ 2O(−1)⊕O → E
K3(2,3)K12(1,1)→ −156

{−O(−3), {−O(−1),2O}}:
O(−3)⊕O(−1)→ 2O → E
K3(1,2)K12(1,1)→ −36

Total: Ω∞(γ) = −192 = GV (0)
4
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Flow trees for γ = [1,0,−3)

-O(-5) O(-4) O(-1)

-O(-4)

O(-3)

-O(-3)

2 O(-2)

-O(-4)

2 O(-2)

{{−O(−5),O(−4)},O(−1)}
O(−5)→ O(−4)⊕O(−1)→ E
K3(1,1)2 → 9
{{−O(−4),O(−3)},
{−O(−3),2O(−2)}}
O(−4)⊕O(−3)→
O(−3)⊕ 2O(−2)→ E
K3(1,1)2K3(1,2)→ 27
{−O(−4),2O(−2)}
O(−4)→ 2O(−2)→ E
K6(1,2)→ 15

Total: Ω∞(γ) = 51 = χ(Hilb4P2)
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Exact scattering diagram

The scattering diagram DΠ
ψ along the physical slice should

interpolate between DLV
ψ around τ = i∞ and Do around τ = τo,

and be invariant under the action of Γ1(3).
Under τ 7→ τ

3nτ+1 with n ∈ Z, O 7→ O[n]. Hence there is a doubly
infinite family of initial rays emitted at τ = 0, associated to O[n].

��

���

�

�[-�]
�[-�]

�[�] �[�]

�[�]
�[�]

Similarly, there must be an infinite family of initial rays coming from
τ = p

q with q 6= 0 mod 3, corresponding to Γ1(3)-images of O,
where an object denoted by Op/q becomes massless.
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Massless objects at conifold points

τ g γC ∆(γC) Op/q
0 1 [1,0,1) 0 O

1/5 U2T−1 −[5,1,6) 3/25 E → Ω(2)[−1]→ O⊕3[2]
1/4 UT [4,1,6) −3/32 E → O(1)→ O⊕3[3]
2/5 UT−2 −[5,2,6) 12/25 E → O(−2)→ O⊕6

3/7 UT−1VT [7,3,10) 15/49 E → Ω(0)[1]→ O⊕9[1]
1/2 TVT −[2,1,3) 3/8 Ω(2)[1]
4/7 TVTUT−1 [7,4,12) 15/49 O(1)⊕9[−1]→ Ω(4)[−1]→ E
3/5 TVT 2 −[5,3,8) 12/25 O(1)⊕6 → O(3)→ E
3/4 TVT−1 [4,3,10) −3/32 O(1)⊕3[−3]→ O(0)→ E
4/5 TV 2T −[5,4,12) 3/25 O(1)⊕3[−2]→ Ω(2)[1]→ E
1 T [1,1,3) 0 O(1)

T : τ 7→ τ + 1; U : τ 7→ 1/(3τ + 1); V = U−1
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Exact scattering diagram for small ψ

For |ψ| small enough, the only rays which reach the large volume
region are those associated to O(m) and O(m)[1]. Thus, the
scattering diagram DΠ

ψ is isomorphic to DLV
0 inside F and its

translates:
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Scattering diagram in affine coordinates

To see this, one can map both of them to the plane
Bousseau’19

x =
Re
(
e−iψT

)
cosψ

, y = −
Re
(
e−iψTD

)
cosψ

,

such that Rψ(γ) becomes a line segment rx + dy − ch2 = 0.
The initial rays RO(m) are tangent to the parabola y = −1

2x2 at
x = m, but the origin of each ray is shifted to x = m + V tanψ
where V is the quantum volume

V = ImT (0) =
27
4π2 Im

[
Li2(e2πi/3)

]
' 0.463

The topology of DΠ
ψ jumps at a discrete set of rational values

V tanψ ∈ {F2k +F2k+2
2F2k+1

, k ≥ 0} = {1
2 ,1,

11
10 ,

29
26 ,

19
17 , . . .}

and a dense set of values in [
√

5
2 ,+∞) where secondary rays pass

through a conifold point.
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Affine scattering diagram, ψ = 0

±𝓞-2

±𝓞-1

±𝓞

±𝓞1

±𝓞2

-2 -1 1 2
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Affine scattering diagram, |V tanψ| < 1/2

±𝓞-2

±𝓞-1

±𝓞

±𝓞1

±𝓞2

-2 -1 1 2
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Exact scattering diagram, ψ = 0
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Exact scattering diagram, ψ = 0.3
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Exact scattering diagram, ψ = 0.6
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Exact scattering diagram, ψ = 0.8
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Exact scattering diagram, ψ = 0.824
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Exact scattering diagram, ψ = 0.825
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Exact scattering diagram, ψ = 0.9
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Exact scattering diagram, ψ = 1
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Exact scattering diagram, ψ = 1.1
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Exact scattering diagram, ψ = 1.137
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Exact scattering diagram, ψ = 1.139
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Exact scattering diagram, ψ = 1.3
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Exact scattering diagram, ψ = π/2
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Exact scattering diagram for ψ = ±π
2

For ψ = ±π
2 , the geometric rays {ImZτ (γ) = 0} coincide with lines

of constant s = ImTD
ImT = d

r , independent of ch2:

Hence, there is no wall-crossing between τo and τ = i∞ when
−1 ≤ d

r ≤ 0, explaining why the Gieseker index Ω∞(γ) agrees
with the quiver index Ωc(γ) in the anti-attractor chamber.

Douglas Fiol Romelsberger’00, Beaujard BP Manschot’20

B. Pioline (LPTHE, Paris) BPS Dendroscopy 8/9/2023 58 / 62



Case studies

γ = [0,1,1) = chOC : Ωt�1 = K3(1,2)K3(1,3)n−1 = y2 + 1 + 1/y2

4 Ω-31 5𝓞-43𝓞-52

3 Ω-21 4𝓞-32𝓞-42

2 Ω-11 3𝓞-2𝓞-32

Ω1 2𝓞-1

𝓞𝓞-11

2𝓞1 Ω2

3𝓞11 2 Ω3 𝓞2-1

4𝓞21 3 Ω4 2𝓞3-1

5𝓞31 4 Ω5 3𝓞4-1

γ = [1,0,1) = chO: Ωt�1 = K3(1,3) . . .K3(1,3n) = 1

𝓞Ω1 3𝓞-1
3 Ω-11 6𝓞-2𝓞-32

6 Ω-21 10𝓞-33𝓞-42
10 Ω-31 15𝓞-46𝓞-52
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SAFC along the physical slice

In general, trees reaching the large volume region have a
two-stage structure, with initial rays from a finite set of exceptional
collections {E1(mi),E2(mi),E3(mi)}, which scatter in the vicinity of
orbifold points τ = τo + mi , and then further interact in the large
volume region.

The SFAC is proved by analyzing the possible leaves, defining a
monotonic cost function ϕ and classifying allowed trees...
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Conclusion - outlook

The scattering diagram is the proper mathematical framework for
the attractor flow tree formula in the case of local CY3. This is
because Z (γ) is holomorphic onMK , so the gradient flow
preserves the phase arg Z (γ).
This provides an effective way of computing (unframed) BPS
invariants in any chamber, and a natural decomposition into
elementary constituents. Is this mathematically meaningful ?
Does it help e.g. in understanding modularity ?
It would be interesting to extend this description to other toric CY3,
such as local del Pezzo surfaces.
For compact CY3, Z (γ) = eK/2Zhol(γ) is not longer holomorphic,
so arg Z (γ) is not constant along the flow. Can one establish the
Split Attractor Flow Tree formula in such context ?
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Thanks for your attention !
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