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Introduction

@ A central goal for any theory of quantum gravity is to provide a
microscopic explanation of the thermodynamical entropy of black
holes in General Relativity Bekenstein'72, Hawking'74]
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Black hole microstates as wrapped D-branes

@ Back in 1996, Strominger and Vafa showed that String Theory
provides a quantitative description in the case of BPS black holes
in vacua with extended SUSY: at weak coupling, BPS states are
bound states of D-branes wrapped on minimal cycles of the
internal Calabi-Yau manifold.

SgH L log

@ Besides confirming the consistency of string theory as a theory of
quantum gravity, this has opened up many fruitful connections
with mathematics.
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BPS indices and Donaldson-Thomas invariants

@ In the context of type IlA strings compactified on a Calabi-Yau
three-fold X, BPS states are described mathematically by stable
objects in the derived category of coherent sheaves C = DPCohX.
The Chern character v = (chg, chy, chy, chg) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.

@ The problem becomes a question in Donaldson-Thomas theory:
for fixed v € K(X), compute the generalized DT invariant Q(v)
counting (semi)stable objects of class ~, and determine its growth
as |y| — oo.

@ Importantly, Q,(v) depends on the moduli of X, or more generally
on a choice of Bridgeland stability condition z € StabC. The
chamber structure is fairly simple for X = T8 or X = K3 x T2, but
very intricate for a general CY 3-fold.
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Modularity of Donaldson-Thomas invariants

@ Physical arguments predict that suitable generating series of DT
invariants (those counting D4-D2-D0 bound states in a suitable
chamber) should have specific modular properties. This gives
very good control on their asymptotic growth, and allows to test
agreement with the BH prediction Q,(v) ~ eS8#(0),

@ More precisely, these generating series are expected to be mock
modular, similar to Ramanujan’s mock theta series. The modular
anomaly can be repaired by adding a universal non-holomorphic
correction, determined recursively from generating series with
lower D4-brane charge [Alexandrov BP Manschot'16-20).
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In this talk, | will explain how to combine knowledge of standard
Gromov-Witten invariants (counting curves in X) and wall-crossing
arguments to rigorously compute many DT invariants on simple
compact CY3, and check mock modularity to high precision

S. Alexandrov, S. Feyzbakhsh, A. Klemm, BP, T. Schimannek, arXiv:2301.08066
S. Alexandrov, S. Feyzbakhsh, A. Klemm, BF, arXiv:2312.12629

@ Reminder of enumerative invariants on CY3: GW, GV, DT, PT...
© Mock modularity of D4-D2-D0 generating series

© From rank 1 to rank 0 DT invariants, and back

© Testing modularity on X5 and other hypergeometric models

© Conclusion and open problems
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Gromov-Witten invariants

@ Let X be a smooth, projective CY threefold. The Gromov-Witten
invariants GW(ﬁg) count genus g curves ¥ with class g € Ho(X, Z).
They depend only on the symplectic structure (or Kéhler moduli)
of X and in general take rational values.

@ Physically, they determine certain higher-derivative couplings in
the low energy effective action, which depend only on the
(complexified) Kahler moduli t and receive worldsheet instanton
corrections: Fg(t) =4 ngg ) 6278 [Antoniadis Gava Narain Taylor93]

@ The first two Fy and F;{ can be computed using mirror symmetry.
Holomorphic anomaly equations along with suitable boundary
conditions allow to determine Fg>> up to a certain genus g, (= 53
for the quintic threefold Xs) [Bershadsky Cecotti Ooguri Vafa’93; Huang Klemm
Quackenbush’06]

B. Pioline (LPTHE, Paris) Counting CY black holes SIMIS, 1/07/25 7/42



Gopakumar-Vafa invariants

@ Gromov-Witten invariants turn out to be determined by a set of
integer invariants Gvgg) via [Gopakumar Vafa’98,lonel Parker'13]
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For g = 0, this reduces to [Candelas de la Ossa Greene Parkes'93]

AW
kiB
@ Physically, GVB(O) counts D2-D0 brane bound states with D2
charge 3, and arbitrary DO charge n, coming from M2-branes
wrapped on [3] x S'.

@ Importantly, Gvgg) vanishes for large enough g > gmax(5)

(Castelnuovo bound) jDoan lonel Walpuski'16].
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Generalized Donaldson-Thomas invariants

@ More generally, bound states of D6-D4-D2-DO0 branes are
described by stable objects in the bounded derived category of
coherent sheaves C = DPCoh(X) [Kontsevich'95, Douglas'01]. Objects
are bounded complexes E=(--- — &1 = & — & — ...) of
coherent sheaves &, graded by the total Chern character
Y(E) =S4 (~1)kché& el

@ Stability depends on a choice of stability condition o = (Z, A),
where the central charge Z € Hom(I', C) and the heart A C C
satisfy various axioms Bridgeland 2007], in particular

Q VEc A ImZ(E)>0
Q VEc A ImZ(E)=0=ReZ(E) <0

@ The generalized Donaldson-Thomas invariant Q,(+y) is roughly the
weighted Euler number of the moduli space M, () of semi-stable
objects E € A with ch E = ~, where semi-stability means that
arg Z(E'") < arg Z(E) for any subobject E’ C E.
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Generalized Donaldson-Thomas invariants

@ The space of stability conditions StabC is a complex manifold of
dimension dim Kyum(X) = 2b2(X) + 2, unless it is empty
[Bridgeland’07].

@ Stability conditions in the vicinity of the large volume point can be
constructed subject to a conjectural Bogomolov-Gieseker-type
inequality introduced in [Bayer Macri Toda’11] — more on this later.

@ The BMT inequality (in its strong form) is very hard to prove for a
general compact CY3, but has been proven for the quintic
threefold X5 jLi18) and a couple of other examples [Koseki2o, Liu21].
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Generalized Donaldson-Thomas invariants

@ Q,() may jump on co-dimension 1 walls in StabC where some
the central charge Z(+') of a subobject E’ C E becomes aligned
with Z(). The jump is governed by a universal wall-crossing
formula fJoyce Song'08, Kontsevich Soibelman’0g]. In simplest primitive case,

AQu (71 +72) = (11,72) o(11) Qo (72)

corresponding physically to the (dis)appearance of multi-centered
black hole bound states [Denef Moore’07; Andriyash Denef Jafferis Moore'10;
Manschot BP Sen’10]

@ For~v =(0,0,4,n), Q,(v) coincides (for any n) with GV/E,O) at large
volume [Katz'06, Toda’17].
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GV invariants and D6-brane bound states

@ For~ = (-1,0,3,—n) at large volume and B-field, stable objects
have a much simpler mathematical description in terms of stable

. S
pairs E : Ox = F [Pandharipande Thomas'07]:

@ Fis a pure 1-dimensional sheaf with ch, F = 8 and x(F) = n
© the section s has zero-dimensional kernel

The PT invariant PT(/, n) is defined as the (weighted) Euler
characteristic of the corresponding moduli space.

@ PT invariants are related to GV invariants by Maulik Nekrasov Okounkov

Pandharipande’06]
Z PT(3,n) e27rit-ﬁqn — EXP(Z GVgg) (VG — 1/\/6)2972627@5)
p.n 5.9

where Exp(f(q)) = exp(3_~1 5f(g™) is the plethystic exponential.

@ Under this relation, the Castelnuovo bound GV=9(") — o i
mapped to PT(3,n <1 — gnu(5)) =0 |
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D4-D2-DO0 indices as rank 0 DT invariants

@ The main interest in this talk will be on rank 0 DT invariants
Q(0, p, 8, n) counting D4-D2-D0 brane bound states supported on
an effective divisor D with class [D] = p € Ha(X, Z).

@ Viewing IIA=M/S", D4-D2-D0 branes on D arise from M5-branes
wrapped on D x S'. In the limit where S' is much larger than X,
they are described by a two-dimensional superconformal field
theory with (0,4) SUSY. Maldacena Strominger Witten'97]

@ D4-D2-D0 indices occur as Fourier coefficients in the elliptic
genus Tr(—1)F glo~2 g27i%2" |f the SCFT has a discrete
spectrum, after theta series decomposition with respect to the
elliptic variables z4, one obtains a vector-valued modular form

hoalr) o= 000, e
where A*/A is the discriminant group associated to
= (H4(X,Z), kap := KabcP®), With cardinality | det kgp|.

B. Pioline (LPTHE, Paris) Counting CY black holes SIMIS, 1/07/25 13/42



Modularity of rank 0 DT invariants

@ When D is very ample and irreducible, there are no walls
extending to large volume, so the choice of chamber is irrelevant.
The SCFT central charges are given by [Maldacena Strominger Witten'97]

c= pPP+c(TX)-p=x(D),
cr= P>+ 30(TX)-p=6x(Op)

Cardy’s formula predicts a growth Q(0.p, 3,1 — o) ~ €2™VF "in
perfect agreement with Bekenstein-Hawking formula !

@ Moreover, since the space of vector-valued weakly holomorphic
modular form has finite dimension, the full series is completely

determined by its polar coefficients, with n —|— 2pu < X§4).
(Actually, the dimension can be smaller than the number of polar
terms).
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Mock modularity of rank O DT invariants

@ When D is reducible, the generating series hpa ,,(7) in a suitable
("large volume attractor") chamber is expected to be a mock
modular form of higher depth jAlexandrov BP Manschot'16-20))

@ Namely, there exists explicit, universal non-holomorphic theta
series ©,({pi}, r,T) such that (omitting the ’s for brevity)

ho(r,7) = ho(r) + Y ©n({pi}, 7, 7) th,

P=2i5"Pi

transforms as a modular form. The completed series satisfy the
holomorphic anomaly equation,

n
Ohp(r.7)= Y On({pi}.7.7) [[ Aol 7
n>2 =1

P=>"1= pi
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Mock modularity of rank O DT invariants

@ For binary splittings, this reduces to the depth one mock modular
forms encountered in the study of BPS dyons in Type Il on
K3 x T2, or in heterotic string on T® [pabholkar Murthy Zagier'12].

@ The modular completion is constructed using similar ideas as in
Zwegers’s work on Ramanujan’s mock theta series, namely
replacing "step functions" with "generalized error functions”
[Alexandrov Banerjee BP Manschot’16].

@ Our derivation relied on the study of instanton corrections to the
QK metric on the moduli space after compactifying on a circle, and
implementing SL(2,7Z) symmetry manifest from /IA/S' = M/T?2. A
nice spin off of earlier research on hypermultiplet moduli spaces !

Alexandrov Banerjee Persson BP Manschot Saueressig Vandoren, 2008-19
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Crash course on Indefinite theta series

@ ©,and @n belongs to the class of indefinite theta series

Vo,q(T,7) = 7, - Z o (@k) g immQk)
keh+q
where (A, Q) is an even lattice of signature (r,d —r), g € A*/A,
A € R. The series converges if f(x) = ®(x)e2 ) e L(A @ R).
@ Theorem (Vignéras, 1978): {¥s g, q € A*/A} transforms as a
vector-valued modular form of weight (\ + g, 0) provided
e R(x)f, R(dx)f € Lo(A @ R) for any polynomial R(x) of degree < 2
° [Of + 2m(x0x — )\)] ®=07["
@ The operator 9r acts by sending ® — (x9x — \)®. Thus 9 is
holomorphic if ® is homogeneous. But unless r = 0, f(x) will fail
to be square-integrable !
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Indefinite theta series

@ Example 1 (Siegel): ® = e"@*+) where x, is the projection of x
on a fixed plane of dimension r, satisfies [*] with A = —n. ¥4 is
then the usual (non-holomorphic) Siegel-Narain theta series.

@ Example 2 (Zwegers): In signature (1,d — 1), choose C, C’ two
vectors such that Q(C), Q(C’),(C,C’) > 0, then

D(x) — (Cx)vm ) _ (€ x)vr
o) = (05 ) - (19

satisfies [*] with A = 0. As |x| — oo, or if Q(C) = Q(C') =0,

®(x) — d(x) := sgn(C, x) — sgn(C’, x)

@ The theta series ©2({p1, p2}), ég({p1,p2}) fall in this class. The
generalization to n > 2 involves generalized error functions.

Alexandrov Banerjee Manschot BP 2016, Nazaroglu 2016
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Non-holomorphic completion from Witten index

@ Physically, the non-holomorphic corrections arise from the
spectral asymmetry in the continuum of scattering states in the
supersymmetric quantum mechanics of n BPS black holes.

Discretum

-2 -1

-2

Continuum

-2

BP 2015; Murthy BP 2018

@ Using localization, one can actually compute the Witten index for
any n, and reproduce the full modular completion ! (at least for
collinear D4-brane charges) [BP Raj, to appear soon]
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Testing mock modularity for one-parameter models

@ In the remainder of this talk, we shall test these modularity
predictions for CY threefolds with Picard rank 1 (i.e. bo(X) = 1),
by computing the first few coefficients in the g-expansion and
determine the putative vector-valued (mock) modular form.

@ This was first attempted by [Gaiotto Strominger Yin 06-07] for the quintic
threefold X5 and a few other hypergeometric models. They were
able to guess the first few terms for unit D4-brane charge, and
found a unique modular completion.

@ We shall compute many terms rigorously, using recent results by
[Feyzbakhsh Thomas'20-22] relating rank r DT invariants (including r = 0,
counting D4-D2-D0 bound states) to PT invariants, hence to GV
invariants.

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23
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From rank 1 to rank O DT invariants

@ The key idea is to study wall-crossing in the space of Bridgeland
stability conditions, away from the physical slice. For any
b + it € H, consider the central charge

Zpt(E) = §t3ch§(E) — 312 ch§(E) — it ch8(E) + 0 ch3(E)
with ch2(E) := [, H3 Ke~bH ch(E). With a suitable choice of heart

ch{(E)
rk(E)

(defined by tilting with respect to the slope
weak stability condition called tilt-stability.

@ Note that Z,;(E) is obtained from Z1V(E) = — [, el®H10H ch(E) by
setting by hand the coefficient of ch‘3’ to 0. In fact, tilt-stability is the
first step in constructing genuine stability conditions near the large
volume point [Bayer Macri Toda’11]

@ The KS/JS wall-crossing formulae still hold for such weak stability
conditions.

), this defines a
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Rank 0 DT invariants from GV invariants

@ Tilt stability agrees with slope stability at large volume, but the
chamber structure is much simpler: walls are nested half-circles in

the Poincaré upper half-plane spanned by z = b + i%.

@ Importantly, for any tilt-semistable object E there is a conjectural
inequality on Chern classes C; := [, chi(E).H3" [Bayer Macri Toda'11;
Bayer Macri Stellari’16]

(CF—2CoCo)(3b* + §12) +(3CoC3 — C1Co)b+ (2C5 —3C1C3) > 0
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Rank 0 DT invariants from GV invariants

@ In particular, if the discriminant A(C) at t = 0 is positive, there
exists an empty chamber | A(~) is quartic in the charges,

A(C) =8C,C5 +6C3C3 +9CEC5 —3C2C5 — 18CyC1C2C3 > 0

@ Remarkably, A(C) is proportional to (minus) the quartic invariant
I4(Q) which determines the entropy Sgy ~ m+/I4(Q) of
single-centered black holes ! In particular, an empty chamber
exists whenever single-centered black hole are ruled out !

@ Consider an anti-D6-brane with charge v = (—1,0, 3, —n) such
that A(C) > 0. By studying wall-crossing between the empty
chamber where Q5 ;(v) = 0 and the large volume chamber where
Qp.+(v) = PT(B, m), one can extract the indices of the D4-D2-D0
branes emitted at each wall !
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A new explicit formula (S. Feyzbakhsh’23)

Theorem Let (X, H) be a smooth polarised CY threefold with

Pic(X) = Z.H satisfying the BMT conjecture. There is f(x) such that

o Ifa:= > f(ﬂ;,H) then the stable pair invariant PT(8, m) =

v,y (DX X 5 PT(B, 1) Q2 (o, 1, B g B —m- 6’.H>

where xpw g = B.H+ B . H+m—m — %3 — ﬂ—zcg(X).H.
@ The sumruns over (', m') € Hao(X,Z) ® Ho(X,Z) such that

0<p.H<H + 38 1 .H

! H)>? "H H—p'.H)? .H+p".H
CGLHESH oy BRSSP | g

In particular, 5'.H < 3.H.

Corollary (Castelnuovo bound): PT(3, m) = 0 unless m > — (2"

B.H
2
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The ad hoc function f(x)

x+5 ifo<x<i

Vex+g1 ifl<x<®

()= 2x+3 15 <x<?
%x—k% if%§X<3 e
sx+1 if3<x /

@ Green: a = 3(x + 1), above which PT = 0 by Castelnuovo

@ Orange: o = v/2x below which BMT provides no empty chamber
@ Blue: a = f(x) above which our theorem applies

e Dotted: (8.H,m) — (B.H + kk,m — k3.H — Srk(k + 1))
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Modularity for one-modulus compact CY

@ Using the theorem above and known GV invariants, we could
compute a large number of coefficients in the generating series of
Abelian (=unit D4-brane charge) rank 0 DT invariants in
one-parameter hypergeometric threefolds, including the quintic Xs.

@ In all cases (except X322, X2 22> Where current knowledge of GV
invariants is insufficient), we found a unique vector-valued
modular form matching all computed coefficients.

@ For two examples X = Xg and X = Xjo, we could compute
sufficiently many D4-D2-D0 indices with two units of D4-brane
charge to identify a unique depth-one mock modular form.
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Modularity for one-modulus compact CY

X xx | K| (TX) [ x(Op) | m |Ci| n|Co
X5(15) -200| 5 50 5/ 7] 0| 36| 1
Xs(14,2) 204| 3| 42 4| 4| o] 19| 1
Xa(14,4) 206 | 2| 44 4 4| o] 14| 1
Xio(1%,2,5) | —288 | 1 34 3| 2/ o] 7| o
X:3(15,2) | -156| 6| 48 5| 9| o 42| 0
Xaa(14.29) | 144 4 40 4| 6| 1| 25| 1
Xs2(15,3) | -256| 4| 52 5/ 7/ 0| 30| 1
Xsa(13,22,3) | —156| 2| 32 3/ 3 o 11| 1
Xoo(12.22.8%) | 120 | 1 22 2| 1] o| 5] 0
X3.5(19) _144| 9| 54 614 1| 78| 3
Xs.2(19) 176 | 8| 56 6|15 1| 69| 3
X322(17) 144 | 12 60 7121 1/117] 0
Xop22(18) | -128|16| 64 8(33| 3|185| 4
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Modular predictions for the quintic threefold

9<53)

@ Using known GVB( we can compute more than 20 terms:

ho = q 3¢ (5 — 800q + 5850042 + 5817125q° + 75474060100g*
+28096675153255q° + 3756542229485475q°
+277591744202815875q" + 136109850147098887504° + . . . )

hyq =q 2its (o +8625q — 1138500492 + 377747400003
+ 3102750380125q* + 5777272151230004° + . ... )

hip=q 24t5 (w — 121850092 + 4419692504° + 9537125112504*
+2175712500237509° + 22258695264509625q° + . ... )
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Modular predictions for the quintic threefold

@ The space of vv modular forms has dimension 7. Remarkably, all
terms above are reproduced by [Gaiotto Strominger Yin'06]

ho— 1 _ 222887E8+1093010E7 E2+177095E2 E¢
B E5ETS 35831808
25(458287ED E5+967810E2 E3+66895E7) D
53747712

25(155587E+1054810E E2+282595E,E})
T 8957952

2 5
D?| ¥

@ Polar coefficients are expected arise as bound states of D6-brane
and anti D6-branes [Denef Moore'07, Toda’'11]. Indeed, they are often
consistent with the naive ansatz [Alexandrov Gaddam Manschot BP’22]

Q(0,1,8,n) = +(x(Op) — B.-H—n) DT(B,n)PT(0,0)
but deviations do occur !

B. Pioline (LPTHE, Paris) Counting CY black holes SIMIS, 1/07/25 29/42



Modular predictions for the decantic

@ For the decantic Xig = P52 1,1,1[10] , Gaiotto et al predicted

IAERE)

o= q 2 (3 — 576q + 271704¢° + 206401533g° + - - )

whereas the correct result turns out to be [Colinucci Wyder'08, van Herck
Wyder'09]

2
o LERELECEE _ g 8 (35750 +271955¢7 + - )

@ This is presumably due to the fact that when the DO-brane lies at
the point where weight 1 homogenous coordinates vanish, the
moduli space of the D4 jumps from P! to P?:

X(P1) x (ex = xpn) + X(B2)xpe = —575
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Mock modularity for non-Abelian D4-D2-DO0 indices

@ For D4-D2-D0 indices with N = 2 units of D4-brane charge,
{ho,., v € Z/(2kZ)} should transform as a vector-valued mock
modular form with modular completion

k—1
h2,,u(7"7_-) = hZ,M(T) + Z 5/(L’T)+u27u @g;)fmﬁﬁ hy N hi 2
p1,12=0

where @Ef) is the Eichler integral of a unary theta series,

1\ —TiT 12
a%@LH) ) ?}75 ez K
1677,
ke2kZ+p

and 54 = 1if 4 =0 mod &, 0 otherwise.
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Mock modularity for non-Abelian D4-D2-DO0 indices

@ Suppose there exists a holomorphic function g,(,”') such that
o) + g transforms as a vv modular form. Then

rk—1
h2’“(T’ 7_-) = hzv“(T) - Z 51(;2—/!2—# gﬁ(g)—uﬁ-ﬁ h1 S h1 2
Ji2=0
will be an ordinary weak hglbﬁorphic vv modular form, hence
uniquely determined by its polar part.
@ For k =1, the series @ff) is the one appearing in the modular

completion of the generating series of Hurwitz class numbers
[Hirzebruch Zagier 1973] (or rank 2 Vafa-Witten invariants on IP’Z)
Ho(r) == 2 +20+ G +50° + 50" +...
Hi () =q4 (%+q+q2+2q3+q4+...)

hence we can choose g,S” = H, (7). See [Alexandrov Bendriss’25] for a
general prescription valid forany x > 1, N > 2.
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Mock modularity for non-Abelian D4-D2-DO0 indices

@ For Xjo, we computed the 7 polar terms + 4 non-polar terms and
found a unique mock modular form reproducing this data:

he  — 5397523E,2+70149738E7 EZ —12112656 EQ E{ —61127530E7 E¢ —2307075E8 (1 2)
2. = 464380231687 100 ®
—10826123E,0 Fg—14574207 E] E3 420196255 E} EZ+5204075E, £] py(12)
1934917632100 K

+ (=) H g (7) by (7)?

203E}+445E,E2

21615 = q‘%(er ...), leading to integer

with Ay =
DT invariants

HSY =q ¥ (7 - 1728q + 203778¢% - 13717632¢° — 239220340364 +

hSY =g % (-6 + 1430q — 108609297 + 208065204¢° + ... )

@ Similar results for Xg [S. Alexandrov, S. Feyzbakhsh, A. Klemm'23]
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Computing the leading term in hy o for Xio

v =(~1,6,0,15), PT(6,—15) = —387409584154130, Py = —10 x 7

Py :-387409565862900

Py:~1808950

P1:-8158650
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Computing the leading term in hy 1 for Xio

v =(~1,7,0,19), PT(7,—19) = 2616884507474124585, P; — 12 x 2!

P;:2616883552833180375

Py :=4254080000

P1:943132177975
Py :-8264%1265640

Py :842138863975
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Quantum geometry from stability and modularity

Gopakumar-Vafa
. . (9) Direct integration
invariants Nﬁ -

new constraints on

MNOF relation holomorphic ambiguities

Modular
bootstrap

Rank 0 DT-invariants
hN,u (7—)

Pandharipande-Thomas

invariants PT(3, n) 3>

i
) Wall crossing e

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

M @)

X XX | K| type | Jinteg | Omod | Imod | Favail
X5(15) 2005 F| 53| 69| 80| 64
Xs(14,2) _204 3| F| 48| 66| 84| 48
Xs(14,4) _206|2| F| 60| 84| 112| 66
Xi0(13,2,5) | —288|1| F| 50| 70| 95| 72
X4’3(15,2) —156 | 6 F 20| 24 24
Xoa(13,22.3) | —156 |2| F| 14| 17 17
Xos(12,22,32) | 120 [ 1| K| 18| 22 26
Xia(1%,22) | 144 |4| K| 26| 34 34
X3.3(19) _144|9| K| 20| 33 33
X;.2(19) _176|8| C| 50| 66 64
Xs2(15.3) | -256|4| C| 63| 78 49

http.//www.th.physik.uni-bonn.de/Groups/Klemm/data.php
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Mathematical origin of modularity

@ While modularity of D4-D2-D0 invariants is clear physically from
the M5-brane picture, its mathematical origin is in general
mysterious (see [Sheshmani, ICBS 24] for recent progress).

@ When X 5 P! admits a K3-fibration, using the relation to Noether-
Lefschetz invariants one can show that modularity holds for
vertical D4-brane charge. The modular anomaly disappears due
to nabpb = 0. [Bouchard Creutzig Diaconescu Doran Quigley Sheshmani’16]

@ In [Doran BP Schimannek’24] we constructed a family of (in general
non-toric) two-parameter K3-fibered threefolds X,[,’,’”, whose mirror
Y,[,’,’/] is also K3-fibered, and which admit extremal transitions to
1-parameter models. We determined their NL invariants, as well
as GV invariants at genus 0 and 1.
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Mathematical origin of modularity

@ Similarly, when X 5 B admits a genus-one fibration with
N-section, one can relate rank 0 DT invariants for a D4-brane
wrapping a pulled-back divisor 7—'(D) to genus 0 GV invariants
via a relative conifold monodromy. In this case, p? is not ample
but still nef, x4,p2pP = 0. See [Kiemm Manschot Wotschke'12] for the
elliptic (N = 1) case.

@ Generating series of GW invariants at fixed genus and base
degree are quasi-modular forms for I'{(N) jAlim Scheidegger'12, Katz
Klemm Huang’15, Cota Klemm Schimannek’19]. After applying the conifold
monodromy, one finds that the modular anomaly of genus 0 GW
invariants matches that of rank 0 DT invariants, despite having
different multi-cover effects (>>1/d% vs 3" 1/d?).
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Mathematical origin of modularity

@ In fact, jKatz kKlemm Huang'15] have conjectured that normalized
generating series of PT invariants at fixed base degree are
meromorphic Jacobi forms. The elliptic transformation was proven
mathematically for reduced charges in [Oberdieck Shen'16]

Ztop(87 T7 )‘) _ 27iS-H
ST =1+ Y Zy(T,\e

HeH;°(B,z)

@ We show that the modular transformation follows from the wave
function behavior of Z,, under a relative conifold monodromy
[Aganagic Bouchard Klemm’06; BP Schimannek, to appear]
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Summary and open questions

@ We provided overwhelming evidence that D4-D2-D0 indices
exhibit mock modular properties. Where does it come from
mathematically ? Is there some VOA acting on the cohomology of
moduli space of stable objects, a la /Nakajima'94] ?

@ Can one test modularity in multi-parameter models, for example in
genus-one fibrations or K3-fibrations ? Can one follow D4-D2-D0
invariants through extremal transitions ?

@ Similar wall-crossing arguments also allow to compute higher rank
DT invariants. Is there some higher rank version of jMnor03 ?
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Thanks for your attention !
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