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Introduction

A driving force in high energy theory has been the quest for a
microscopic explanation of the Bekenstein-Hawking entropy of
black holes.

SBH = A
4GN SBH

?
= logΩ

As demonstrated by [Strominger Vafa’95,. . . ], String Theory provides a
quantitative description in the context of BPS black holes in vacua
with extended SUSY: at weak string coupling, black hole
micro-states arise as bound states of D-branes wrapped on cycles
of the internal manifold, and can (often) be counted accurately.
Besides confirming the consistency of string theory as a theory of
quantum gravity, this has opened up many fruitful connections
with mathematics.
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BPS indices and Donaldson-Thomas invariants

In the context of type IIA strings compactified on a Calabi-Yau
three-fold X , BPS states are described mathematically by stable
objects in the derived category of coherent sheaves C = DbCohX .
The Chern character γ = (ch0, ch1, ch2, ch3) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.
The problem becomes a question in Donaldson-Thomas theory:
for fixed γ ∈ K (X ), compute the generalized DT invariant Ωz(γ)
counting (semi)stable objects of class γ for a Bridgeland stability
condition z ∈ Stab C, and determine its growth as |γ| → ∞.
Physical arguments predict that suitable generating series of rank
zero DT invariants (counting D4-D2-D0 bound states, ch0 = 0)
should have specific mock modular properties. This gives very
good control on their asymptotic growth, and allows to test
whether it agrees with the BH prediction Ωz(γ) ≃ eSBH(γ).
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Introduction

Today, I will explain how to combine knowledge of standard
Gromov-Witten invariants (counting curves in X ) and wall-crossing
arguments to rigorously compute many rank 0 DT invariants, and
check mock modularity to high precision.
Conversely, postulating (mock) modularity one can compute an
infinite number of rank 0 DT invariants, and obtain new constraints
on Gromov-Witten invariants, allowing to compute them to higher
genus than ever before.
I will mostly restrict to one-parameter hypergeometric models
such as the quintic threefold. Time permitting, I will discuss some
multi-parameter models with K3 or elliptic fibrations at the end.
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Gromov-Witten invariants

Let X be a smooth, projective CY threefold. The Gromov-Witten
invariants GW

(g)
β count genus g curves Σ with class

β ∈ Heff
2 (X ,Z). They depend only on the symplectic structure (or

Kähler moduli) of X and take rational values.
Physically, they determine certain protected couplings of the form
Fg(t)R2W 2g−2 in the low energy effective action, which depend
only on the complexified Kähler moduli t and receive worldsheet
instanton corrections: Fg(t) =

∑
β GW

(g)
β e2πit ·β

Antoniadis Gava Narain Taylor’93

The first two F0 and F1 can be computed using mirror symmetry.
Holomorphic anomaly equations along with boundary conditions
near the discriminant locus and MUM points allow to determine
Fg≥2 up to a certain genus gint (= 53 for the quintic threefold X5).

Bershadsky Cecotti Ooguri Vafa’93; Huang Klemm Quackenbush’06
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Gopakumar-Vafa invariants

While GW invariants take rational values, the Gopakumar-Vafa
invariants GV

(g)
β defined by the ’multicover’ formula

∞∑
g=0

∑
β

GW
(g)
β λ2g−2e2πit ·β =

∞∑
g=0

∞∑
k=1

∑
β

GV (g)
β

k

(
2 sin kλ

2

)2g−2
e2πikt ·β

take integer values. For g = 0, GW(0)
β =

∑
k |β

1
k3 GV (0)

β/k . Moreover,

GV (g)
β vanishes for large enough g ≥ gmax(β) [Ionel Parker’13]

Physically, GV (0)
β counts D2-D0 brane bound states with D2

charge β, and arbitrary D0 charge n, while GV (g≥1)
β keep track of

their angular momentum (more on this below).
The formula above arises from a one-loop Schwinger-type
computation of the effective action in a constant graviphoton
background W ∝ λ [Gopakumar Vafa’98]
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GV invariants and 5D rotating black holes

Viewing type II string theory as M-theory on a circle, D2-branes lift
to M2-branes wrapped on a curve inside X , yielding BPS black
holes in R1,4. These carry in general two angular momenta (jL, jR).
Tracing over jR, the number of BPS states with m = jzL is [Katz Klemm

Vafa’99]

Ω5D(β,m) =

gmax(β)∑
g=0

(
2g + 2

g + 1 + m

)
GV

(g)
β

There is numerical evidence that Ω(β,m) ∼ e2π
√

β3−m2 for large β
keeping m2/β3 fixed, in agreement with the Bekenstein-Hawking
entropy of 5D black holes ! [Klemm Marino Tavanfar’07].
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Generalized Donaldson-Thomas invariants

More generally, bound states of D6-D4-D2-D0 branes are
described by stable objects in the bounded derived category of
coherent sheaves DbCoh(X ) [Kontsevich’95, Douglas’01]. Objects are
complexes E = (· · · → E−1 → E0 → E1 → . . . ) of sheaves Ek ,
graded by the total Chern character γ(E) =

∑
K (−1)k ch Ek .

Stable objects are counted by the generalized Donaldson-Thomas
invariant Ωσ(γ), where γ ∈ Knum(C) ∼ Z2b2(X)+2 and σ = (Z ,A) is
a stability condition in the sense of [Bridgeland 2007]. In particular,

1 ∀E ∈ A, ImZ (E) ≥ 0
2 ∀E ∈ A, ImZ (E) = 0 ⇒ ReZ (E) < 0

The space of stability conditions Stab C is a complex manifold of
dimension dimKnum(X ) = 2b2(X ) + 2, unless it is empty.
For X a projective CY3, stability conditions are only known to exist
for the quintic threefold X5 and a couple of other examples [Li’18,

Koseki’20, Liu’21]
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Generalized Donaldson-Thomas invariants

Ωσ(γ) is roughly the weighted Euler number of the moduli space
of semi-stable objects Mσ(γ), where semi-stability means that
argZ (E ′) ≤ argZ (E) for any subobject E ′ ⊂ E .
Ωσ(γ) may jump on co-dimension 1 walls in Stab C where some
the central charge Z (γ′) of a subobject E ′ ⊂ E becomes aligned
with Z (γ). The jump is governed by a universal wall-crossing
formula [Joyce Song’08, Kontsevich Soibelman’08]. In simplest primitive case,

∆Ωσ(γ1 + γ2) = ⟨γ1, γ2⟩Ωσ(γ1) Ωσ(γ2)

For γ = (0,0, β, n), Ωσ(γ) coincides with GV (0)
β at large volume.
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PT invariants and (anti)D6-D2-D0 brane bound states

For γ = (−1,0, β,−n) at large volume and B-field, stable objects
have a much simpler mathematical description in terms of stable
pairs E : OX

s→ F [Pandharipande Thomas’07]:
1 F is a pure 1-dimensional sheaf with ch1 F = β and χ(F ) = n
2 the section s has zero-dimensional kernel

The PT invariant PT(β,n) is defined as the (weighted) Euler
characteristic of the corresponding moduli space.
Since a single (anti)D6-brane lifts to a Taub-NUT space in
M-theory, which is locally flat, one expects that PT invariants are
determined by GV invariants [Dijkgraaf Vafa Verlinde’06].
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GV invariants and D6-brane bound states

More precisely, PT invariants are related to GV invariants by [Maulik

Nekrasov Okounkov Pandharipande’06]

∑
β,n

PT(β,n)e2πit ·βqn = Exp

∑
β,g

GV
(g)
β (q1/2 − q−1/2)2g−2e2πit ·β


where Exp(f (q)) = exp(

∑
n≥1 f (qn)) is the plethystic exponential.

Under this relation, the Castelnuovo bound GV (g≥gmax(β))
β = 0

translates to PT (β,n ≤ 1 − gmax(β)) = 0
For n close to the Castelnuovo bound, one has
PT(β,n) =

∑gmax(β)
g=1

( 2g−2
g−1−n

)
GV

(g)
β +O(GV 2), reminiscent of the

KKV relation Ω5D(β,m) =
∑gmax(β)

g=0

( 2g+2
g+1+m

)
GV

(g)
β .
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D4-D2-D0 indices as rank 0 DT invariants

The main interest in this talk will be on rank 0 DT invariants
Ω(0,p, β, n) counting D4-D2-D0 brane bound states supported on
a divisor D with class [D] = p ∈ H4(X ,Z).
Viewing IIA=M/S1, they arise from M5-branes wrapped on D × S1.
In the limit where S1 is much larger than X , they are described by
a two-dimensional superconformal field theory with (0,4) SUSY.
[Maldacena Strominger Witten’97]

D4-D2-D0 indices (in a suitable chamber) arise as Fourier
coefficients of the elliptic genus (q := e2πiτ )

Tr(−1)2J3qL0−
cL
24 q̄L̄0−

cR
24 e2πiqaza

=
∑

µ∈Λ/Λ∗

hp,µ(τ)Θµ(τ, τ̄ , z)

hpa,µa(τ) :=
∑

n

Ω(0,pa, µa,n)qn−χ(D)
24 + 1

2µaκabµb− 1
2 paµa

where Λ = H4(X ,Z) equipped with κab := κabcpc .
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Modularity of rank 0 DT invariants

When D is very ample and irreducible, there are no walls
extending to large volume, so the choice of chamber is irrelevant.
The central charges of the SCFT are given by [Maldacena Strominger

Witten’97] {
cL = p3 + c2(TX ) · p = χ(D) ,

cR = p3 + 1
2c2(TX ) · p = 6χ(OD)

Cardy’s formula predicts a growth Ω(0,p, β, n → ∞) ∼ e2π
√

p3 n in
perfect agreement with Bekenstein-Hawking formula
The generating series hp,µ(τ) should be a vector-valued, weakly
holomorphic modular form of weight w = −1

2b2(X )− 1 in the Weil
representation of the lattice Λ. It is then completely determined by
its polar coefficients, with n + 1

2µaκ
abµb − 1

2paµa < χ(D)
24 .
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Mock modularity of rank 0 DT invariants

When D is reducible, the generating series hp,µ(τ) of DT
invariants Ω∗(0,p, β, n) in a suitable ("large volume attractor")
chamber is expected to be a vector-valued mock modular form of
higher depth [Alexandrov BP Manschot’16-20])
Namely, there exists explicit non-holomorphic theta series
Θn({pi}, τ, τ̄) such that (omitting the µ’s for simplicity)

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

transforms as a vv modular form of weight −1
2b2(X )− 1.

The derivation relies on the study of instanton corrections to the
low energy effective action after compactifying on a circle, and
implementing SL(2,Z) symmetry manifest from IIA/S1 = M/T 2.
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Testing mock modularity for one-parameter models

Our aim will be to test this prediction for CY threefolds with Picard
rank 1, by computing the first few coefficients in the q-expansion
and determine the putative vector-valued modular form.
This was first attempted by [Gaiotto Strominger Yin ’06-07] for the quintic
threefold X5 and a few other hypergeometric models. They were
able to guess the first few terms for unit D4-brane charge, and
found a unique modular completion.
We shall compute many terms rigorously, using recent results by
[Soheyla Fezbakhsh and Richard Thomas’20-22] relating rank r DT invariants
(for any r including r = 0, relevant for D4-D2-D0 bound states) to
PT invariants, hence to GV invariants.

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23
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From rank 1 to rank 0 DT invariants

The key idea is to use wall-crossing in a family of weak stability
conditions (aka tilt-stability) parametrized by b + it ∈ H, with
central charge

Zb,t(E) = i
6 t3 chb

0(E)− 1
2 t2 chb

1(E)− it chb
2(E) + 0 chb

3(E)

with chb
k (E) :=

∫
X H3−ke−bH ch(E). The heart Ab is generated by

length-two complexes E−1→F0 with (E ,F) slope semi-stable
sheaves with chb

1(E) > 0, chb
1(F) ≤ 0.

Note that Zb,t(E) is obtained from Z LV(E) = −
∫

X e(b+it)H ch(E) by
setting by hand the coefficient of chb

3 to 0. In fact, tilt-stability
provides the first step in constructing genuine stability conditions
near the large volume point [Bayer Macri Toda’11]

The KS/JS wall-crossing formulae hold for such weak stability
conditions.
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Rank 0 DT invariants from GV invariants

Tilt stability agrees with slope stability at large volume, but the
chamber structure is much simpler: walls are nested half-circles in
the Poincaré upper half-plane spanned by z = b + i t√

3
.

2 4 6 8
b

1

2

3

4

5

t

3

Importantly, tilt-semistable objects E satisfy a conjectural
inequality on Chern classes Ci :=

∫
X chi(E).H3−i [Bayer Macri Toda’11;

Bayer Macri Stellari’16]

(C2
1 −2C0C2)(

1
2b2 + 1

6 t2)+ (3C0C3 −C1C2)b+(2C2
2 −3C1C3) ≥ 0
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Rank 0 DT invariants from PT invariants

By studying wall-crossing between the empty chamber provided
by BMT bound and large volume, [Feyzbakhsh Thomas’20-22] show that
D4-D2-D0 indices can be computed from PT invariants, and
vice-versa.
Let (X ,H) be a smooth polarised CY threefold with Pic(X ) = Z.H
satisfying the BMT conjecture. Aim: compute
PT (β,m) = limt→∞Ωb,t(−1,0, β,−m) by wall-crossing.

Fix m ∈ Z, β ∈ H2(X ,Z) and define x = β.H
H3 , α = − 3m

2β.H and

f (x) :=



x + 1
2 if 0 < x < 1√

2x + 1
4 if 1 < x < 15

8
2
3x + 3

4 if 15
8 ≤ x < 9

4
1
3x + 3

2 if 9
4 ≤ x < 3

1
2x + 1 if 3 ≤ x

1

2
1

15

8

9

4
3 4

x

2

3

4

α
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A new explicit formula (S. Feyzbakhsh’23)

Theorem (wall-crossing for γ = (−1,0, β,−m)):
If α > f (x) then the stable pair invariant PT(β,m) equals

∑
(β′,m′)(−1)χβ′,m′χβ′,m′PT(β′,m′) Ω

(
0,1, β − β′ + H2

2 ,m′ − m − β′.H + H3

6

)
where χβ′,m′ = β.H + β′.H + m − m′ − H3

6 − 1
12c2(X ).H.

The sum runs over (β′,m′) ∈ H2(X ,Z)⊕ H0(X ,Z) such that

0 ≤ β′.H ≤H3

2 + 3mH3

2β.H + β.H

− (β′.H)2

2H3 − β′.H
2 ≤ m′ ≤ (β.H−β′.H)2

2H3 + β.H+β′.H
2 + m

In particular, β′.H < β.H.
Corollary (Castelnuovo bound): PT(β,m) = 0 unless m ≥ − (β.H)2

2H3 − β.H
2
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Modularity for one-modulus compact CY

Using the previous theorem and known GV invariants, we could
compute a large number of coefficients in the generating series of
Abelian (=unit D4-brane charge) rank 0 DT invariants in
one-parameter hypergeometric threefolds, including the quintic X5.
In all cases (except X3,2,2,X2,2,2,2 where current knowledge of GV
invariants is insufficient), we found a linear combination of the
following vv modular forms matching all computed coeffs:

Ea
4 Eb

6
η4κ+c2

Dℓ(ϑ(κ)
µ ) with ϑ(κ)

µ =
∑

k∈Z+µ
κ
+ 1

2

q
1
2κk2

, κ := H3

where D = 2πi∂τ − w
12E2, and 4a + 6b + 2ℓ− 2κ− 1

2c2 = −2.
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Modularity for one-modulus compact CY

X χX κ c2(TX ) χ(OD) n1 C1
X5(15) −200 5 50 5 7 0
X6(14,2) −204 3 42 4 4 0
X8(14,4) −296 2 44 4 4 0
X10(13,2,5) −288 1 34 3 2 0
X4,3(15,2) −156 6 48 5 9 0
X4,4(14,22) −144 4 40 4 6 1
X6,2(15,3) −256 4 52 5 7 0
X6,4(13,22,3) −156 2 32 3 3 0
X6,6(12,22,32) −120 1 22 2 1 0
X3,3(16) −144 9 54 6 14 1
X4,2(16) −176 8 56 6 15 1
X3,2,2(17) −144 12 60 7 21 1
X2,2,2,2(18) −128 16 64 8 33 3
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Modular predictions for the quintic threefold

Using known GV (g≤53)
β we can compute more than 20 terms:

h0 =q− 55
24

(
5 − 800q + 58500q2 + 5817125q3 + 75474060100q4

+28096675153255q5 + 3756542229485475q6

+277591744202815875q7 + 13610985014709888750q8 + . . .
)
,

h±1 =q− 55
24+

3
5

(
0 + 8625q − 1138500q2 + 3777474000q3

+ 3102750380125q4 + 577727215123000q5 + . . .
)

h±2 =q− 55
24+

2
5

(
0 + 0q − 1218500q2 + 441969250q3 + 953712511250q4

+ 217571250023750q5 + 22258695264509625q6 + . . .
)
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Modular predictions for the quintic threefold

The space of vv modular forms has dimension 7. Remarkably, all
terms above are reproduced by [Gaiotto Strominger Yin’06]

hµ = 1
η55+15

[
−222887E8

4+1093010E5
4 E2

6+177095E2
4 E4

6
35831808

+
25(458287E6

4 E6+967810E3
4 E3

6+66895E5
6)

53747712 D

+
25(155587E7

4+1054810E4
4 E2

6+282595E4E4
6)

8957952 D2
]
ϑ(5)
µ

Physically, polar coefficients are expected to arise as bound states
of D6-brane and anti D6-branes [Denef Moore’07]. Indeed, they are
often consistent with the naive ansatz

Ω(0,1, β, n) = (−1)χ(OD)−β.H−n+1 (χ(OD)− β.H − n)DT (β,n)

corresponding to bound states (D6 + βD2 + nD0,D6(−1))
Collinucci Wyder’08, Alexandrov Gaddam Manschot BP’22
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Mock modularity for non-Abelian D4-D2-D0 indices

For D4-D2-D0 indices with N = 2 units of D4-brane charge,
{h2,µ, µ ∈ Z/(2κZ)} should transform as a vv mock modular form
with modular completion

ĥ2,µ(τ, τ̄) = h2,µ(τ) +
κ−1∑

µ1,µ2=0

δ
(κ)
µ1+µ2−µ Θ

(κ)
µ2−µ1+κ h1,µ1 h1,µ2

where (denoting β(x) = 2|x |−1/2e−πx − 2πErfc(
√
π|x |))

Θ(κ)
µ (τ, τ̄) := (−1)µ

8π

∑
k∈2κZ+µ

|k |β
(
τ2k2

κ

)
e−πiτ

2κ k2
,

∂τ̄Θ
(κ)
µ = (−1)µ

√
κ

16πiτ3/2
2

∑
k∈2κZ+µ

e
−πiτ̄

2κ k2
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Mock modularity for non-Abelian D4-D2-D0 indices

Suppose there exists a holomorphic function g(κ)
µ such that

Θ
(κ)
µ + g(κ)

µ transforms as a vv modular form. Then

h̃2,µ(τ, τ̄) = h2,µ(τ)−
κ−1∑

µ1,µ2=0

δ
(κ)
µ1+µ2−µ g(κ)

µ2−µ1+κ h1,µ1 h1,µ2

will be an ordinary weak holomorphic vv modular form, hence
uniquely determined by its polar part.

For κ = 1, the series Θ
(1)
µ is the one appearing in the modular

completion of the generating series of Hurwitz class numbers
[Hirzebruch Zagier 1973] (or rank 2 Vafa-Witten invariants on P2)

H0(τ) =− 1
12 + 1

2q + q2 + 4
3q3 + 3

2q4 + . . .

H1(τ) =q
3
4

(
1
3 + q + q2 + 2q3 + q4 + . . .

)
Thus we can choose g(1)

µ = Hµ(τ).
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Mock modularity for non-Abelian D4-D2-D0 indices

X χX κ c2 χ(O2D) n2 C2
X5(15) −200 5 50 15 36 1
X6(14,2) −204 3 42 11 19 1
X8(14,4) −296 2 44 10 14 1
X10(13,2,5) −288 1 34 7 7 0
X4,3(15,2) −156 6 48 16 42 0
X4,4(14,22) −144 4 40 12 25 1
X6,2(15,3) −256 4 52 14 30 1
X6,4(13,22,3) −156 2 32 8 11 1
X6,6(12,22,32) −120 1 5 2 5 0
X3,3(16) −144 9 54 21 78 3
X4,2(16) −176 8 56 20 69 3
X3,2,2(17) −144 12 60 26 117 0
X2,2,2,2(18) −128 16 64 32 185 4
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Mock modularity for non-Abelian D4-D2-D0 indices

For X10, we computed the 7 polar terms + 2 non-polar terms and
found a unique mock modular form reproducing this data:

h2,µ =
5397523E12

4 +70149738E9
4 E2

6−12112656E6
4 E4

6−61127530E3
4 E6

6−2307075E8
6

46438023168η100 ϑ(1,2)
µ

+
−10826123E10

4 E6−14574207E7
4 E3

6+20196255E4
4 E5

6+5204075E4E7
6

1934917632η100 Dϑ(1,2)
µ

+ (−1)µ+1Hµ+1(τ)h1(τ)
2

with h1 =
203E4

4+445E4E2
6

216 η35 = q− 35
24 (3 − 575q + . . . ), leading to integer

DT invariants

h(int)
2,0 =q− 19

6

(
7 − 1728q + 203778q2 − 13717632q3 − 23922034036q4 + . . .

)
h(int)

2,1 =q− 35
12

(
−6 + 1430q − 1086092q2 + 208065204q3 + . . .

)
Similar results for X8 [S. Alexandrov, S. Feyzbakhsh, A. Klemm’23]
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Computing the leading term in h2,0 for X10

Wall crossing for γ = (−1,6,0,15):

P1 :-387409565862900

P1 :-8158650

P1 :-1808950

P1 :-8323308

P1 :-252
P3 :-70

0 5 10 15
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Computing the leading term in h2,1 for X10

Wall crossing for γ = (−1,7,0,19):

P1 :2616883552833180375

P1 :842158863975

P1 :-826451265640

P1 :943152177975

P1 :-4254080000

P1 :35373600

P1 :-69000

P1 :-56925

P1 :324

P2 :-162

P3 :63

-5 0 5 10 15 20
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Comments

A particular solution of the modular anomaly equations is known
for arbitrary κ = H3 and D4-brane charge [Alexandrov Bendriss’24], so
given the polar coefficients, one can in principle determine the full
mock modular generating series.
Unfortunately, current knowledge of GV invariants remains
insufficient to compute non-Abelian D4-D2-D0 invariants for other
hypergeometric models, as well as Abelian D4-D2-D0 indices in
other one-parameter examples in the AESZ list.
Using the modular predictions for D4-D2-D0 invariants, we can
run the algorithm in reverse to compute GV invariants to higher
genus than hitherto possible (next slides).
Deviations from the naive ansatz for polar terms remain to be
understood [van Herck Wyder’09’]

Recently, [McGovern’24] has computed Abelian D4-D2-D0 invariants
for several one-parameter models with non-trivial fondamental
group (including the quotient X5/Z5).
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Quantum geometry from stability and modularity

Gopakumar-Vafa
invariants N(g)

β

Pandharipande-Thomas
invariants PT(β,n)

Rank 0 DT-invariants
hN,µ(τ)

Wall crossing

MNOP relation
new constraints on

holomorphic ambiguities

Modular
bootstrap

Direct integration

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

X χX κ type ginteg g(1)
mod g(2)

mod gavail

X5(15) −200 5 F 53 69 80 64
X6(14,2) −204 3 F 48 66 84 48
X8(14,4) −296 2 F 60 84 112 64
X10(13,2,5) −288 1 F 50 70 95 68
X4,3(15,2) −156 6 F 20 24 24
X6,4(13,22,3) −156 2 F 14 17 17
X6,6(12,22,32) −120 1 K 18 22 22
X4,4(14,22) −144 4 K 26 34 34
X3,3(16) −144 9 K 29 33 33
X4,2(16) −176 8 C 50 66 50
X6,2(15,3) −256 4 C 63 78 49

http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php
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Modularity from geometry

While modularity of D4-D2-D0 invariants is clear physically from
the M5-brane picture, its mathematical origin is still mysterious.
Presumably it should come from the action of some VOA on the
cohomology of the moduli space of stable sheaves, in the spirit of
[Nakajima’94].
When X admits a K3-fibration, using the relation to Noether-
Lefschetz invariants one can show that modularity holds for
vertical D4-brane charge. The modular anomaly disappears
entirely due to κabpb = 0. [Bouchard Creutzig Diaconescu Doran Quigley

Sheshmani’16]

Similarly, when X admits a genus-one fibration, one can relate
D4-D2-D0 invariants for a D4-brane wrapping the fiber to GW
invariants via monodromy. Generating series of GW invariants are
quasi-modular forms, consistent with κabpapb = 0. [Klemm Manschot

Wotschke’12; BP Schimannek, to appear.]
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Modularity for two-parameter K3-fibered models

In recent work [Doran BP Schimannek’24], we constructed a family of
2-parameter CY threefolds X i,j]

m , fibered by Picard-rank 1 K3
surfaces Σm, and their mirror family Y [i,j]

m , fibered by Picard-rank
19 K3 surfaces Σ̂m.
In line with [Doran-Harder-Thompson’17], both admit Tyurin degenerations
corresponding to the K3-fibration on the mirror side. Moreover,
they admit extremal transitions to 1-parameter models, including
the 13 hypergeometric ones.
Using mirror symmetry, we could compute vertical GV invariants
and verify the modularity of NL invariants. Modularity for
non-vertical D4-brane charge remains to be understood.
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A family of Picard rank 2 K3-fibered threefolds X [i ,j]
m

h1,1 =2

h1,2 =22 + m(i2 + j2)− 2mij

+ h1,2(F
[i]
m ) + h1,2(F

[j]
m )

κ111 =2m
(

1
i
+

1
j

)
, κ112 = 2m,

κ122 =κ222 = 0

c2,1 =2m(i + j) + 24
(

1
i
+

1
j

)
c2,2 =24

GV
(0)
0,1 =2mij , GV

(0)
0,k>0 = 0 .

(m, i) h1,2(F
[i]
m ) Construction of F [i]

m
(1,1) 52 P1,1,1,1,3[6]
(1,2) 21 P1,1,1,2,3[6]
(2,1) 30 P4[4]
(2,2) 10 P1,1,1,1,2[4]
(2,4) 0 P3

(3,1) 20 P5[2,3]
(3,2) 5 P4[3]
(3,3) 0 P4[2]
(4,1) 14 P6[2,2,2]
(4,2) 2 P5[2,2]
(5,1) 10 X 2,5

O(1)⊕2⊕O(2)

(5,2) 0 B5 = X 2,5
O(1)⊕3

(6,1) 7 X 2,5
S(1)∨⊕O(1)

(7,1) 5 X 2,6
O(1)⊕5

(8,1) 3 X 3,6∧2 S∨⊕O(1)⊕3

(9,1) 2 X 2,7
Q∨(1)⊕O(1)⊕2

(11,1) 0 A22 = X 3,7
(
∧2 S∨)⊕3
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Alternative realizations

(m, i , j) χX CICY Transition
(1,1,1) −252 P4

1,1,2,2,6[12] X6,2

(2,1,1) −168 P4
1,1,2,2,2[8] =

(
P4 4 1
P1 0 2

)
7886, 7888 X4,2

(2,4,1) −168
(

P4 4 1
P1 1 1

)
7885 X5

(2,4,4) −168
(

P3 4
P1 2

)
7887 X8

(3,1,1) −132
(

P6 3 2 1 1
P1 0 0 1 1

)
7867, 7869 X3,2,2

(3,2,1) −120
(

P5 2 3 1
P1 1 0 1

)
7840 X3,3

(3,2,2) −108
(

P4 3 2
P1 0 2

)
7806 X4,3

(3,3,1) −140
(

P5 2 3 1
P1 0 1 1

)
7873 X4,2

(3,3,2) −128
(

P4 3 2
P1 1 1

)
7858 X5

(3,3,3) −148
(

P4 3 2
P1 2 0

)
7882 X6,2

(4,1,1) −112
(

P6 2 2 2 1
P1 0 0 0 2

)
7819, 7823 X2,2,2,2

(4,2,1) −112
(

P6 2 2 2 1
P1 0 0 1 1

)
7817 X3,2,2

(4,2,2) −112
(

P5 2 2 2
P1 0 1 1

)
7816, 7822 X4,2
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Summary and open questions

We provided overwhelming evidence that D4-D2-D0 indices
possess mock modular properties. Can one prove this
mathematically, for example by relating them to suitable
Noether-Lefschetz type invariants, or by constructing some VOA
acting on the cohomology of moduli space of stable objects ?
Can one compute D4-D2-D0 invariants for multi-parameter CY
threefolds using wall-crossing and make similar checks of
modularity ? Can one follow these invariants through extremal
transitions ?
Is there any relation at all between the modularity of generating
series of D4-D2-D0 indices, and the modularity of CY periods at
attractor points ?

Thanks for your attention !
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Back up: Physical interpretation of the BMT inequality

(C2
1 − 2C0C2)(

1
2

b2 +
1
6

t2) + (3C0C3 − C1C2)b + (2C2
2 − 3C1C3) ≥ 0

Requiring the existence of an empty chamber, the discriminant at
t = 0 must be positive:

8C0C3
2 + 6C3

1C3 + 9C2
0C2

3 − 3C2
1C2

2 − 18C0C1C2C3 ≥ 0

In terms of the electric and magnetic charges

p0 = C0/κ, p1 = C1/κ, q1 = −C2 − c2
24κC0, q0 = C3 +

c2
24κC1

and ignoring the c2-dependent terms, this becomes

8
9κp0q3

1 − 2
3κq0(p1)3 − (p0q0)

2 + 1
3(p

1q1)
2 − 2p0p1q0q1 ≤ 0

hence an empty chamber arises whenever a single centered black
hole solution is ruled out !
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