Counting Calabi-Yau black holes with (mock) modular forms

Boris Pioline

SIMIS, Shanghai July 1st, 2025

Introduction

 A central goal for any theory of quantum gravity is to provide a microscopic explanation of the thermodynamical entropy of black holes in General Relativity [Bekenstein'72, Hawking'74]

$$S_{BH} = \frac{1}{4G_N}A$$

$$S_{BH} \stackrel{?}{=} \log \Omega$$

Black hole microstates as wrapped D-branes

 Back in 1996, Strominger and Vafa showed that String Theory provides a quantitative description in the case of BPS black holes in vacua with extended SUSY: at weak coupling, BPS states are bound states of D-branes wrapped on minimal cycles of the internal Calabi-Yau manifold.

$$S_{BH} = \frac{1}{4G_N}A$$

$$S_{BH} \stackrel{!}{=} \log \Omega$$

 Besides confirming the consistency of string theory as a theory of quantum gravity, this has opened up many fruitful connections with mathematics.

BPS indices and Donaldson-Thomas invariants

- In the context of type IIA strings compactified on a Calabi-Yau three-fold X, BPS states are described mathematically by stable objects in the derived category of coherent sheaves C = D^bCohX. The Chern character γ = (ch₀, ch₁, ch₂, ch₃) is identified as the electromagnetic charge, or D6-D4-D2-D0-brane charge.
- The problem becomes a question in Donaldson-Thomas theory: for fixed $\gamma \in K(X)$, compute the generalized DT invariant $\Omega_Z(\gamma)$ counting (semi)stable objects of class γ , and determine its growth as $|\gamma| \to \infty$.
- Importantly, $\Omega_Z(\gamma)$ depends on the moduli of X, or more generally on a choice of Bridgeland stability condition $z \in \operatorname{Stab} \mathcal{C}$. The chamber structure is fairly simple for $X = T^6$ or $X = K3 \times T^2$, but very intricate for a general CY 3-fold.

Modularity of Donaldson-Thomas invariants

- Physical arguments predict that suitable generating series of DT invariants (those counting D4-D2-D0 bound states in a suitable chamber) should have specific modular properties. This gives very good control on their asymptotic growth, and allows to test agreement with the BH prediction $\Omega_z(\gamma) \simeq e^{S_{BH}(\gamma)}$.
- More precisely, these generating series are expected to be mock modular, similar to Ramanujan's mock theta series. The modular anomaly can be repaired by adding a universal non-holomorphic correction, determined recursively from generating series with lower D4-brane charge [Alexandrov BP Manschot'16-20].

Outline

In this talk, I will explain how to combine knowledge of standard Gromov-Witten invariants (counting curves in X) and wall-crossing arguments to rigorously compute many DT invariants on simple compact CY3, and check mock modularity to high precision

S. Alexandrov, S. Feyzbakhsh, A. Klemm, BP, T. Schimannek, arXiv:2301.08066 S. Alexandrov, S. Feyzbakhsh, A. Klemm, BP, arXiv:2312.12629

- Reminder of enumerative invariants on CY3: GW, GV, DT, PT...
- Mock modularity of D4-D2-D0 generating series
- From rank 1 to rank 0 DT invariants, and back
- Testing modularity on X₅ and other hypergeometric models
- Conclusion and open problems

Gromov-Witten invariants

- Let X be a smooth, projective CY threefold. The Gromov-Witten invariants $\mathrm{GW}_{\beta}^{(g)}$ count genus g curves Σ with class $\beta \in H_2(X,\mathbb{Z})$. They depend only on the symplectic structure (or Kähler moduli) of X and in general take rational values.
- Physically, they determine certain higher-derivative couplings in the low energy effective action, which depend only on the (complexified) Kähler moduli t and receive worldsheet instanton corrections: $F_g(t) = \sum_{\beta} \mathsf{GW}_{\beta}^{(g)} e^{2\pi \mathrm{i} t \cdot \beta}$ [Antoniadis Gava Narain Taylor'93]
- The first two F_0 and F_1 can be computed using mirror symmetry. Holomorphic anomaly equations along with suitable boundary conditions allow to determine $F_{g\geq 2}$ up to a certain genus $g_{\rm int}$ (= 53 for the quintic threefold X_5) [Bershadsky Cecotti Ooguri Vafa'93; Huang Klemm Quackenbush'06]

Gopakumar-Vafa invariants

• Gromov-Witten invariants turn out to be determined by a set of integer invariants $\mathrm{GV}_{\beta}^{(g)}$ via [Gopakumar Vafa'98,lonel Parker'13]

$$\sum_{g=0}^{\infty} \sum_{\beta} \mathsf{GW}_{\beta}^{(g)} \, \lambda^{2g-2} e^{2\pi \mathrm{i} t \cdot \beta} = \sum_{g=0}^{\infty} \sum_{k=1}^{\infty} \sum_{\beta} \frac{\mathsf{GV}_{\beta}^{(g)}}{k} \, \big(2 \sin \frac{k \lambda}{2} \big)^{2g-2} \, e^{2\pi \mathrm{i} k t \cdot \beta}$$

For g=0, this reduces to [Candelas de la Ossa Greene Parkes'93]

$$GW_{\beta}^{(0)} = \sum_{k|\beta} \frac{1}{k^3} GV_{\beta/k}^{(0)}$$

- Physically, $GV_{\beta}^{(0)}$ counts D2-D0 brane bound states with D2 charge β , and arbitrary D0 charge n, coming from M2-branes wrapped on $[\beta] \times S^1$.
- Importantly, $GV_{\beta}^{(g)}$ vanishes for large enough $g \geq g_{\max}(\beta)$ (Castelnuovo bound) [Doan lonel Walpuski'16].

Generalized Donaldson-Thomas invariants

- More generally, bound states of D6-D4-D2-D0 branes are described by stable objects in the bounded derived category of coherent sheaves $\mathcal{C} = D^b \operatorname{Coh}(X)$ [Kontsevich'95, Douglas'01]. Objects are bounded complexes $E = (\cdots \to \mathcal{E}_{-1} \to \mathcal{E}_0 \to \mathcal{E}_1 \to \ldots)$ of coherent sheaves \mathcal{E}_k , graded by the total Chern character $\gamma(E) = \sum_k (-1)^k \operatorname{ch} \mathcal{E}_k \in \Gamma$
- Stability depends on a choice of stability condition $\sigma = (Z, A)$, where the central charge $Z \in \operatorname{Hom}(\Gamma, \mathbb{C})$ and the heart $A \subset \mathcal{C}$ satisfy various axioms [Bridgeland 2007], in particular
- The generalized Donaldson-Thomas invariant $\Omega_{\sigma}(\gamma)$ is roughly the weighted Euler number of the moduli space $M_{\sigma}(\gamma)$ of semi-stable objects $E \in \mathcal{A}$ with ch $E = \gamma$, where semi-stability means that $\arg Z(E') \leq \arg Z(E)$ for any subobject $E' \subset E$.

Generalized Donaldson-Thomas invariants

- The space of stability conditions $\operatorname{Stab} \mathcal{C}$ is a complex manifold of dimension $\dim K_{\operatorname{num}}(X) = 2b_2(X) + 2$, unless it is empty [Bridgeland'07].
- Stability conditions in the vicinity of the large volume point can be constructed subject to a conjectural Bogomolov-Gieseker-type inequality introduced in [Bayer Macri Toda'11] — more on this later.
- The BMT inequality (in its strong form) is very hard to prove for a general compact CY3, but has been proven for the quintic threefold X₅ [Li'18] and a couple of other examples [Koseki'20, Liu'21].

Generalized Donaldson-Thomas invariants

• $\Omega_{\sigma}(\gamma)$ may jump on co-dimension 1 walls in $\operatorname{Stab} \mathcal{C}$ where some the central charge $Z(\gamma')$ of a subobject $E' \subset E$ becomes aligned with $Z(\gamma)$. The jump is governed by a universal wall-crossing formula [Joyce Song'08, Kontsevich Soibelman'08]. In simplest primitive case,

$$\Delta\Omega_{\sigma}(\gamma_1 + \gamma_2) = \langle \gamma_1, \gamma_2 \rangle \,\Omega_{\sigma}(\gamma_1) \,\Omega_{\sigma}(\gamma_2)$$

corresponding physically to the (dis)appearance of multi-centered black hole bound states [Denef Moore'07; Andriyash Denef Jafferis Moore'10;

Manschot BP Sen'10]

• For $\gamma = (0, 0, \beta, n)$, $\Omega_{\sigma}(\gamma)$ coincides (for any n) with $GV_{\beta}^{(0)}$ at large volume [Katz'06, Toda'17].

GV invariants and D6-brane bound states

- For $\gamma = (-1, 0, \beta, -n)$ at large volume and *B*-field, stable objects have a much simpler mathematical description in terms of stable pairs $E : \mathcal{O}_X \xrightarrow{s} F$ [Pandharipande Thomas'07]:
 - F is a pure 1-dimensional sheaf with $ch_2 F = \beta$ and $\chi(F) = n$
 - 2 the section s has zero-dimensional kernel

The PT invariant $PT(\beta, n)$ is defined as the (weighted) Euler characteristic of the corresponding moduli space.

 PT invariants are related to GV invariants by [Maulik Nekrasov Okounkov Pandharipande'06]

$$\sum_{\beta,n} \mathsf{PT}(\beta,n) \, e^{2\pi \mathrm{i} t \cdot \beta} q^n = \mathsf{Exp}(\sum_{\beta,g} \mathsf{GV}_\beta^{(g)} \, (\sqrt{q} - 1/\sqrt{q})^{2g-2} e^{2\pi \mathrm{i} t \cdot \beta})$$

where $\text{Exp}(f(q)) = \exp(\sum_{n \ge 1} \frac{1}{n} f(q^n))$ is the plethystic exponential.

• Under this relation, the Castelnuovo bound $GV_{\beta}^{(g \geq g_{\max}(\beta))} = 0$ is mapped to $PT(\beta, n \leq 1 - g_{\max}(\beta)) = 0$

D4-D2-D0 indices as rank 0 DT invariants

- The main interest in this talk will be on rank 0 DT invariants $\Omega(0, p, \beta, n)$ counting D4-D2-D0 brane bound states supported on an effective divisor \mathcal{D} with class $[\mathcal{D}] = p \in \mathcal{H}_4(X, \mathbb{Z})$.
- Viewing IIA=M/ S^1 , D4-D2-D0 branes on $\mathcal D$ arise from M5-branes wrapped on $\mathcal D \times S^1$. In the limit where S^1 is much larger than X, they are described by a two-dimensional superconformal field theory with (0,4) SUSY. [Maldacena Strominger Witten'97]
- D4-D2-D0 indices occur as Fourier coefficients in the elliptic genus ${\rm Tr}(-1)^F q^{L_0-\frac{c_L}{24}} e^{2\pi i q_a z^a}$. If the SCFT has a discrete spectrum, after theta series decomposition with respect to the elliptic variables z^a , one obtains a vector-valued modular form

$$h_{p,\mu}(\tau) := \sum_{n} \bar{\Omega}(0,p,\mu,n) \, q^{n-\frac{\chi(\mathcal{D})}{24} + \frac{1}{2}\mu^2 - \frac{1}{2}p\mu} \;, \quad \mu \in \Lambda^*/\Lambda$$

where Λ^*/Λ is the discriminant group associated to $\Lambda = (H_4(X,\mathbb{Z}), \kappa_{ab} := \kappa_{abc} p^c)$, with cardinality $|\det \kappa_{ab}|$.

Modularity of rank 0 DT invariants

 When D is very ample and irreducible, there are no walls extending to large volume, so the choice of chamber is irrelevant.
 The SCFT central charges are given by [Maldacena Strominger Witten'97]

$$\begin{cases} c_L = & p^3 + c_2(TX) \cdot p = \chi(\mathcal{D}) \;, \\ c_R = & p^3 + \frac{1}{2}c_2(TX) \cdot p = 6\chi(\mathcal{O}_{\mathcal{D}}) \end{cases}$$

Cardy's formula predicts a growth $\Omega(0, p, \beta, n \to \infty) \sim e^{2\pi\sqrt{p^3} n}$ in perfect agreement with Bekenstein-Hawking formula!

• Moreover, since the space of vector-valued weakly holomorphic modular form has finite dimension, the full series is completely determined by its polar coefficients, with $n+\frac{1}{2}\mu^2-\frac{1}{2}p\mu<\frac{\chi(\mathcal{D})}{24}$. (Actually, the dimension can be smaller than the number of polar terms).

Mock modularity of rank 0 DT invariants

- When \mathcal{D} is reducible, the generating series $h_{p^a,\mu_a}(\tau)$ in a suitable ("large volume attractor") chamber is expected to be a mock modular form of higher depth [Alexandrov BP Manschot'16-20])
- Namely, there exists explicit, universal non-holomorphic theta series $\Theta_n(\{p_i\}, \tau, \bar{\tau})$ such that (omitting the μ 's for brevity)

$$\widehat{h}_{p}(au,ar{ au})=h_{p}(au)+\sum_{oldsymbol{p}=\sum_{i=1}^{n\geq2}p_{i}}\Theta_{n}(\{oldsymbol{p}_{i}\}, au,ar{ au})\prod_{i=1}^{n}h_{p_{i}}(au)$$

transforms as a modular form. The completed series satisfy the holomorphic anomaly equation,

$$\partial_{\bar{\tau}}\widehat{h}_{p}(\tau,\bar{\tau}) = \sum_{\boldsymbol{p} = \sum_{i=1}^{n \geq 2} p_{i}} \widehat{\Theta}_{n}(\{\boldsymbol{p}_{i}\},\tau,\bar{\tau}) \prod_{i=1}^{n} \widehat{h}_{p_{i}}(\tau,\bar{\tau})$$

Mock modularity of rank 0 DT invariants

- For binary splittings, this reduces to the depth one mock modular forms encountered in the study of BPS dyons in Type II on $K3 \times T^2$, or in heterotic string on T^6 [Dabholkar Murthy Zagier'12].
- The modular completion is constructed using similar ideas as in Zwegers's work on Ramanujan's mock theta series, namely replacing "step functions" with "generalized error functions" [Alexandrov Banerjee BP Manschot'16].
- Our derivation relied on the study of instanton corrections to the QK metric on the moduli space after compactifying on a circle, and implementing $SL(2,\mathbb{Z})$ symmetry manifest from $IIA/S^1=M/T^2$. A nice spin off of earlier research on hypermultiplet moduli spaces!

Alexandrov Banerjee Persson BP Manschot Saueressig Vandoren, 2008-19

Crash course on Indefinite theta series

• Θ_n and $\widehat{\Theta}_n$ belongs to the class of indefinite theta series

$$\vartheta_{\Phi,q}(\tau,\bar{\tau}) = \tau_2^{-\lambda} \sum_{k \in \Lambda + q} \Phi\left(\sqrt{2\tau_2}k\right) e^{-\mathrm{i}\pi\tau Q(k)}$$

where (Λ, Q) is an even lattice of signature $(r, d - r), q \in \Lambda^*/\Lambda$, $\lambda \in \mathbb{R}$. The series converges if $f(x) \equiv \Phi(x)e^{\frac{\pi}{2}Q(x)} \in L_1(\Lambda \otimes \mathbb{R})$.

- Theorem (Vignéras, 1978): $\{\vartheta_{\Phi,q}, q \in \Lambda^*/\Lambda\}$ transforms as a vector-valued modular form of weight $(\lambda + \frac{d}{2}, 0)$ provided
 - $R(x)f, R(\partial_x)f \in L_2(\Lambda \otimes \mathbb{R})$ for any polynomial R(x) of degree ≤ 2
 - $\bullet \left[\partial_x^2 + 2\pi(x\partial_x \lambda)\right] \Phi = 0 [*]$
- The operator $\partial_{\bar{\tau}}$ acts by sending $\Phi \to (x\partial_x \lambda)\Phi$. Thus ϑ is holomorphic if Φ is homogeneous. But unless r = 0, f(x) will fail to be square-integrable!

Indefinite theta series

- Example 1 (Siegel): $\Phi = e^{\pi Q(x_+)}$, where x_+ is the projection of x_+ on a fixed plane of dimension r, satisfies [*] with $\lambda = -n$. ϑ_{Φ} is then the usual (non-holomorphic) Siegel-Narain theta series.
- Example 2 (Zwegers): In signature (1, d 1), choose C, C' two vectors such that Q(C), Q(C'), (C, C') > 0, then

$$\widehat{\Phi}(x) = \operatorname{Erf}\left(\frac{(C,x)\sqrt{\pi}}{\sqrt{Q(C)}}\right) - \operatorname{Erf}\left(\frac{(C',x)\sqrt{\pi}}{\sqrt{Q(C')}}\right)$$

satisfies [*] with $\lambda = 0$. As $|x| \to \infty$, or if Q(C) = Q(C') = 0,

$$\widehat{\Phi}(x) \to \Phi(x) := \operatorname{sgn}(C, x) - \operatorname{sgn}(C', x)$$

• The theta series $\Theta_2(\{p_1, p_2\})$, $\widehat{\Theta}_2(\{p_1, p_2\})$ fall in this class. The generalization to n > 2 involves generalized error functions.

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016

Non-holomorphic completion from Witten index

 Physically, the non-holomorphic corrections arise from the spectral asymmetry in the continuum of scattering states in the supersymmetric quantum mechanics of n BPS black holes.

BP 2015; Murthy BP 2018

 Using localization, one can actually compute the Witten index for any n, and reproduce the full modular completion! (at least for collinear D4-brane charges) [BP Raj, to appear soon]

Testing mock modularity for one-parameter models

- In the remainder of this talk, we shall test these modularity predictions for CY threefolds with Picard rank 1 (i.e. $b_2(X) = 1$), by computing the first few coefficients in the q-expansion and determine the putative vector-valued (mock) modular form.
- This was first attempted by [Gaiotto Strominger Yin '06-07] for the quintic threefold X₅ and a few other hypergeometric models. They were able to guess the first few terms for unit D4-brane charge, and found a unique modular completion.
- We shall compute many terms rigorously, using recent results by [Feyzbakhsh Thomas'20-22] relating rank r DT invariants (including r=0, counting D4-D2-D0 bound states) to PT invariants, hence to GV invariants.

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek'23

From rank 1 to rank 0 DT invariants

• The key idea is to study wall-crossing in the space of Bridgeland stability conditions, away from the physical slice. For any $b+\mathrm{i} t\in\mathbb{H}$, consider the central charge

$$Z_{b,t}(E) = \frac{i}{6}t^3 \cosh^b(E) - \frac{1}{2}t^2 \cosh^b(E) - it \cosh^b(E) + 0 \cosh^b(E)$$

with $\operatorname{ch}_k^b(E) := \int_X H^{3-k} e^{-bH} \operatorname{ch}(E)$. With a suitable choice of heart (defined by tilting with respect to the slope $\frac{\operatorname{ch}_1^b(E)}{\operatorname{rk}(E)}$), this defines a weak stability condition called tilt-stability.

- Note that $Z_{b,t}(E)$ is obtained from $Z^{LV}(E) = -\int_X e^{(b+it)H} \operatorname{ch}(E)$ by setting by hand the coefficient of ch_3^b to 0. In fact, tilt-stability is the first step in constructing genuine stability conditions near the large volume point [Bayer Macri Toda'11]
- The KS/JS wall-crossing formulae still hold for such weak stability conditions.

Rank 0 DT invariants from GV invariants

• Tilt stability agrees with slope stability at large volume, but the chamber structure is much simpler: walls are nested half-circles in the Poincaré upper half-plane spanned by $z = b + i \frac{t}{\sqrt{3}}$.

• Importantly, for any tilt-semistable object E there is a conjectural inequality on Chern classes $C_i := \int_X \operatorname{ch}_i(E).H^{3-i}$ [Bayer Macri Toda'11; Bayer Macri Stellari'16]

$$(C_1^2 - 2C_0C_2)(\frac{1}{2}b^2 + \frac{1}{6}t^2) + (3C_0C_3 - C_1C_2)b + (2C_2^2 - 3C_1C_3) \ge 0$$

Rank 0 DT invariants from GV invariants

• In particular, if the discriminant $\Delta(C)$ at t=0 is positive, there exists an empty chamber ! $\Delta(\gamma)$ is quartic in the charges,

$$\Delta(\textit{C}) = 8\textit{C}_{0}\textit{C}_{2}^{3} + 6\textit{C}_{1}^{3}\textit{C}_{3} + 9\textit{C}_{0}^{2}\textit{C}_{3}^{2} - 3\textit{C}_{1}^{2}\textit{C}_{2}^{2} - 18\textit{C}_{0}\textit{C}_{1}\textit{C}_{2}\textit{C}_{3} \geq 0$$

- Remarkably, $\Delta(C)$ is proportional to (minus) the quartic invariant $I_4(Q)$ which determines the entropy $S_{BH} \sim \pi \sqrt{I_4(Q)}$ of single-centered black holes! In particular, an empty chamber exists whenever single-centered black hole are ruled out!
- Consider an anti-D6-brane with charge $\gamma = (-1,0,\beta,-n)$ such that $\Delta(C) > 0$. By studying wall-crossing between the empty chamber where $\Omega_{b,t}(\gamma) = 0$ and the large volume chamber where $\Omega_{b,t}(\gamma) = \mathsf{PT}(\beta,m)$, one can extract the indices of the D4-D2-D0 branes emitted at each wall !

A new explicit formula (S. Feyzbakhsh'23)

Theorem Let (X, H) be a smooth polarised CY threefold with $Pic(X) = \mathbb{Z}.H$ satisfying the BMT conjecture. There is f(x) such that

• If $\alpha := \frac{m}{\beta \cdot H} > f(\frac{\beta, H}{H})$ then the stable pair invariant $PT(\beta, m) = \frac{m}{\beta \cdot H} > f(\frac{\beta, H}{H})$

$$\sum_{(m',\,\beta')} (-1)^{\chi_{m',\,\beta'}} \chi_{m',\,\beta'} \mathsf{PT}(\beta',\,m') \, \Omega\left(0,1,\,\, \tfrac{H^2}{2} - \beta' + \beta \,\,,\,\, \tfrac{H^3}{6} + m' - m - \beta'.H\right)$$

where
$$\chi_{m',\beta'} = \beta.H + \beta'.H + m - m' - \frac{H^3}{6} - \frac{1}{12}c_2(X).H$$
.

• The sum runs over $(\beta', m') \in H_2(X, \mathbb{Z}) \oplus H_0(X, \mathbb{Z})$ such that

$$\begin{split} 0 & \leq \beta'.H \leq \frac{H^3}{2} + \frac{3mH^3}{2\beta.H} + \beta.H \\ -\frac{(\beta'.H)^2}{2H^3} - \frac{\beta'.H}{2} & \leq m' \leq \frac{(\beta.H - \beta'.H)^2}{2H^3} + \frac{\beta.H + \beta'.H}{2} + m \end{split}$$

In particular, $\beta'.H < \beta.H$.

Corollary (Castelnuovo bound): $PT(\beta, m) = 0$ unless $m \ge -\frac{(\beta.H)^2}{2H^3} - \frac{\beta.H}{2}$

The ad hoc function f(x)

$$f(x) := \begin{cases} x + \frac{1}{2} & \text{if } 0 < x < 1 \\ \sqrt{2x + \frac{1}{4}} & \text{if } 1 < x < \frac{15}{8} \\ \frac{2}{3}x + \frac{3}{4} & \text{if } \frac{15}{8} \le x < \frac{9}{4} \\ \frac{1}{3}x + \frac{3}{2} & \text{if } \frac{9}{4} \le x < 3 \\ \frac{1}{2}x + 1 & \text{if } 3 \le x \end{cases}$$

- Green: $\alpha = \frac{3}{4}(x+1)$, above which PT = 0 by Castelnuovo
- Orange: $\alpha = \sqrt{2x}$ below which BMT provides no empty chamber
- Blue: $\alpha = f(x)$ above which our theorem applies
- Dotted: $(\beta.H, m) \mapsto (\beta.H + \kappa k, m \kappa \beta.H \frac{1}{2}\kappa k(k+1))$

Modularity for one-modulus compact CY

- Using the theorem above and known GV invariants, we could compute a large number of coefficients in the generating series of Abelian (=unit D4-brane charge) rank 0 DT invariants in one-parameter hypergeometric threefolds, including the quintic X₅.
- In all cases (except X_{3,2,2}, X_{2,2,2,2} where current knowledge of GV invariants is insufficient), we found a unique vector-valued modular form matching all computed coefficients.
- For two examples $X = X_8$ and $X = X_{10}$, we could compute sufficiently many D4-D2-D0 indices with two units of D4-brane charge to identify a unique depth-one mock modular form.

Modularity for one-modulus compact CY

X	χx	κ	$c_2(TX)$	$\chi(\mathcal{O}_{\mathcal{D}})$	n ₁	C_1	n_2	C_2
$X_5(1^5)$	-200	5	50	5	7	0	36	1
$X_6(1^4,2)$	-204	3	42	4	4	0	19	1
$X_8(1^4,4)$	-296	2	44	4	4	0	14	1
$X_{10}(1^3,2,5)$	-288	1	34	3	2	0	7	0
$X_{4,3}(1^5,2)$	-156	6	48	5	9	0	42	0
$X_{4,4}(1^4,2^2)$	-144	4	40	4	6	1	25	1
$X_{6,2}(1^5,3)$	-256	4	52	5	7	0	30	1
$X_{6,4}(1^3,2^2,3)$	-156	2	32	3	3	0	11	1
$X_{6,6}(1^2,2^2,3^2)$	-120	1	22	2	1	0	5	0
$X_{3,3}(1^6)$	-144	9	54	6	14	1	78	3
$X_{4,2}(1^6)$	-176	8	56	6	15	1	69	3
$X_{3,2,2}(1^7)$	-144	12	60	7	21	1	117	0
$X_{2,2,2,2}(1^8)$	-128	16	64	8	33	3	185	4

Modular predictions for the quintic threefold

• Using known $GV_{\beta}^{(g \le 53)}$ we can compute more than 20 terms:

$$\begin{split} h_0 &= q^{-\frac{55}{24}} \left(\underline{5 - 800q + 58500q^2} + 5817125q^3 + 75474060100q^4 \right. \\ &+ 28096675153255q^5 + 3756542229485475q^6 \\ &+ 277591744202815875q^7 + 13610985014709888750q^8 + \dots \right), \\ h_{\pm 1} &= q^{-\frac{55}{24} + \frac{3}{5}} \left(\underline{0 + 8625q} - 1138500q^2 + 3777474000q^3 \right. \\ &+ 3102750380125q^4 + 577727215123000q^5 + \dots \right) \\ h_{\pm 2} &= q^{-\frac{55}{24} + \frac{2}{5}} \left(\underline{0 + 0q} - 1218500q^2 + 441969250q^3 + 953712511250q^4 \right. \\ &+ 217571250023750q^5 + 22258695264509625q^6 + \dots \right) \end{split}$$

Modular predictions for the quintic threefold

 The space of vv modular forms has dimension 7. Remarkably, all terms above are reproduced by [Gaiotto Strominger Yin'06]

$$\begin{split} h_{\mu} &= \frac{1}{\eta^{55+15}} \left[-\frac{222887E_4^8 + 1093010E_4^5E_6^2 + 177095E_4^2E_6^4}{35831808} \right. \\ &+ \frac{25\left(458287E_4^6E_6 + 967810E_4^3E_6^3 + 66895E_6^5\right)}{53747712}D \\ &+ \frac{25\left(155587E_4^7 + 1054810E_4^4E_6^2 + 282595E_4E_6^4\right)}{8957952}D^2 \right] \vartheta_{\mu}^{(5)} \end{split}$$

 Polar coefficients are expected arise as bound states of D6-brane and anti D6-branes [Denef Moore'07, Toda'11]. Indeed, they are often consistent with the naive ansatz [Alexandrov Gaddam Manschot BP'22]

$$\Omega(0,1,\beta,n) = \pm (\chi(\mathcal{O}_{\mathcal{D}}) - \beta.H - n) DT(\beta,n)PT(0,0)$$

but deviations do occur!

Modular predictions for the decantic

ullet For the decantic $X_{10} = \mathbb{P}_{5,2,1,1,1}[10]$, Gaiotto et al predicted

$$h_{1,0} \stackrel{?}{=} q^{-\frac{35}{24}} \left(\underline{3 - 576q} + 271704q^2 + 206401533q^3 + \cdots \right)$$

whereas the correct result turns out to be [Collinucci Wyder'08, van Herck Wyder'09]

$$h_{1,0} = \frac{1}{203} \frac{203E_4^4 + 445E_4E_6^2}{216\eta^{35}} = q^{-\frac{35}{24}} \left(\frac{3 - 575q}{4 + 271955q^2} + 271955q^2 + \cdots \right)$$

• This is presumably due to the fact that when the D0-brane lies at the point where weight 1 homogenous coordinates vanish, the moduli space of the D4 jumps from \mathbb{P}^1 to \mathbb{P}^2 :

$$\chi(\mathbb{P}^1) \times (\chi_X - \chi_{\text{pt}}) + \chi(\mathbb{P}^2)\chi_{\text{pt}} = -575$$

Mock modularity for non-Abelian D4-D2-D0 indices

• For D4-D2-D0 indices with N=2 units of D4-brane charge, $\{h_{2,\mu}, \mu \in \mathbb{Z}/(2\kappa\mathbb{Z})\}$ should transform as a vector-valued mock modular form with modular completion

$$\widehat{h}_{2,\mu}(\tau,\bar{\tau}) = h_{2,\mu}(\tau) + \sum_{\mu_1,\mu_2=0}^{\kappa-1} \delta_{\mu_1+\mu_2-\mu}^{(\kappa)} \Theta_{\mu_2-\mu_1+\kappa}^{(\kappa)} h_{1,\mu_1} h_{1,\mu_2}$$

where $\Theta_{\mu}^{(\kappa)}$ is the Eichler integral of a unary theta series,

$$\partial_{\bar{\tau}}\Theta_{\mu}^{(\kappa)} = \frac{(-1)^{\mu}\sqrt{\kappa}}{16\pi i au_2^{3/2}} \sum_{k \in 2\kappa \mathbb{Z} + \mu} e^{\frac{-\pi i \bar{\tau}}{2\kappa}} k^2$$

and $\delta_{\mu}^{(\kappa)} = 1$ if $\mu \equiv 0 \mod \kappa$, 0 otherwise.

Mock modularity for non-Abelian D4-D2-D0 indices

• Suppose there exists a holomorphic function $g_{\mu}^{(\kappa)}$ such that $\Theta_{\mu}^{(\kappa)} + g_{\mu}^{(\kappa)}$ transforms as a vv modular form. Then

$$\widetilde{h}_{2,\mu}(\tau,\bar{\tau}) = h_{2,\mu}(\tau) - \sum_{\mu_1,\mu_2=0}^{\kappa-1} \delta_{\mu_1+\mu_2-\mu}^{(\kappa)} g_{\mu_2-\mu_1+\kappa}^{(\kappa)} h_{1,\mu_1} h_{1,\mu_2}$$

will be an ordinary weak holomorphic vv modular form, hence uniquely determined by its polar part.

• For $\kappa=1$, the series $\Theta_{\mu}^{(1)}$ is the one appearing in the modular completion of the generating series of Hurwitz class numbers [Hirzebruch Zagier 1973] (or rank 2 Vafa-Witten invariants on \mathbb{P}^2)

$$egin{aligned} H_0(au) &= -rac{1}{12} + rac{1}{2}q + q^2 + rac{4}{3}q^3 + rac{3}{2}q^4 + \dots \ H_1(au) &= q^rac{3}{4}\left(rac{1}{3} + q + q^2 + 2q^3 + q^4 + \dots
ight) \end{aligned}$$

hence we can choose $g_{\mu}^{(1)}=H_{\mu}(\tau)$. See [Alexandrov Bendriss'25] for a general prescription valid for any $\kappa \geq 1$, $N \geq 2$.

Mock modularity for non-Abelian D4-D2-D0 indices

• For X_{10} , we computed the 7 polar terms + 4 non-polar terms and found a unique mock modular form reproducing this data:

$$\begin{split} h_{2,\mu} = & \frac{5397523E_4^{12} + 70149738E_4^9E_6^2 - 12112656E_4^6E_6^4 - 61127530E_4^3E_6^6 - 2307075E_6^8}{46438023168\eta^{100}} \vartheta_{\mu}^{(1,2)} \\ & + \frac{-10826123E_4^{10}E_6 - 14574207E_4^7E_6^3 + 20196255E_4^4E_6^5 + 5204075E_4E_6^7}{1934917632\eta^{100}} \mathcal{D} \vartheta_{\mu}^{(1,2)} \\ & + (-1)^{\mu+1}H_{\mu+1}(\tau)h_1(\tau)^2 \end{split}$$

with $h_1=\frac{203E_4^4+445E_4E_6^2}{216\,\eta^{35}}=q^{-\frac{35}{24}}(\underline{3-575q}+\dots),$ leading to integer DT invariants

$$h_{2,0}^{(int)} = q^{-\frac{19}{6}} \left(\frac{7 - 1728q + 203778q^2 - 13717632q^3}{6 - 23922034036q^4 + 1086092q^2} - 23922034036q^4 + 1086092q^2 + 208065204q^3 + \dots \right)$$

• Similar results for X₈ [S. Alexandrov, S. Feyzbakhsh, A. Klemm'23]

Computing the leading term in $h_{2,0}$ for X_{10}

$$\gamma = (-1, 6, 0, 15), \ PT(6, -15) = -387409584154130, \ P_3 = -10 \times 7$$

Computing the leading term in $h_{2,1}$ for X_{10}

$$\gamma = (-1, 7, 0, 19), \ PT(7, -19) = 2616884507474124585, \ P_3 = 12 \times \frac{21}{4}$$

Quantum geometry from stability and modularity

Alexandrov Feyzbakhsh Klemm BP Schimannek'23

Quantum geometry from stability and modularity

X	χх	κ	type	$g_{\rm integ}$	$g_{\text{mod}}^{(1)}$	$g_{\text{mod}}^{(2)}$	g avail
$X_5(1^5)$	-200	5	F	53	69	80	64
$X_6(1^4,2)$	-204	3	F	48	66	84	48
$X_8(1^4,4)$	-296	2	F	60	84	112	66
$X_{10}(1^3,2,5)$	-288	1	F	50	70	95	72
$X_{4,3}(1^5,2)$	-156	6	F	20	24		24
$X_{6,4}(1^3,2^2,3)$	-156	2	F	14	17		17
$X_{6,6}(1^2,2^2,3^2)$	-120	1	K	18	22		26
$X_{4,4}(1^4,2^2)$	-144	4	K	26	34		34
$X_{3,3}(1^6)$	-144	9	K	29	33		33
$X_{4,2}(1^6)$	-176	8	С	50	66		64
$X_{6,2}(1^5,3)$	-256	4	С	63	78		49

http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php

Mathematical origin of modularity

- While modularity of D4-D2-D0 invariants is clear physically from the M5-brane picture, its mathematical origin is in general mysterious (see [Sheshmani, ICBS 24] for recent progress).
- When $X \stackrel{\pi}{\to} \mathbb{P}^1$ admits a K3-fibration, using the relation to Noether-Lefschetz invariants one can show that modularity holds for vertical D4-brane charge. The modular anomaly disappears due to $\kappa_{ab}p^b=0$. [Bouchard Creutzig Diaconescu Doran Quigley Sheshmani'16]
- In [Doran BP Schimannek'24] we constructed a family of (in general non-toric) two-parameter K3-fibered threefolds $X_m^{[i,j]}$, whose mirror $Y_m^{[i,j]}$ is also K3-fibered, and which admit extremal transitions to 1-parameter models. We determined their NL invariants, as well as GV invariants at genus 0 and 1.

Mathematical origin of modularity

- Similarly, when X → B admits a genus-one fibration with N-section, one can relate rank 0 DT invariants for a D4-brane wrapping a pulled-back divisor π⁻¹(D) to genus 0 GV invariants via a relative conifold monodromy. In this case, p^a is not ample but still nef, κ_{ab}p^ap^b = 0. See [Klemm Manschot Wotschke'12] for the elliptic (N = 1) case.
- Generating series of GW invariants at fixed genus and base degree are quasi-modular forms for $\Gamma_1(N)$ [Alim Scheidegger'12, Katz Klemm Huang'15, Cota Klemm Schimannek'19]. After applying the conifold monodromy, one finds that the modular anomaly of genus 0 GW invariants matches that of rank 0 DT invariants, despite having different multi-cover effects $(\sum 1/d^3 \text{ vs } \sum 1/d^2)$.

Mathematical origin of modularity

 In fact, [Katz Klemm Huang'15] have conjectured that normalized generating series of PT invariants at fixed base degree are meromorphic Jacobi forms. The elliptic transformation was proven mathematically for reduced charges in [Oberdieck Shen'16]

$$\frac{Z_{\text{top}}(S,T,\lambda)}{Z_0(T,\lambda)} = 1 + \sum_{H \in H_2^{>0}(B,\mathbb{Z})} Z_H(T,\lambda) e^{2\pi i S \cdot H}$$

 We show that the modular transformation follows from the wave function behavior of Z_{top} under a relative conifold monodromy [Aganagic Bouchard Klemm'06; BP Schimannek, to appear]

Summary and open questions

- We provided overwhelming evidence that D4-D2-D0 indices exhibit mock modular properties. Where does it come from mathematically? Is there some VOA acting on the cohomology of moduli space of stable objects, à la [Nakajima'94]?
- Can one test modularity in multi-parameter models, for example in genus-one fibrations or K3-fibrations? Can one follow D4-D2-D0 invariants through extremal transitions?
- Similar wall-crossing arguments also allow to compute higher rank DT invariants. Is there some higher rank version of [MNOP'03]?

Thanks for your attention!

