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Introduction

@ A central goal for any theory of quantum gravity is to provide a
microscopic explanation of the thermodynamical entropy of black
holes in General Relativity [Bekenstein'72, Hawking'74]

A
SBH = 4Gy ‘: SBH ; IogQ

@ As shown by [strominger Vata'9s,. .. ], String Theory provides a
quantitative description in the case of BPS black holes in vacua
with extended SUSY: at weak string coupling, black hole
micro-states arise as bound states of D-branes wrapped on cycles
of the internal manifold.

@ Besides confirming the consistency of string theory as a theory of
quantum gravity, this has opened up many fruitful connections
with mathematics.
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BPS indices and Donaldson-Thomas invariants

@ In the context of type IlA strings compactified on a Calabi-Yau
three-fold X, BPS states are described mathematically by stable
objects in the derived category of coherent sheaves C = DPCohX.
The Chern character v = (chg, chy, chy, chg) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.

@ The problem becomes a question in Donaldson-Thomas theory:
for fixed v € K(X), compute the generalized DT invariant Q(v)
counting (semi)stable objects of class ~, and determine its growth
as |y| — oo.

@ Importantly, Q,(v) depends on the moduli of X, or more generally
on a choice of Bridgeland stability condition z € StabC. The
chamber structure is fairly simple for X = T8 or X = K3 x T2, but
very intricate for a general CY 3-fold.
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Modularity of Donaldson-Thomas invariants

@ Physical arguments predict that suitable generating series of
DTinvariants (those counting D4-D2-DO0 bound states in a suitable
chamber) should have specific mock modular properties. This
gives very good control on their asymptotic growth, and allows to
test agreement with the BH prediction Q(y) ~ e5&#(7),

@ More precisely, these generating series are expected to be mock
modular, similar to Ramanujan’s mock theta series. The modular
anomaly can be repaired by adding a universal non-holomorphic
correction, determined recursively from generating series with
lower D4-brane charge [Alexandrov BP Manschot'16-20).
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In this talk, | will explain how to combine knowledge of standard
Gromov-Witten invariants (counting curves in X) and wall-crossing
arguments to rigorously compute many DT invariants, and check mock
modularity to high precision

S. Alexandrov, S. Feyzbakhsh, A. Klemm, BP, T. Schimannek, arXiv:2301.08066
S. Alexandrov, S. Feyzbakhsh, A. Klemm, BF, arXiv:2312.12629

@ Reminder of enumerative invariants on CY3: GW, GV, DT, PT...
© Mock modularity of D4-D2-D0 generating series

© From rank 1 to rank 0 DT invariants, and back

© Testing modularity on X5 and other hypergeometric models

© Conclusion and open problems
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Gromov-Witten invariants

@ Let X be a smooth, projective CY threefold. The Gromov-Witten
invariants GW(ﬁg) count genus g curves ¥ with class g € Ho(X, Z).
They depend only on the symplectic structure (or Kéhler moduli)
of X and in general take rational values.

@ Physically, they determine certain higher-derivative couplings in
the low energy effective action, which depend only on the
(complexified) Kahler moduli t and receive worldsheet instanton
corrections: Fg(t) =4 ngg ) 6278 [Antoniadis Gava Narain Taylor93]

@ The first two Fy and F;{ can be computed using mirror symmetry.
Holomorphic anomaly equations along with suitable boundary
conditions allow to determine Fg>> up to a certain genus g, (= 53
for the quintic threefold Xs) [Bershadsky Cecotti Ooguri Vafa’93; Huang Klemm
Quackenbush’06]
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Gopakumar-Vafa invariants

@ Gromov-Witten invariants turn out to be determined by a set of
integer invariants GV/(BQ) via [Gopakumar Vafa’98,lonel Parker’'13]

ZZGW(Q 292 g2mit-f _
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GV . )29 2 orikt-B

€

For g = 0, this reduces 10 [Candelas de la Ossa Greene Parkes93]

0) _ (0)
GW; kzl/; kSGVB/k

@ Physically, Gv[g") counts D2-D0 brane bound states with D2
charge 3, and arbitrary DO charge n ,while higher genus GV
invariants keep track of their angular momentum.

@ Importantly, Gvﬂ(g) vanishes for large enough g > Giax ()
(Castelnuovo bound).
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GV invariants and 5D rotating black holes

@ Viewing type Il string theory as M-theory on a circle, D2-branes lift
to M2-branes wrapped on curve inside X, yielding BPS black
holes in R"“. These carry in general two angular momenta (ji, jg)-

@ Tracing over jr, the number of BPS states with m = j7 is

Qsp(8,m) = S5 (P51 v - \

Katz Klemm Vafa’99 o,

i

@ There is some numerical evidence that Q(3, m) ~ €27V 5°~m for
large 3 keeping m? /32 fixed, in agreement with the BH entropy of
5D black holes [Klemm Marino Tavantaro7], with a transition to black
rings at large angular momentum [Haider Lin’23.
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Generalized Donaldson-Thomas invariants

@ More generally, bound states of D6-D4-D2-DO0 branes are
described by stable objects in the bounded derived category of
coherent sheaves C = DPCoh(X) [Kontsevich'95, Douglas'01]. Objects
are bounded complexes E=(--- — &1 = & — & — ...) of
coherent sheaves &, graded by the total Chern character
Y(E) =S4 (~1)kché& el

@ Stability depends on a choice of stability condition o = (Z, A),
where the central charge Z € Hom(I', C) and the heart A C C
satisfy various axioms Bridgeland 2007], in particular

Q VEc A ImZ(E)>0
Q VEc A ImZ(E)=0=ReZ(E) <0

@ The generalized Donaldson-Thomas invariant Q,(+y) is roughly the
weighted Euler number of the moduli space M, () of semi-stable
objects E € A with ch E = ~, where semi-stability means that
arg Z(E'") < arg Z(E) for any subobject E’ C E.
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Generalized Donaldson-Thomas invariants

@ The space of stability conditions StabC is a complex manifold of
dimension dim Kyum(X) = 2b2(X) + 2, unless it is empty
[Bridgeland’07].

@ Stability conditions in the vicinity of the large volume point can be
constructed subject to a conjectural Bogomolov-Gieseker-type
inequality introduced in [Bayer Macri Toda’11] — more on this later.

@ The BMT inequality is very hard to prove for a general compact
CY3, but has been proven for the quintic threefold X5 /Li787and a
couple of other examples [Koseki2o, Liu21).
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Generalized Donaldson-Thomas invariants

@ Q,(v) may jump on co-dimension 1 walls in StabC where some
the central charge Z(+') of a subobject E’ C E becomes aligned
with Z(~). The jump is governed by a universal wall-crossing
formula fJoyce Song'08, Kontsevich Soibelman’0g]. In simplest primitive case,

AQy (1 +72) = (11,72) o (11) Qo (72)

corresponding physically to the (dis)appearance of multi-centered
black hole bound states [Denef Moore’07; Andriyash Denef Jafferis Moore’10;
Manschot BP Sen’10]

@ For~y = (0,0, 25, n), Q,(v) coincides with GVéO) at large volume.
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GV invariants and D6-brane bound states

@ For~y = (-1,0,3,—n) at large volume and B-field, stable objects
have a much simpler mathematical description in terms of stable
pairs E:-O X —S> F [Pandharipande Thomas’07]:

@ Fis a pure 1-dimensional sheaf with ch, F = 3 and x(F) = n
@ the section s has zero-dimensional kernel
The PT invariant PT(f, n) is defined as the (weighted) Euler
characteristic of the corresponding moduli space.

@ Since a single D6-brane lifts to a Taub-NUT space in M-theory,
which is locally flat, one expects that PT invariants are computable
from GV invariants [Dijkgraaf Vafa Verlinde'06].
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GV invariants and D6-brane bound states

@ More precisely, PT invariants are related to GV invariants by jMauiik
Nekrasov Okounkov Pandharipande’06]

Z PT(8,n) eZwit-Bqn = Exp (Z GVég) (Vg — 1/\/6)2g2627rit-,3)
Aun B.9
where Exp(f(q)) = exp(3_ =1 f(g™)) is the plethystic exponential.

o Under this relation, the Castelnuovo bound GV~%(") — 0 i
mapped to PT(5,n <1 — gma(f)) =0

@ The main interest in this talk will be on rank 0 DT invariants

Q(0, p, 3, n) counting D4-D2-D0 brane bound states supported on
a divisor D with class [D] = p € Ha(X, Z).
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D4-D2-DO0 indices as rank 0 DT invariants

@ Viewing IIA=M/S", D4-D2-DO0 branes on D arise from M5-branes
wrapped on D x S'. In the limit where S' is much larger than X,
they are described by a two-dimensional superconformal field
theory with (0, 4) SUSY. [Maldacena Strominger Witten’97]

@ D4-D2-D0 indices occur as Fourier coefficients in the elliptic
genus Tr(—1)F glo—2 €27i%2°  |f the SCFT has a discrete
spectrum, after theta series decomposition with respect to the
elliptic variables z2, one obtains a vector-valued modular form

1

7><(D) 1,2 1
o) = Y00 p. )

where 1 takes values in the finite discriminant group A*/A
associated to A = (Hy(X,Z), kap := KabcP®)-
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Modularity of rank 0 DT invariants

@ When D is very ample and irreducible, there are no walls
extending to large volume, so the choice of chamber is irrelevant.
The central charges are given by [Maldacena Strominger Witten’97]

c= pPP+c(TX) -p=x(D),
cr= P>+ 30(TX)-p=6x(Op)

Cardy’s formula predicts a growth Q(0.p, 3,1 — o) ~ €2™VF "in
perfect agreement with Bekenstein-Hawking formula !

@ Moreover, since the space of vector-valued weakly holomorphic
modular form has finite dimension, the full series is completely

determined by its polar coefficients, with n —|— 2pu < X§4).
(Actually, the dimension can be smaller than the number of polar
terms).
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Mock modularity of rank O DT invariants

@ When D is reducible, the generating series hpa ,,(7) in a suitable
("large volume attractor") chamber is expected to be a mock
modular form of higher depth [Alexandrov BP Manschot'16-20))

@ Namely, there exists explicit, universal non-holomorphic theta
series ©p({pi}, T, T) such that (ignoring the p’s for simplicity)

ho(r,7) = ho(r) + Y ©n({pi}, 7, 7) th,

P=2i5"Pi

transforms as a modular form. The completed series satisfy the
holomorphic anomaly equation,

n
Ohp(r.7)= Y On({pi}.7.7) [[ Aol 7
n>2 =1

P=>"1= pi
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Mock modularity of rank O DT invariants

@ For binary splittings, this reduces to mock modular forms
encountered in the study of BPS dyons in Type Il on K3 x T2, or
in heterotic string on T8 [Dabholkar Murthy Zagier'12].

@ The modular completion is constructed using similar ideas as in
Zwegers’s work on Ramanujan’s mock theta series, namely
replacing "step functions" with "generalized error functions”
[Alexandrov Banerjee BP Manschot’16].

@ Our derivation relied on the study of instanton corrections to the
QK metric on the moduli space after compactifying on a circle, and
implementing SL(2,7Z) symmetry manifest from /IA/S' = M/T?2. A
nice spin off of earlier research on hypermultiplet moduli spaces !

Alexandrov Banerjee Persson BP Manschot Saueressig Vandoren, 2008-19
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Non-holomorphic completion from Witten index

@ Physically, the non-holomorphic corrections arise from the
spectral asymmetry in the continuum of scattering states in the
supersymmetric quantum mechanics of n BPS black holes.

Discretum Continuum Sum

BP 2015; Murthy BP 2018; BP Rayj, in progress
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Testing mock modularity for one-parameter models

@ In the remainder of this talk, we shall test these modularity
predictions for CY threefolds with Picard rank 1, by computing the
first few coefficients in the g-expansion and determine the putative
vector-valued (mock) modular form.

@ This was first attempted by [Gaiotto Strominger Yin 06-07] for the quintic
threefold X5 and a few other hypergeometric models. They were
able to guess the first few terms for unit D4-brane charge, and
found a unique modular completion.

@ We shall compute many terms rigorously, using recent results by
[Soheyla Fezbakhsh and Richard Thomas'20-22] relating rank r DT invariants
(including r = 0, counting D4-D2-D0 bound states) to PT
invariants, hence to GV invariants.

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23
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From rank 1 to rank O DT invariants

@ The key idea is to study wall-crossing in the space of Bridgeland
stability conditions, away from the physical slice. For any
b + it € H, consider the central charge

Zpt(E) = §t3ch§(E) — 312 ch§(E) — it ch8(E) + 0 ch3(E)
with ch2(E) := [, H3 Ke~bH ch(E). With a suitable choice of heart

ch{(E)
rk(E)

(defined by tilting with respect to the slope
weak stability condition called tilt-stability.

@ Note that Z,;(E) is obtained from Z1V(E) = — [, el®H10H ch(E) by
setting by hand the coefficient of chg to 0. In fact, tilt-stability is the
first step in constructing genuine stability conditions near the large
volume point [Bayer Macri Toda’11]

@ The KS/JS wall-crossing formulae still hold for such weak stability
conditions.

), this defines a
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Rank 0 DT invariants from GV invariants

@ Tilt stability agrees with slope stability at large volume, but the
chamber structure is much simpler: walls are nested half-circles in

the Poincaré upper half-plane spanned by z = b + i%.

@ Importantly, for any tilt-semistable object E there is a conjectural
inequality on Chern classes C; := [, chi(E).H3" [Bayer Macri Toda'11;
Bayer Macri Stellari’16]

(CF—2CoCo)(3b* + §12) +(3CoC3 — C1Co)b+ (2C5 —3C1C3) > 0
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Rank 0 DT invariants from GV invariants

@ In particular, if the discriminant A(C) at t = 0 is positive, there
exists an empty chamber | A(~) is quartic in the charges,

A(C) =8C,C5 +6C3C3 +9CEC5 —3C2C5 — 18CyC1C2C3 > 0

@ Remarkably, A(C) is proportional to (minus) the quartic invariant
I4(Q) which determines the entropy Sgy ~ m+/I4(Q) of
single-centered black holes ! In particular, an empty chamber
exists whenever single-centered black hole are ruled out !

@ Consider an anti-D6-brane with charge v = (—1,0, 3, —n) such
that A(C) > 0. By studying wall-crossing between the empty
chamber where Q5 ;(v) = 0 and the large volume chamber where
Qp.+(v) = PT(B, m), one can extract the indices of the D4-D2-D0
branes emitted at each wall !
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A new explicit formula (S. Feyzbakhsh’23)

Theorem Let (X, H) be a smooth polarised CY threefold with

Pic(X) = Z.H satisfying the BMT conjecture. There is f(x) such that

o If BﬂH < f(ﬁhH) then the stable pair invariant PT(5, m) =

v,y (DX X 5 PT(B, 1) Q2 (o, 1, B g B —m- 6’.H>

where xpw g = B.H+ B . H+m—m — %3 — ﬂ—zcg(X).H.
@ The sumruns over (', m') € Hao(X,Z) ® Ho(X,Z) such that

0<p.H<H + 38 1 .H

! H)>? "H H—p'.H)? .H+p".H
CGLHESH oy BRSSP | g

In particular, 5'.H < 3.H.

Corollary (Castelnuovo bound): PT(3, m) = 0 unless m > — (2"

B.H
2

B. Pioline (LPTHE, Paris) Counting CY black holes Hamburg, 1/04/25 23/36



Modularity for one-modulus compact CY

@ Using the theorem above and known GV invariants, we could
compute a large number of coefficients in the generating series of
Abelian (=unit D4-brane charge) rank 0 DT invariants in
one-parameter hypergeometric threefolds, including the quintic Xs.

@ In all cases (except X322, X222 > Where current knowledge of GV
invariants is insufficient), we found a linear combination of the
following vv modular forms matching all computed coeffs:

EaEb K H K 1n 2

n“”*sz D)) with o) = Y g, k=H°

kezZ+L+]

where D = 270, — {5E>, and 4a+6b+ 20 — 2k — S = —2.

B. Pioline (LPTHE, Paris) Counting CY black holes Hamburg, 1/04/25 24/36



Modularity for one-modulus compact CY

X XX K CZ(TX) X(OD) n C1
X5(1%) —200| 5 50 50 7] 0
Xs(14,2) —204| 3 42 4] 4| 0
Xg(14,4) —296 | 2 44 4| 4| 0
Xi0(13,2,5) | —288| 1 34 3| 2| 0
X45(15,2) -156| 6 48 5/ 9/ 0
Xa.4(14,22) 144 | 4 40 4| 6] 1
Xs.2(1%,3) 256 | 4 52 50 7| 0
Xs4(13,22,3) | —156 | 2 32 3| 3| 0
Xep(12,22,3%) | —120 | 1 22 211, 0
X33(18) —144| 9 54 6|14 1
X42(18) 176 | 8 56 6|15 1
Xa22(17) —144 | 12 60 7121 1
X2727272(18) —128 | 16 64 8|33| 3
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Modular predictions for the quintic threefold

9<53)

@ Using known GVB( we can compute more than 20 terms:

ho = q 3¢ (5 — 800q + 5850042 + 5817125q° + 75474060100g*
+28096675153255q° + 3756542229485475q°
+277591744202815875q" + 136109850147098887504° + . . . )

hyq =q 2its (o +8625q — 1138500492 + 377747400003
+ 3102750380125q* + 5777272151230004° + . ... )

hip=q 24t5 (w — 121850092 + 4419692504° + 9537125112504*
+2175712500237509° + 22258695264509625q° + . ... )
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Modular predictions for the quintic threefold

@ The space of vv modular forms has dimension 7. Remarkably, all
terms above are reproduced by [Gaiotto Strominger Yin'06]

P 220887E8+1093010E5 E24177095E2 E2
b = eS| T 35831808

25(458287E7 Es+967810E; E3+66895E7) D
- 53747712

25(155587E +1054810E; E2+282595E,E2) p2| 9
T 8957952 1

@ Physically, polar coefficients are expected arise as bound states of
D6-brane and anti D6-branes [penef Moore'07]. Indeed, they are often
consistent with the naive ansatz jAlexandrov Gaddam Manschot BP’22]

Q(0,1,3,n) = £(x(Op) — 8.H—n) DT(3,n)PT(0,0)
but deviations do occur ! [Collinucci Wyder08, van Herck Wyder'09]
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Mock modularity for non-Abelian D4-D2-DO0 indices

@ For D4-D2-D0 indices with N = 2 units of D4-brane charge,
{ho,., v € Z/(2xZ)} should transform as a vector-valued mock
modular form with modular completion

Kk—1
h2,u(7'7 7_-) = h2,u(7—) + Z 52’?)-&—@—” @;(LZ)—m-&-m hy SHA h JH2
23] 7;”’2:0

where (denoting 8(x) = 2|x|~"/2e~™ — 2xExfc(\/7|x]|))

oA = G 3 kia() &K,

KE2KZ 1
1 /K —miT k2
o-0() = L3y s
16T,
Ke2kZ+p
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Mock modularity for non-Abelian D4-D2-DO0 indices

@ Suppose there exists a holomorphic function gff) such that
0 + g transforms as a w modular form. Then

hzyﬂ(T’ 7) = hou( /‘ Z 6u1+u2 — guz —pi+k iy g
. . HA s 2= =0 .
will be an ordinary weak holomorphic vv modular form, hence

uniquely determined by its polar part.

@ For x = 1, the series @,(J) is the one appearing in the modular
completion of the generating series of Hurwitz class numbers
[Hirzebruch Zagier 1973] (or rank 2 Vafa-Witten invariants on IP>2)

Ho(r)=— 5+ 3a+ P +36°+3q" +.

i+
H1(T):q%( +g+P+2¢3+q +)

Thus we can choose gl(f) = H,(7).
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Mock modularity for non-Abelian D4-D2-DO0 indices

X xx| & C|x(Op)| m| G
Xs(15) —200| 550 151 36 1
Xs(1%,2) 204 | 3|42 1| 19 1
Xa(1%,4) 296 | 2|44 10| 14| 1
Xi0(13,2,5) | —288 | 1|34 71 7] o
X33(15,2) _156 | 6|48 16| 42| 0
Xia(1%,22) | —144| 4|40 12| 25| 1
X52(15,3) _256 | 452 14| 30| 1
Xs4(1%,22,3) | ~156 | 2|32 8| 11| 1
Xso(12,22,32) | —120| 1| 5 2| 5| 0
X3.5(1°) _144| 9|54 21| 78| 3
Xa2(18) _176| 8|56 20| 69| 3
X322(17) —144 | 12| 60 26 | 117 | 0
Xo222(18) | —128| 16|64 32| 185 | 4

B. Pioline (LPTHE, Paris)
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Mock modularity for non-Abelian D4-D2-DO0 indices

@ For Xjo, we computed the 7 polar terms + 4 non-polar terms and
found a unique mock modular form reproducing this data:

he  — 5397523E,2+70149738E7 EZ —12112656 EQ E{ —61127530E7 E¢ —2307075E8 (1 2)
2. = 464380231687 100 ®
—10826123E,0 Fg—14574207 E] E3 420196255 E} EZ+5204075E, £] py(12)
1934917632100 K

+ (=) H g (7) by (7)?

203E}+445E,E2

21615 = q‘%(er ...), leading to integer

with Ay =
DT invariants

HSY =q ¥ (7 - 1728q + 203778¢% - 13717632¢° — 239220340364 +

hSY =g % (-6 + 1430q — 108609297 + 208065204¢° + ... )

@ Similar results for Xg [S. Alexandrov, S. Feyzbakhsh, A. Klemm'23]
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Computing the leading term in hy o for Xio

Py :-387409565862900

B. Pioline (LPTHE, Paris) Counting CY black holes Hamburg, 1/04/25 32/36



Quantum geometry from stability and modularity

Gopakumar-Vafa
. . (9) Direct integration
invariants Nﬁ -

new constraints on

MNOF relation holomorphic ambiguities

Modular
bootstrap

Rank 0 DT-invariants
hN,u (7—)

Pandharipande-Thomas

invariants PT(3, n) 3>

i
) Wall crossing e

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

M @)

X XX | K| type | Jinteg | Omod | Imod | Favail
X5(15) 2005 F| 53| 69| 80| 64
Xs(14,2) _204 3| F| 48| 66| 84| 48
Xs(14,4) _206|2| F| 60| 84| 112| 66
Xi0(13,2,5) | —288|1| F| 50| 70| 95| 72
X4’3(15,2) —156 | 6 F 20| 24 24
Xoa(13,22.3) | —156 |2| F| 14| 17 17
Xos(12,22,32) | 120 [ 1| K| 18| 22 26
Xia(1%,22) | 144 |4| K| 26| 34 34
X3.3(19) _144|9| K| 20| 33 33
X;.2(19) _176|8| C| 50| 66 64
Xs2(15.3) | -256|4| C| 63| 78 49

http.//www.th.physik.uni-bonn.de/Groups/Klemm/data.php
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Summary and open questions

@ We provided overwhelming evidence that D4-D2-D0 indices
exhibit mock modular properties. Where does it come from
mathematically ? Is there some VOA acting on the cohomology of
moduli space of stable objects, a la [Nakajima'94] ?

@ Can one test modularity in multi-parameter models, for example in
genus-one fibrations or K3-fibrations ? Can one follow D4-D2-D0
invariants through extremal transitions ?

@ Similar wall-crossing arguments also allow to compute higher rank
DT invariants. Is there some higher rank version of jMnor03] ?

@ A long-standing problem: incorporate NS5-instanton corrections
to the QK metric on hypermultiplet moduli space, consistently with
S-duality, beyond the linear analys of jAlexandrov Persson BP'10].

@ Thanks for your attention !
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Back up slide: Modularity from geometry

@ While modularity of D4-D2-D0 invariants is clear physically from
the M5-brane picture, its mathematical origin is in general
mysterious.

@ When X admits a K3-fibration, using the relation to Noether-
Lefschetz invariants one can show that modularity holds for
vertical D4-brane charge. The modular anomaly disappears
entirely due to nabpb = 0. [Bouchard Creutzig Diaconescu Doran Quigley
Sheshmani’16; Doran BP Schimannek’24]

@ Similarly, when X admits a genus-one fibration, one can relate
D4-D2-DO0 invariants for a D4-brane wrapping the fiber to GW
invariants via monodromy. Generating series of GW invariants are
quasi-modular forms, consistent with « 4p2p? = 0. [Klemm Manschot
Wotschke’12; BP Schimannek, to appear.]
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