BPS Dendroscopy on Local Projective Plane

Boris Pioline

"Intersections of Strings and QFT IV" Birmingham, 8/9/2023

My amazing co-authors

Based on 'BPS Dendroscopy on Local \mathbb{P}^2 ' [2210.10712] with Pierrick Bousseau, Pierre Descombes and Bruno Le Floch

B. Pioline (LPTHE, Paris)

Dentrology

Dendrochronology

Dendroscopy

- In type IIA string theory compactified on a Calabi-Yau threefold X, the BPS spectrum consists of bound states of D6-D4-D2-D0 branes, with charge γ ∈ H_{even}(X, Q).
- BPS states saturate the bound M(γ) ≥ |Z(γ)|, where the central charge Z ∈ Hom(Γ, C) depends on the complexified Kähler moduli.
- The index Ω_z(γ) counting BPS states is robust under complex structure deformations, but in general depends on z ∈ M_K.
- Mathematically, the Donaldson-Thomas invariant $\Omega_z(\gamma)$ counts stable objects with ch $E = \gamma$ in the derived category of coherent sheaves $C = D^b \operatorname{Coh}(X)$.

Introduction

- $\Omega_z(\gamma)$ is locally constant on \mathcal{M}_K , but can jump across real codimension one walls of marginal stability $\mathcal{W}(\gamma_L, \gamma_R) \subset \mathcal{M}_K$, where the phases of the central charges $Z(\gamma_L)$ and $Z(\gamma_R)$ with $\gamma = m_L \gamma_L + m_R \gamma_R$ become aligned [Kontsevich Soibelman'08, Joyce Song'08]
- Physically, multi-centered black hole solutions with charges $\gamma_i = m_{L,i}\gamma_L + m_{R,i}\gamma_R$ (dis)appear across the wall [Denef'02, Denef Moore '07, ..., Manschot BP Sen '11].

 $\frac{\langle \gamma_L, \gamma_R \rangle}{r} = \frac{2 \operatorname{Im}[\bar{Z}(\gamma_L) Z(\gamma_R)]}{|Z(\gamma_L + \gamma_R)|}, \quad \Delta \Omega(\gamma) = \pm |\langle \gamma_L, \gamma_R \rangle| \, \Omega(\gamma_L) \Omega(\gamma_R)$

• These multi-centered bound states are expected to decay away as one follows the attractor flow equations [Ferrara Kallosh Strominger'95]

$$\mathsf{AF}_{\gamma}: \quad r^2 \frac{\mathrm{d}z^a}{\mathrm{d}r} = -g^{a\bar{b}} \partial_{\bar{b}} |Z_z(\gamma)|^2$$

- Let z_{*}(γ) be the endpoint of the flow, or attractor point. Since Z_z(γ) decreases along the flow, z_{*}(γ) can either be a regular local minimum of |Z_z(γ)| with |Z_{z*(γ)}(γ)| > 0, or a conifold point if Z_{z*(γ)}(γ) = 0.
- We define the attractor invariant as $\Omega_{\star}(\gamma) = \Omega_{Z_{\star}(\gamma)}(\gamma)$.

 Starting from z ∈ M_K, following AF_γ and recursively applying the WCF formula at whenever the flow crosses a wall of marginal stability, one can in principle express Ω_z(γ) in terms of attractor invariants.

Denef Moore'07

The Split Attractor Flow Conjecture (SFAC)

In terms of the rational DT invariants

$$ar{\Omega}_{Z}(\gamma) := \sum_{k \mid \gamma} rac{y - 1/y}{k(y^k - y^{-k})} \Omega_{Z}(\gamma/k)_{y
ightarrow y^k}$$

the result takes the form

$$\bar{\Omega}_{z}(\gamma) = \sum_{\gamma = \sum \gamma_{i}} \frac{g_{z}(\{\gamma_{i}\})}{\operatorname{Aut}(\{\gamma_{i}\})} \prod_{i} \bar{\Omega}_{\star}(\gamma_{i})$$

where $g_z(\{\gamma_i\})$ is a sum over attractor flow trees.

• The Split Attractor Flow Conjecture [Denef'00, Denef Moore'07] is the statement that only a finite number of decompositions $\gamma = \sum \gamma_i$ contribute to the index $\overline{\Omega}_z(\gamma)$.

Unfortunately one does not know a priori which constituents *γ_i* can contribute, except for the obvious constraints

$$\sum_{i} \gamma_i = \gamma \;, \quad \sum_{i} |Z_{\mathsf{Z}_{\star}(\gamma_i)}(\gamma_i)| < |Z_{\mathsf{Z}}(\gamma)|$$

- In particular, there can be cancellations between D-branes and anti-D-branes, and contributions from conifold states which are massless at their attractor point are difficult to bound.
- Even if SAFC holds, one still has to compute the attractor indices $\Omega_{\star}(\gamma)$, a tall order for regular attractor points.

• Our aim is to investigate the Split Attractor Flow Conjecture for one of the simplest examples of CY threefolds, namely

 $X = K_{\mathbb{P}^2} = \mathbb{C}^3/\mathbb{Z}_3$ [Douglas Fiol Romelsberger'00].

- We show that the only possible constituents are the D4-brane O_{P²} and anti-D4-brane O_{P²}[1], and images thereof under Γ₁(3), each carrying attractor index Ω_{*}(γ) = 1.
- In particular, in the large volume region the full BPS spectrum arises as bound states of fluxed D4 and anti-D4-brane, with effective bounds on the number and flux of the constituents.
- A key role is played by scattering diagrams, which provide the correct mathematical framework for the SAFC, at least for local CY threefolds.

Kähler moduli space

 By local mirror symmetry, the Kähler moduli space of X = K_{P²} is the quotient X₁(3) = ℍ/Γ₁(3). It admits two cusps LV, C and one orbifold point o of order 3.

A BPS state on X is a stable object E in the bounded derived category C of compactly supported sheaves on X, with charge γ(E) = ch(π_{*}(E)) = [r, d, ch₂] ~ [D4, D2, D0]

Central charge as Eichler integral

• The central charge $Z_{\tau}(\gamma)$ is a linear combination

 $Z_{\tau}(\gamma) = -rT_D(\tau) + dT(\tau) - ch_2$

where T_D , T are single-valued functions on \mathbb{H} (but not on \mathcal{M}_K). They are periods of a one-form λ with logarithmic singularities on the mirror curve, satisfying a Picard-Fuchs equation of degree 3.

• It turns out that $\partial_{\tau}\lambda$ is holomorphic, so its periods are proportional to $(1, \tau)$. Integrating along a path from *o* to τ , one can establish the Eichler-type integral representation

$$\begin{pmatrix} T \\ T_D \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/3 \end{pmatrix} + \int_{\tau_o}^{\tau} \begin{pmatrix} 1 \\ u \end{pmatrix} C(u) \, \mathrm{d}u$$

where $C(\tau) = \frac{\eta(\tau)^9}{\eta(3\tau)^3} = 1 - 9q + \dots$ is a weight 3 Eisenstein series for $\Gamma_1(3)$.

 This provides an computationally efficient analytic continuation of Z_τ throughout III, and gives access to monodromies:

$$au \mapsto rac{a au + b}{c au + d} = egin{pmatrix} 1 \ T \ T_D \end{pmatrix} \mapsto egin{pmatrix} 1 & 0 & 0 \ m & d & c \ m_D & b & a \end{pmatrix} \cdot egin{pmatrix} 1 \ T \ T_D \end{pmatrix}$$

where (m, m_D) are period integrals of *C* from τ_o to $\frac{d\tau_o - b}{a - c\tau_o}$. • At large volume $\tau \to i\infty$, using C = 1 + O(q) one finds

$$T = \tau + \mathcal{O}(q), \quad T_D = \frac{1}{2}\tau^2 + \frac{1}{8} + \mathcal{O}(q)$$

in agreement with $Z_{\tau}(\gamma) \sim -\int_{\mathcal{S}} e^{-\tau H} \sqrt{\mathrm{Td}(\mathcal{S})} \operatorname{ch}(E)$.

Space of Bridgeland stability conditions

- Donaldson-Thomas invariants are defined in the larger space of Bridgeland stability conditions Stab C = {σ = (Z, A)}, where Z : Γ → C is a linear map and A ⊂ C an Abelian category (heart of *t*-structure) satisfying various axioms, e.g. ImZ(γ(E)) ≥ 0 ∀E ∈ A.
- The group *GL*(2, ℝ)⁺ acts on Stab C by linear transformations of (ReZ, ImZ) with positive determinant, leaving Ω_σ(γ) invariant.
- For τ₂ large enough, one can use GL(2, ℝ)⁺ to absorb the 1/8 and O(q) corrections to Z_τ(γ) and reach the large volume slice

$$Z^{LV}_{(s,t)}(\gamma) = -rac{r}{2}(s+\mathrm{i}t)^2 + d(s+\mathrm{i}t) - \mathsf{ch}_2 \; ,$$

with $\tau \simeq s + it$.

Space of Bridgeland stability conditions

• The large volume slice does not cover the region around the orbifold point, and covers only part of the conifold point.

Quiver for $K_{\mathbb{P}^2}$

 The category D^b Coh_c(K_{P²}) is isomorphic to the category of representations a quiver with potential (Q, W), whose nodes correspond to fractional branes on C³/Z₃:

• The quiver description is valid in a region where the central charges $Z(E_i)$ lie in a common half-plane, which includes the orbifold point $\tau_o = -\frac{1}{2} + \frac{i}{2\sqrt{3}}$, where $Z_{\tau_o}(\gamma_i) = 1/3$ for i = 1, 2, 3.

Attractor flow tree formula for quivers

- In that region, Ω_τ(γ) coincides with the quiver index Ω_θ(γ) counting θ-semi-stable representations of dimension vector γ, upon setting θ_i = -Re(e^{-iψ}Z_τ(γ_i)) with ψ s.t. Im(e^{-iψ}Z_τ(γ_i)) > 0.
- For fixed FI parameters $\theta \in \mathbb{R}^{Q_0}$, a representation of dim γ is θ -semi-stable iff $(\theta, \gamma') \leq (\theta, \gamma)$ for any subrepresentation.
- In the quiver context, there is a notion of attractor stability condition (aka self-stability condition) [Manschot BP Sen'13; Bridgeland'16]

$$(\theta_{\star}(\gamma),\gamma') = \langle \gamma',\gamma \rangle := \sum_{a:i \to j} (n'_i n_j - n'_j n_i)$$

The (quiver) attractor invariant is defined as $\Omega_{\star}(\gamma) := \Omega_{\theta_{\star}(\gamma)}(\gamma)$

• In [Alexandrov BP'18], we conjectured a precise version of SAFC which expresses $\bar{\Omega}_{\theta}(\gamma)$ in terms of the attractor invariants:

$$\bar{\Omega}_{\theta}(\gamma) = \sum_{\gamma = \sum \gamma_i} \frac{g_{\theta}(\{\gamma_i\})}{\operatorname{Aut}(\{\gamma_i\})} \prod_i \bar{\Omega}_{\star}(\gamma_i)$$

The coefficients $g_{\theta}(\{\gamma_i\})$ involve a sum over rooted binary trees, whose edges are embedded in \mathbb{R}^{Q_0} along straight lines $\theta_0 + \lambda \theta_{\star}(\gamma_e)$, which are the analogue of attractor flows.

- The sum is manifestly finite, since γ_i lie in the positive cone $\mathbb{Z}_+^{Q_0}$.
- The formula was proven mathematically in [Argüz Bousseau'21] using the formalism of scattering diagrams.

Flow tree formula from scattering diagrams

 For any quiver with potential (Q, W), the scattering diagram D_Q is the set of real codimension-one rays {R(γ), γ ∈ Z^{Q₀}} defined by

$$\mathcal{R}(\gamma) = \{\theta \in \mathbb{R}^{\mathsf{Q}_0} : (\theta, \gamma) = \mathsf{0}, \ \bar{\Omega}_{\theta}(\gamma) \neq \mathsf{0}\}$$

 Each point along R(γ) is endowed with an automorphism of the quantum torus algebra,

$$\mathcal{U}_{ heta}(\gamma) = \exp\left(rac{ar{\Omega}_{ heta}(\gamma)}{y^{-1}-y}\mathcal{X}_{\gamma}
ight) \;, \quad \mathcal{X}_{\gamma}\mathcal{X}_{\gamma'} = (-y)^{\langle\gamma,\gamma'
angle}\mathcal{X}_{\gamma+\gamma'}$$

- The WCF ensures that the diagram is consistent: for any generic closed path *P* : t ∈ [0, 1] ∈ ℝ^{Q₀}, ∏_i U_{θ(ti})(γ_i)^{ε_i} = 1 [Bridgeland'16]
- A consistent scattering diagram is uniquely determined from the initial rays R_{*}(γ), defined as those which contain θ_{*}(γ).
- The Flow Tree Formula of [Alexandrov BP'18] determines the indices of outgoing rays produced by scattering initial rays [Argüz Bousseau '20].

Scattering diagram for Kronecker quiver

 $\theta_1 > 0, \theta_2 < 0: \quad \dim \mathcal{M}_{\theta}(\gamma) = mn_1n_2 - n_1^2 - n_2^2 + 1$

Attractor invariants for $K_{\mathbb{P}^2}$

By studying expected dimension of the moduli space of semi-stable representations M_θ(γ), [Beaujard BP Manschot'20] conjectured that the attractor index Ω_{*}(γ) vanishes unless for γ = γ_i or γ = k(γ₁ + γ₂ + γ₃). This is now a theorem [Bousseau Descombes Le Floch BP'22].

Let \mathcal{D}_o be the restriction of \mathcal{D}_Q to the hyperplane $\theta_1 + \theta_2 + \theta_3 = 1$:

Let \mathcal{D}_o be the restriction of \mathcal{D}_Q to the hyperplane $\theta_1 + \theta_2 + \theta_3 = 1$:

Let \mathcal{D}_o be the restriction of \mathcal{D}_Q to the hyperplane $\theta_1 + \theta_2 + \theta_3 = 1$:

The full scattering diagram \mathcal{D}_Q includes regions with dense set of rays:

B. Pioline (LPTHE, Paris)

Scattering diagrams on triangulated categories

 For a general triangulated category C, define the scattering diagram D_ψ(C) as the set of codimension-one loci in Stab C,

$$\mathcal{R}_{\psi}(\gamma) = \{\sigma : \arg Z(\gamma) = \psi + \frac{\pi}{2}, \ \bar{\Omega}_{Z}(\gamma) \neq \mathbf{0}\}$$

equipped with (a suitable regularization of) the automorphism

$$\mathcal{U}_{\sigma}(\gamma) = \exp\left(rac{ar{\Omega}_{\sigma}(\gamma)}{y^{-1}-y}\mathcal{X}_{\gamma}
ight) = \mathsf{Exp}\left(rac{\Omega_{\sigma}(\gamma)}{y^{-1}-y}\mathcal{X}_{\gamma}
ight)$$

 The WCF ensures that the diagram D_ψ is still locally consistent at each codimension-two intersection.

Flow trees from scattering diagrams

• To see the relation to SAFC, note that for any local CY threefold, the central charge $Z_z(\gamma)$ is holomorphic in z^a , hence its phase is constant along the flow $\frac{dz^a}{du} = -g^{a\bar{b}}\partial_{\bar{b}}|Z_z(\gamma)|^2$:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}\mu}\log\frac{Z(\gamma)}{\bar{Z}(\gamma)} = -\frac{1}{2}\partial_a Z(\gamma)g^{a\bar{b}}\partial_{\bar{b}}\bar{Z}(\gamma) + \frac{1}{2}\partial_a Z(\gamma)g^{a\bar{b}}\partial_{\bar{b}}\bar{Z}(\gamma) = 0$$

Moreover, $|Z_z(\gamma)|^2$ has no local minima so the only attractor points are conifold points with $Z_z(\gamma_i) = 0$.

- Thus, the restriction of $\mathcal{R}_{\psi}(\gamma)$ to the physical slice is preserved by the attractor flow. Moreover, the flow can only split when $\mathcal{R}(\gamma_L)$ and $\mathcal{R}(\gamma_R)$ intersect, and end on an initial ray $\mathcal{R}_{\psi}(\gamma_i)$.
- In complex dimension one, attractor flow lines and scattering rays coincide. Attractor flow trees are subsets of D_ψ which produce an outgoing ray R_ψ(γ) with desired charge γ, passing through the desired point *z*.

Large volume scattering diagram

 $\bullet\,$ The scattering diagram $\mathcal{D}_{\psi}^{\mathrm{LV}}$ along the large volume slice

$$Z^{LV}_{(s,t)}=-rac{1}{2}r(s+\mathrm{i}t)^2+d(s+\mathrm{i}t)-\mathrm{ch}_2$$

was determined for $\psi = 0$ in [Bousseau'19], using a different set of coordinates. The construction extends to any ψ by just mapping $(s,t) \mapsto (s - t \tan \psi, t/\cos \psi)$.

Since ReZ(γ) = ½r(t² - s²) + ds - ch₂, each ray R₀(γ) is contained in a branch of hyperbola asymptoting to t = ±(s - d/r) for r ≠ 0, or vertical a line when r = 0. Walls of marginal stability W(γ, γ') are half-circles centered on real axis.

Large volume scattering diagram

It is useful to think of $\mathcal{R}(\gamma)$ as the worldline of a fictitious particle of charge *r*, mass $M^2 = \frac{1}{2}d^2 - r \operatorname{ch}_2$ moving in a constant electric field:

- The particle travels inside the forward light-cone
- the 'electric potential' $\varphi_s(\gamma) = 2(d sr) = 2\text{Im}Z_{\gamma}/t$ increases along the flow.

Large volume scattering diagram

• Initial rays correspond to $\mathcal{O}(m)$ and $\mathcal{O}(m)[1]$, with charge $\gamma_m = \pm [1, m, \frac{1}{2}m^2]$, emanating from (s, t) = (m, 0) on the boundary where $Z_{(s,t)}^{LV}(\gamma_m) = 0$. [Bousseau'19]

 Physically, the BPS spectrum along the large volume slice originates from bound states of fluxed D4-branes and anti-D4 branes.

- The first scatterings occur after a time $t \ge \frac{1}{2}$, after each constituent $k_i \mathcal{O}(m_i)$ has moved by $|\Delta s| \ge \frac{1}{2}$, by which time $\varphi_s(\gamma_i) \ge |k_i|$.
- Since φ_s(γ) is additive at each vertex, this gives a bound on the number and charges of constituents contributing to Ω_(s,t)(γ):

$$\sum_{i} k_{i}[1, m_{i}, \frac{1}{2}m_{i}^{2}] = \gamma, \quad s - t \leq m_{i} \leq s + t, \quad \sum |k_{i}| \leq \varphi_{s}(\gamma)$$

• Thus, SAFC holds along the large volume slice !

- {{ $-3\mathcal{O}(-2), 2\mathcal{O}(-1)$ }, \mathcal{O} }: 3 $\mathcal{O}(-2) \rightarrow 2\mathcal{O}(-1) \oplus \mathcal{O} \rightarrow E$ $K_3(2,3)K_{12}(1,1) \rightarrow -156$
- { $-\mathcal{O}(-3)$, { $-\mathcal{O}(-1)$, 2 \mathcal{O} }}: $\mathcal{O}(-3) \oplus \mathcal{O}(-1) \rightarrow 2\mathcal{O} \rightarrow E$ $K_3(1,2)K_{12}(1,1) \rightarrow -36$

Total:
$$\Omega_\infty(\gamma) = -192 = GV_4^{(0)}$$

- {{ $-\mathcal{O}(-5), \mathcal{O}(-4)$ }, $\mathcal{O}(-1)$ } $\mathcal{O}(-5) \rightarrow \mathcal{O}(-4) \oplus \mathcal{O}(-1) \rightarrow E$ $K_3(1,1)^2 \rightarrow 9$
- {{ $-\mathcal{O}(-4), \mathcal{O}(-3)$ }, { $-\mathcal{O}(-3), 2\mathcal{O}(-2)$ }} $\mathcal{O}(-4) \oplus \mathcal{O}(-3) \rightarrow$ $\mathcal{O}(-3) \oplus 2\mathcal{O}(-2) \rightarrow E$ $K_3(1,1)^2 K_3(1,2) \rightarrow 27$

•
$$\{-\mathcal{O}(-4), 2\mathcal{O}(-2)\}$$

 $\mathcal{O}(-4) \rightarrow 2\mathcal{O}(-2) \rightarrow E$
 $K_6(1,2) \rightarrow 15$

Total: $\Omega_{\infty}(\gamma) = 51 = \chi(\text{Hilb}_4 \mathbb{P}^2)$

Exact scattering diagram

- The scattering diagram D^Π_ψ along the physical slice should interpolate between D^{LV}_ψ around τ = i∞ and D_o around τ = τ_o, and be invariant under the action of Γ₁(3).
- Under $\tau \mapsto \frac{\tau}{3n\tau+1}$ with $n \in \mathbb{Z}$, $\mathcal{O} \mapsto \mathcal{O}[n]$. Hence there is a doubly infinite family of initial rays emitted at $\tau = 0$, associated to $\mathcal{O}[n]$.

 Similarly, there must be an infinite family of initial rays coming from
 τ = ^p/_q with q ≠ 0 mod 3, corresponding to Γ₁(3)-images of *O*,
 where an object denoted by *O*_{p/q} becomes massless.

τ	g	γ c	$\Delta(\gamma_C)$	$\mathcal{O}_{p/q}$
0	1	[1,0,1)	0	\mathcal{O}
1/5	$U^2 T^{-1}$	-[5, 1, 6)	3/25	$E ightarrow \Omega(2)[-1] ightarrow \mathcal{O}^{\oplus 3}[2]$
1/4	UT	[4, 1, 6)	-3/32	$E ightarrow \mathcal{O}(1) ightarrow \mathcal{O}^{\oplus 3}[3]$
2/5	UT ⁻²	-[5, 2, 6)	12/25	$E o \mathcal{O}(-2) o \mathcal{O}^{\oplus 6}$
3/7	$UT^{-1}VT$	[7, 3, 10)	15/49	$E ightarrow \Omega(0)[1] ightarrow \mathcal{O}^{\oplus 9}[1]$
1/2	TVT	-[2, 1, 3)	3/8	Ω(2)[1]
4/7	TVTUT ⁻¹	[7, 4, 12)	15/49	$\mathcal{O}(1)^{\oplus 9}[-1] \rightarrow \Omega(4)[-1] \rightarrow E$
3/5	TVT ²	-[5, 3, 8)	12/25	$\mathcal{O}(1)^{\oplus 6} o \mathcal{O}(3) o E$
3/4	TVT^{-1}	[4, 3, 10)	-3/32	$\mathcal{O}(1)^{\oplus 3}[-3] o \mathcal{O}(0) o E$
4/5	TV^2T	-[5, 4, 12)	3/25	$\mathcal{O}(1)^{\oplus 3}[-2] o \Omega(2)[1] o E$
1	T	[1, 1, 3)	0	$\mathcal{O}(1)$

 $T: au \mapsto au + 1;$ $U: au \mapsto 1/(3 au + 1);$ $V = U^{-1}$

Exact scattering diagram for small ψ

• For $|\psi|$ small enough, the only rays which reach the large volume region are those associated to $\mathcal{O}(m)$ and $\mathcal{O}(m)$ [1]. Thus, the scattering diagram \mathcal{D}_{ψ}^{Π} is isomorphic to $\mathcal{D}_{0}^{\text{LV}}$ inside \mathcal{F} and its translates:

Scattering diagram in affine coordinates

• To see this, one can map both of them to the plane

Bousseau'19

,

$$x = \frac{\operatorname{Re}\left(e^{-\mathrm{i}\psi}T\right)}{\cos\psi} , \quad y = -\frac{\operatorname{Re}\left(e^{-\mathrm{i}\psi}T_{D}\right)}{\cos\psi}$$

such that $\mathcal{R}_{\psi}(\gamma)$ becomes a line segment $rx + dy - ch_2 = 0$. • The initial rays $\mathcal{R}_{\mathcal{O}(m)}$ are tangent to the parabola $y = -\frac{1}{2}x^2$ at x = m, but the origin of each ray is shifted to $x = m + \mathcal{V} \tan \psi$ where \mathcal{V} is the quantum volume

$$\mathcal{V} = \operatorname{Im} T(0) = \frac{27}{4\pi^2} \operatorname{Im} \left[\operatorname{Li}_2(e^{2\pi i/3}) \right] \simeq 0.463$$

• The topology of \mathcal{D}_{ψ}^{Π} jumps at a discrete set of rational values

$$\mathcal{V} \tan \psi \in \{ \frac{F_{2k} + F_{2k+2}}{2F_{2k+1}}, k \ge 0 \} = \{ \frac{1}{2}, 1, \frac{11}{10}, \frac{29}{26}, \frac{19}{17}, \ldots \}$$

and a dense set of values in $[\frac{\sqrt{5}}{2},+\infty)$ where secondary rays pass through a conifold point.

B. Pioline (LPTHE, Paris)

Affine scattering diagram, $\psi = 0$

Affine scattering diagram, $|\mathcal{V} \tan \psi| < 1/2$

Exact scattering diagram for $\psi = \pm \frac{\pi}{2}$

For ψ = ±^π/₂, the geometric rays {ImZ_τ(γ) = 0} coincide with lines of constant s = ImT_D/ImT = d/r, independent of ch₂:

• Hence, there is no wall-crossing between τ_o and $\tau = i\infty$ when $-1 \leq \frac{d}{r} \leq 0$, explaining why the Gieseker index $\Omega_{\infty}(\gamma)$ agrees with the quiver index $\Omega_c(\gamma)$ in the anti-attractor chamber.

Douglas Fiol Romelsberger'00, Beaujard BP Manschot'20

Case studies

 $\gamma = [0, 1, 1) = \operatorname{ch} \mathcal{O}_{\mathcal{C}}: \Omega_{t \gg 1} = K_3(1, 2)K_3(1, 3)^{n-1} = y^2 + 1 + 1/y^2$

 $\gamma = [1, 0, 1) = \operatorname{ch} \mathcal{O}: \Omega_{t \gg 1} = K_3(1, 3) \dots K_3(1, 3n) = 1$

BPS Dendroscopy

B. Pioline (LPTHE, Paris)

SAFC along the physical slice

In general, trees reaching the large volume region have a two-stage structure, with initial rays from a finite set of exceptional collections {*E*₁(*m_i*), *E*₂(*m_i*), *E*₃(*m_i*)}, which scatter in the vicinity of orbifold points τ = τ_o + *m_i*, and then further interact in the large volume region.

 The SFAC is proved by analyzing the possible leaves, defining a monotonic cost function φ and classifying allowed trees...

- The scattering diagram is the proper mathematical framework for the attractor flow tree formula in the case of local CY3. This is because Z(γ) is holomorphic on M_K, so the gradient flow preserves the phase arg Z(γ).
- This provides an effective way of computing (unframed) BPS invariants in any chamber, and a natural decomposition into elementary constituents. Is this mathematically meaningful ? Does it help e.g. in understanding modularity ?
- It would be interesting to extend this description to other toric CY3, such as local del Pezzo surfaces.
- For compact CY3, $Z(\gamma) = e^{K/2}Z_{hol}(\gamma)$ is not longer holomorphic, so arg $Z(\gamma)$ is not constant along the flow. Can one establish the Split Attractor Flow Tree formula in such context ?

Thanks for your attention !

B. Pioline (LPTHE, Paris)