Exact BPS couplings and black hole counting

Boris Pioline

LPTHE, Paris

in New connections in number theory and physics Newton Institute, May 25, 2021 (virtual)
based on works with: S. Alexandrov, S. Banerjee, G. Bossard, C. Cosnier-Horeau, E. d'Hoker, M. B. Green, A. Kleinschmidt, J. Manschot, D. Persson, R. Russo, ...

5 years ago

AUTOMORPHIC FORMS MOCKMODULAR FORMS ANDSTRING THEORY

AUGUST 29-SEPTEMBER 2,2016

Introduction

- Since [Strominger Vafa '95], a lot of work has gone into performing precision counting of BPS black hole micro-states in various string vacua with extended SUSY, uncovering exciting connections with many areas of mathematics: algebraic geometry, representation theory, automorphic forms...

Introduction

- Since [strominger Vafa '95], a lot of work has gone into performing precision counting of BPS black hole micro-states in various string vacua with extended SUSY, uncovering exciting connections with many areas of mathematics: algebraic geometry, representation theory, automorphic forms...
- For string vacua with $\mathcal{N} \geq 4$ SUSY in 3+1 dimensions, the exact BPS indices $\Omega(Q)$ are given by Fourier coefficients of (classical, or Jacobi, or Siegel) modular forms. This gives access to their large charge behavior, and enables detailed comparison with the Bekenstein-Hawking formula $\log |\Omega(Q)| \sim \frac{1}{4} \mathcal{A}(Q)$

Introduction

- Since [Strominger Vafa '95], a lot of work has gone into performing precision counting of BPS black hole micro-states in various string vacua with extended SUSY, uncovering exciting connections with many areas of mathematics: algebraic geometry, representation theory, automorphic forms...
- For string vacua with $\mathcal{N} \geq 4$ SUSY in 3+1 dimensions, the exact BPS indices $\Omega(Q)$ are given by Fourier coefficients of (classical, or Jacobi, or Siegel) modular forms. This gives access to their large charge behavior, and enables detailed comparison with the Bekenstein-Hawking formula $\log |\Omega(Q)| \sim \frac{1}{4} \mathcal{A}(Q)$
- Importantly, the BPS index $\Omega(Q, z)$ is discontinuous across real codimension-one walls in moduli space, due to the (dis)appearance of multi-centered black hole bound states.

Introduction

- Since [Strominger Vafa '95], a lot of work has gone into performing precision counting of BPS black hole micro-states in various string vacua with extended SUSY, uncovering exciting connections with many areas of mathematics: algebraic geometry, representation theory, automorphic forms...
- For string vacua with $\mathcal{N} \geq 4$ SUSY in 3+1 dimensions, the exact BPS indices $\Omega(Q)$ are given by Fourier coefficients of (classical, or Jacobi, or Siegel) modular forms. This gives access to their large charge behavior, and enables detailed comparison with the Bekenstein-Hawking formula $\log |\Omega(Q)| \sim \frac{1}{4} \mathcal{A}(Q)$
- Importantly, the BPS index $\Omega(Q, z)$ is discontinuous across real codimension-one walls in moduli space, due to the (dis)appearance of multi-centered black hole bound states.
- For $\mathcal{N}=4$, subtracting contributions from two-centered bound states, the indices counting single-centered black holes are Fourier coefficients of mock Jacobi forms [Dabholkar Murthy Zagier'12].

BPS indices and Donaldson-Thomas invariants

- In $\mathcal{N}=2$ string vacua, such as type IIA strings compactified on a Calabi-Yau threefold \mathcal{X}, precision counting is much less advanced.

BPS indices and Donaldson-Thomas invariants

- In $\mathcal{N}=2$ string vacua, such as type IIA strings compactified on a Calabi-Yau threefold \mathcal{X}, precision counting is much less advanced.
- The mathematical incarnation of BPS indices are the generalized Donaldson-Thomas invariants of the category of coherent sheaves $D(\mathcal{X})$, which are notoriously difficult to compute.

Kontsevich '94; Thomas '99; Douglas '00; Bridgeland '05

BPS indices and Donaldson-Thomas invariants

- In $\mathcal{N}=2$ string vacua, such as type IIA strings compactified on a Calabi-Yau threefold \mathcal{X}, precision counting is much less advanced.
- The mathematical incarnation of BPS indices are the generalized Donaldson-Thomas invariants of the category of coherent sheaves $D(\mathcal{X})$, which are notoriously difficult to compute.

Kontsevich '94; Thomas '99; Douglas '00; Bridgeland '05

- One complication is that the moduli space of generic CY 3-folds is no longer a locally symmetric space, and the U-duality group in $D=4$ is reduced to the monodromy group of \mathcal{X}.

BPS indices and Donaldson-Thomas invariants

- In $\mathcal{N}=2$ string vacua, such as type IIA strings compactified on a Calabi-Yau threefold \mathcal{X}, precision counting is much less advanced.
- The mathematical incarnation of BPS indices are the generalized Donaldson-Thomas invariants of the category of coherent sheaves $D(\mathcal{X})$, which are notoriously difficult to compute.

Kontsevich '94; Thomas '99; Douglas '00; Bridgeland '05

- One complication is that the moduli space of generic CY 3-folds is no longer a locally symmetric space, and the U-duality group in $D=4$ is reduced to the monodromy group of \mathcal{X}.
- A second complication is that multi-centered black hole bound states with arbitrary number of constituents may now contribute to the index.

Denef '00; Denef Moore '07

BPS instantons from BPS black holes

- A general approach to the problem of precision counting of BPS states in $D+1$-dimensional string vacua is to consider protected couplings in the low energy effective action in D dimensions after compactifying on a circle of radius R.

BPS instantons from BPS black holes

- A general approach to the problem of precision counting of BPS states in $D+1$-dimensional string vacua is to consider protected couplings in the low energy effective action in D dimensions after compactifying on a circle of radius R.
- Indeed, a stationary solution of energy \mathcal{M} in dimension $D+1$ descends to an instanton of action $R \mathcal{M}$ in D Euclidean dimensions.

BPS instantons from BPS black holes

- A general approach to the problem of precision counting of BPS states in $D+1$-dimensional string vacua is to consider protected couplings in the low energy effective action in D dimensions after compactifying on a circle of radius R.
- Indeed, a stationary solution of energy \mathcal{M} in dimension $D+1$ descends to an instanton of action $R \mathcal{M}$ in D Euclidean dimensions.
- A famous example is the t Hooft-Polyakov monopole in $D=4$, which descends to the instanton responsible for confinement in 3D QED [Polyakov 1977]

Black hole counting from BPS couplings

- In a supersymmetric theory with \mathcal{N} supercharges, states which break k supercharges descend to instantons which carry k fermionic zero-modes.

Black hole counting from BPS couplings

- In a supersymmetric theory with \mathcal{N} supercharges, states which break k supercharges descend to instantons which carry k fermionic zero-modes.
- Hence they contribute to only to interactions with $f+2 n \geq k$, where f is the number of fermions and n the number of derivatives (recall $\partial \phi \sim \psi \psi$).

Black hole counting from BPS couplings

- In a supersymmetric theory with \mathcal{N} supercharges, states which break k supercharges descend to instantons which carry k fermionic zero-modes.
- Hence they contribute to only to interactions with $f+2 n \geq k$, where f is the number of fermions and n the number of derivatives (recall $\partial \phi \sim \psi \psi$).
- BPS couplings are interactions with $f+2 n<\mathcal{N}$, which only get corrections from instantons preserving some fraction of SUSY:

\mathcal{N}	k	$(\mathcal{N}-k) / \mathcal{N}$	BPS couplings
32	16	$1 / 2$	\mathcal{R}^{4}
32	24	$1 / 4$	$\nabla^{4} \mathcal{R}^{4}$
32	28	$1 / 8$	$\nabla^{6} \mathcal{R}^{4}$
16	8	$1 / 2$	F^{4}, \mathcal{R}^{2}
16	12	$1 / 4$	$\nabla^{2} F^{4}, F^{2} \mathcal{R}^{2}$
8	4	$1 / 2$	$(\nabla \phi)^{2}$

BPS indices from large radius limit

- The coefficients of these couplings are functions $f^{(D)}(R, z, \phi)$ of the radius R, moduli z in dimension $D+1$, and holonomies ϕ of the n gauge fields along the circle:

$$
\mathcal{M}_{D} \sim \mathbb{R}^{+} \times \mathcal{M}_{D+1} \times \mathcal{T}_{n}
$$

BPS indices from large radius limit

- The coefficients of these couplings are functions $f^{(D)}(R, z, \phi)$ of the radius R, moduli z in dimension $D+1$, and holonomies ϕ of the n gauge fields along the circle:

$$
\mathcal{M}_{D} \sim \mathbb{R}^{+} \times \mathcal{M}_{D+1} \times \mathcal{T}_{n}
$$

- When $D=3$, due to the duality between gauge fields and scalars $F_{\mu \nu} \sim \epsilon_{\mu \nu \rho} \partial_{\rho} \phi$, the torus \mathcal{T}_{n} is promoted to a symplectic torus $\mathcal{T}_{2 n}$.

BPS indices from large radius limit

- The coefficients of these couplings are functions $f^{(D)}(R, z, \phi)$ of the radius R, moduli z in dimension $D+1$, and holonomies ϕ of the n gauge fields along the circle:

$$
\mathcal{M}_{D} \sim \mathbb{R}^{+} \times \mathcal{M}_{D+1} \times \mathcal{T}_{n}
$$

- When $D=3$, due to the duality between gauge fields and scalars $F_{\mu \nu} \sim \epsilon_{\mu \nu \rho} \partial_{\rho} \phi$, the torus \mathcal{T}_{n} is promoted to a symplectic torus $\mathcal{T}_{2 n}$.
- In presence of gravity, the dual of the Kaluza-Klein gauge field $g_{\mu, D+1}$ leads to an additional scalar σ, the NUT potential, which lives in a circle bundle over $\mathcal{T}_{2 n}$,

$$
\mathcal{M}_{3} \sim \mathbb{R}^{+} \times \mathcal{M}_{4} \times \mathcal{T}_{2 n} \times S^{1}
$$

BPS indices from large radius limit

- In the limit $R \rightarrow \infty, f^{(D)}(R, z, \phi)$ is expected to behave as

$$
f^{(D)}(R, z, \phi) \sim R f^{(D+1)}(z)+\sum_{Q \in \Lambda \backslash\{0\}} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+\mathrm{i} Q \cdot \phi}+\ldots
$$

where $\mathcal{M}(Q, z)$ is the BPS mass, $\Omega_{n}(Q, z) \sim \operatorname{Tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{n}$ is the helicity supertrace counting BPS states with $k=2 n$ fermionic zero-modes.

BPS indices from large radius limit

- In the limit $R \rightarrow \infty, f^{(D)}(R, z, \phi)$ is expected to behave as
$f^{(D)}(R, z, \phi) \sim R f^{(D+1)}(z)+\sum_{Q \in \Lambda \backslash\{0\}} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+\mathrm{i} Q \cdot \phi}+\ldots$
where $\mathcal{M}(Q, z)$ is the BPS mass, $\Omega_{n}(Q, z) \sim \operatorname{Tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{n}$ is the helicity supertrace counting BPS states with $k=2 n$ fermionic zero-modes.
- The dots include

BPS indices from large radius limit

- In the limit $R \rightarrow \infty, f^{(D)}(R, z, \phi)$ is expected to behave as

$$
f^{(D)}(R, z, \phi) \sim R f^{(D+1)}(z)+\sum_{Q \in \Lambda \backslash\{0\}} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+\mathrm{i} Q \cdot \phi}+\ldots
$$

where $\mathcal{M}(Q, z)$ is the BPS mass, $\Omega_{n}(Q, z) \sim \operatorname{Tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{n}$ is the helicity supertrace counting BPS states with $k=2 n$ fermionic zero-modes.

- The dots include
(1) Power-like terms proportional to lower order couplings in the derivative expansion, due to massless threshold effects

BPS indices from large radius limit

- In the limit $R \rightarrow \infty, f^{(D)}(R, z, \phi)$ is expected to behave as

$$
f^{(D)}(R, z, \phi) \sim R f^{(D+1)}(z)+\sum_{Q \in \Lambda \backslash\{0\}} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+\mathrm{i} Q \cdot \phi}+\ldots
$$

where $\mathcal{M}(Q, z)$ is the BPS mass, $\Omega_{n}(Q, z) \sim \operatorname{Tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{n}$ is the helicity supertrace counting BPS states with $k=2 n$ fermionic zero-modes.

- The dots include
(1) Power-like terms proportional to lower order couplings in the derivative expansion, due to massless threshold effects
(2) Loop corrections around each instanton sector

BPS indices from large radius limit

- In the limit $R \rightarrow \infty, f^{(D)}(R, z, \phi)$ is expected to behave as

$$
f^{(D)}(R, z, \phi) \sim R f^{(D+1)}(z)+\sum_{Q \in \Lambda \backslash\{0\}} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+i Q \cdot \phi}+\ldots
$$

where $\mathcal{M}(Q, z)$ is the BPS mass, $\Omega_{n}(Q, z) \sim \operatorname{Tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{n}$ is the helicity supertrace counting BPS states with $k=2 n$ fermionic zero-modes.

- The dots include
(1) Power-like terms proportional to lower order couplings in the derivative expansion, due to massless threshold effects
(2) Loop corrections around each instanton sector
(3) Multi-instanton contributions, needed to smoothen the jumps of $\Omega_{n}(Q, z)$ across walls of marginal stability

BPS indices from large radius limit

- In the limit $R \rightarrow \infty, f^{(D)}(R, z, \phi)$ is expected to behave as

$$
f^{(D)}(R, z, \phi) \sim R f^{(D+1)}(z)+\sum_{Q \in \Lambda \backslash\{0\}} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+i Q \cdot \phi}+\ldots
$$

where $\mathcal{M}(Q, z)$ is the BPS mass, $\Omega_{n}(Q, z) \sim \operatorname{Tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{n}$ is the helicity supertrace counting BPS states with $k=2 n$ fermionic zero-modes.

- The dots include
(1) Power-like terms proportional to lower order couplings in the derivative expansion, due to massless threshold effects
(2) Loop corrections around each instanton sector
(3) Multi-instanton contributions, needed to smoothen the jumps of $\Omega_{n}(Q, z)$ across walls of marginal stability
(4) For gravitational theories in $D=3$, contributions from Taub-NUT instantons of order $\mathcal{O}\left(e^{-R^{2}}\right)$, needed to resolve the ambiguity of the divergent sum $\sum_{Q} e^{S_{B H}(Q)-R M(Q)}$ [BP Vandoren (2009)]

Black hole counting from BPS couplings

- The take-home message is that the BPS coupling $f^{(D)}(R, z, \varphi)$ provides a natural generating series of BPS indices in dimension $D+1$, similar in spirit to the naive black hole partition function $Z_{n}(R, z, \phi)=\sum_{Q} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+\mathrm{i} Q \cdot \phi}$ but better behaved.

Black hole counting from BPS couplings

- The take-home message is that the BPS coupling $f^{(D)}(R, z, \varphi)$ provides a natural generating series of BPS indices in dimension $D+1$, similar in spirit to the naive black hole partition function $Z_{n}(R, z, \phi)=\sum_{Q} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+\mathrm{i} Q \cdot \phi}$ but better behaved.
- For vacua with $\mathcal{N} \geq 4$ supersymmetries, the moduli space is a locally symmetric space $\mathcal{M}_{D}=G_{D}(\mathbb{Z}) \backslash G_{D} / K_{D}$, where $G_{D}(\mathbb{Z})$ is an arithmetic subgroup of G_{D} known as U-duality group.

Black hole counting from BPS couplings

- The take-home message is that the BPS coupling $f^{(D)}(R, z, \varphi)$ provides a natural generating series of BPS indices in dimension $D+1$, similar in spirit to the naive black hole partition function $Z_{n}(R, z, \phi)=\sum_{Q} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+\mathrm{i} Q \cdot \phi}$ but better behaved.
- For vacua with $\mathcal{N} \geq 4$ supersymmetries, the moduli space is a locally symmetric space $\mathcal{M}_{D}=G_{D}(\mathbb{Z}) \backslash G_{D} / K_{D}$, where $G_{D}(\mathbb{Z})$ is an arithmetic subgroup of G_{D} known as U-duality group.
- In such cases, $f^{(D)}$ is an automorphic function under $G_{D}(\mathbb{Z})$. Its Fourier coefficients are automatically invariant under the subgroup $G_{D+1}(\mathbb{Z}) \subset G_{D}(\mathbb{Z})$, acting linearly on the charge Q, but further constrained by invariance under $G_{D}(\mathbb{Z})$.

Black hole counting from BPS couplings

- The take-home message is that the BPS coupling $f^{(D)}(R, z, \varphi)$ provides a natural generating series of BPS indices in dimension $D+1$, similar in spirit to the naive black hole partition function $Z_{n}(R, z, \phi)=\sum_{Q} \Omega_{n}(Q, z) e^{-R \mathcal{M}(Q, z)+\mathrm{i} Q \cdot \phi}$ but better behaved.
- For vacua with $\mathcal{N} \geq 4$ supersymmetries, the moduli space is a locally symmetric space $\mathcal{M}_{D}=G_{D}(\mathbb{Z}) \backslash G_{D} / K_{D}$, where $G_{D}(\mathbb{Z})$ is an arithmetic subgroup of G_{D} known as U-duality group.
- In such cases, $f^{(D)}$ is an automorphic function under $G_{D}(\mathbb{Z})$. Its Fourier coefficients are automatically invariant under the subgroup $G_{D+1}(\mathbb{Z}) \subset G_{D}(\mathbb{Z})$, acting linearly on the charge Q, but further constrained by invariance under $G_{D}(\mathbb{Z})$.
- For $\mathcal{N}=2$ vacua, viewing type IIA $\mathcal{X} \times S^{1}$ as $\mathrm{M} / \mathcal{X} \times T^{2}$, we expect the full spectrum of BPS states to be described by automorphic forms under $G_{3}(\mathbb{Z})=S L(2, \mathbb{Z}) \ltimes \operatorname{Mon}(\mathcal{X}) \ltimes H_{2 n+1}$.

Outline

- In the remainder of this talk, I will briefly survey three instances of this approach:

Outline

- In the remainder of this talk, I will briefly survey three instances of this approach:
(1) $\nabla^{6} \mathcal{R}^{4}$ couplings in string vacua with 32 supercharges

Bossard D'Hoker Green Kleinschmidt BP Russo 2014-20

Outline

- In the remainder of this talk, I will briefly survey three instances of this approach:
(1) $\nabla^{6} \mathcal{R}^{4}$ couplings in string vacua with 32 supercharges

Bossard D'Hoker Green Kleinschmidt BP Russo 2014-20
(2) $\nabla^{2} F^{4}$ couplings in string vacua with 16 supercharges

Bossard Cosnier Horeau BP 2016-18

Outline

- In the remainder of this talk, I will briefly survey three instances of this approach:
(1) $\nabla^{6} \mathcal{R}^{4}$ couplings in string vacua with 32 supercharges

Bossard D'Hoker Green Kleinschmidt BP Russo 2014-20
(2) $\nabla^{2} F^{4}$ couplings in string vacua with 16 supercharges

Bossard Cosnier Horeau BP 2016-18
(3) Quaternionic-Kähler metric on moduli space of M-theory on $\mathcal{X} \times T^{2}$ Alexandrov Banerjee BP Manschot Vandoren Saueressig 2008-19

Outline

- In the remainder of this talk, I will briefly survey three instances of this approach:
(1) $\nabla^{6} \mathcal{R}^{4}$ couplings in string vacua with 32 supercharges

Bossard D'Hoker Green Kleinschmidt BP Russo 2014-20
(2) $\nabla^{2} F^{4}$ couplings in string vacua with 16 supercharges

Bossard Cosnier Horeau BP 2016-18
(3) Quaternionic-Kähler metric on moduli space of M-theory on $\mathcal{X} \times T^{2}$ Alexandrov Banerjee BP Manschot Vandoren Saueressig 2008-19

- In the first two cases, we recover the known counting of 1/8-BPS (respectively $1 / 4-B P S$) states. In addition, we encounter new types of automorphic forms which may be of interest to mathematicians (or not).

Outline

- In the remainder of this talk, I will briefly survey three instances of this approach:
(1) $\nabla^{6} \mathcal{R}^{4}$ couplings in string vacua with 32 supercharges

Bossard D'Hoker Green Kleinschmidt BP Russo 2014-20
(2) $\nabla^{2} F^{4}$ couplings in string vacua with 16 supercharges

Bossard Cosnier Horeau BP 2016-18
(3) Quaternionic-Kähler metric on moduli space of M-theory on $\mathcal{X} \times T^{2}$ Alexandrov Banerjee BP Manschot Vandoren Saueressig 2008-19

- In the first two cases, we recover the known counting of 1/8-BPS (respectively $1 / 4-B P S$) states. In addition, we encounter new types of automorphic forms which may be of interest to mathematicians (or not).
- In third case, we find that generating series of DT invariants supported on divisors are mock modular forms of higher depth.

Outline

(1) From BPS indices to BPS-saturated couplings
(2) 1/8-BPS couplings in $\mathcal{N}=8$ string vacua
(3) 1/4-BPS couplings in $\mathcal{N}=4$ string vacua
(4) 1/2-BPS couplings in $\mathcal{N}=2$ string vacua
(5) Conclusion

Outline

(1) From BPS indices to BPS-saturated couplings

2 $1 / 8-\mathrm{BPS}$ couplings in $\mathcal{N}=8$ string vacua
(3) $1 / 4$-BPS couplings in $\mathcal{N}=4$ string vacua

4 $1 / 2$-BPS couplings in $\mathcal{N}=2$ string vacua
(5) Conclusion

1/2-BPS and 1/4-BPS couplings in $\mathcal{N}=8$ string vacua

- In type II string compactified on a torus T^{d}, the LEEA is expected to be invariant under $G_{D=10-d}(\mathbb{Z})=E_{d+1}(\mathbb{Z})$, which extends both the T-duality group $S O(d, d, \mathbb{Z})$ and global diffeomorphisms $S L(d+1, \mathbb{Z})$ of the M-theory torus. [Hull Townsend 95, Witten 95]

1/2-BPS and 1/4-BPS couplings in $\mathcal{N}=8$ string vacua

- In type II string compactified on a torus T^{d}, the LEEA is expected to be invariant under $G_{D=10-d}(\mathbb{Z})=E_{d+1}(\mathbb{Z})$, which extends both the T-duality group $S O(d, d, \mathbb{Z})$ and global diffeomorphisms $S L(d+1, \mathbb{Z})$ of the M-theory torus. [Hull Townsend 95, Witten 95]
- Supersymmetric Ward identities and known perturbative contributions uniquely determine the \mathcal{R}^{4} and $\nabla^{4} \mathcal{R}^{4}$ couplings:

$$
f_{\mathcal{R}^{4}}^{(D)}=2 \zeta(3) \mathcal{E}_{\frac{3}{2} \Lambda_{1}}^{E_{d+1}(\mathbb{Z})}, \quad f_{\nabla^{4} \mathcal{R}^{4}}^{(D)}=\zeta(5) \mathcal{E}_{\frac{5}{2} \Lambda_{1}}^{E_{d+1}(\mathbb{Z})}
$$

where $\mathcal{E}_{s \lambda_{k}}^{G_{D}(\mathbb{Z})}$ is the Langlands-Eisenstein series

$$
\mathcal{E}_{s \lambda_{k}}^{G_{D}(\mathbb{Z})}=\left.\sum_{\gamma \in P_{k}(\mathbb{Z}) \backslash G(\mathbb{Z})} y_{k}^{-2 s}\right|_{\gamma}=\frac{1}{2 \zeta(2 s)} \sum_{\substack{\mathcal{Q} \in \wedge_{k} \\ \mathcal{Q} \times \mathcal{Q}=0}}[\mathcal{M}(\mathcal{Q})]^{-s}
$$

$1 / 2-$ BPS and $1 / 4-$ BPS couplings in $\mathcal{N}=8$ string vacua

- At weak coupling coupling, these reproduce the known tree-level, one-loop and two-loop contributions, plus infinite series of D-instanton corrections. [Green Gutperle '97, ...]

1/2-BPS and 1/4-BPS couplings in $\mathcal{N}=8$ string vacua

- At weak coupling coupling, these reproduce the known tree-level, one-loop and two-loop contributions, plus infinite series of D-instanton corrections. [Green Gutperle '97, ...]
- In the large radius limit, one recovers the expected $\mathcal{O}\left(e^{-R \mathcal{M}(Q)}\right)$ contributions from 1/2-BPS and 1/4-BPS states in dimension $D+1$, respectively, weighted by the helicity supertraces $\Omega_{8}(Q)$ and $\Omega_{12}(Q)$, [Green Miller Russo Vanhove '10, BP '10, Bossard BP '16]

$$
\begin{aligned}
\Omega_{8}(Q) & = \begin{cases}1 & (Q \times Q=0) \\
0 & (Q \times Q \neq 0)\end{cases} \\
\Omega_{12}(Q) & = \begin{cases}\sigma_{3}[\operatorname{gcd}(Q \times Q)] & \left(I_{4}^{\prime}(Q)=0, Q \times Q \neq 0\right) \\
0 & \left(I_{4}^{\prime}(Q) \neq 0\right)\end{cases}
\end{aligned}
$$

where $Q \times Q$ is the Jordan quadratic product on Λ_{d+1} and $I_{4}^{\prime}(Q)$ is the gradient of the quartic invariant $I_{4}(Q)$.

$1 / 8$-BPS couplings in $\mathcal{N}=8$ string vacua

- The coupling $\nabla^{6} \mathcal{R}^{4}$ is not given by an Eisenstein series, since SUSY requires

$$
\left(\Delta_{E_{d+1}}-\frac{6(D-6)(14-D)}{D-2}\right) f_{\nabla^{6} \mathcal{R}^{4}}^{(D)}=-\left[f_{\mathcal{R}^{4}}^{(D)}\right]^{2}
$$

up to additional linear source terms in dimension $D=4,5,6$ where the local and non-local parts of the 1PI effective action mix.

Green Vanhove '05, Green Russo Vanhove '10; BP '15; Bossard Verschinin '15

1/8-BPS couplings in $\mathcal{N}=8$ string vacua

- The coupling $\nabla^{6} \mathcal{R}^{4}$ is not given by an Eisenstein series, since SUSY requires

$$
\left(\Delta_{E_{d+1}}-\frac{6(D-6)(14-D)}{D-2}\right) f_{\nabla^{6} \mathcal{R}^{4}}^{(D)}=-\left[f_{\mathcal{R}^{4}}^{(D)}\right]^{2}
$$

up to additional linear source terms in dimension $D=4,5,6$ where the local and non-local parts of the 1 PI effective action mix.

Green Vanhove '05, Green Russo Vanhove '10; BP '15; Bossard Verschinin '15

- Upon decompactifying from $D=3$ to $D=4$, we expect contributions from 1/8-BPS black holes, weighted by $\Omega_{14}(Q)=c\left(I_{4}(Q)\right) \sim e^{\pi \sqrt{I_{4}(Q)}}$, where $c(n)$ are the coefficients of the weak holomorphic form

$$
h(\rho)=\frac{\theta_{4}(2 \rho)}{\eta^{6}(4 \rho)}=\sum_{n \geq-1} c(n) q^{n}, \quad q=e^{2 \pi i \rho}
$$

Maldacena Moore Strominger '99; Shih Strominger Yin '05; BP '05; Sen '08

$1 / 8$-BPS couplings in $\mathcal{N}=8$ string vacua

- In $D=6$, a solution reproducing known perturbative contributions up to genus 3 is [BP 2015]

$$
f_{\nabla^{6} \mathcal{R}^{4}}^{(6)}=\pi \text { R.N. } \int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \Gamma_{5,5}^{(2)} \varphi_{K Z}+\frac{8}{189} \mathcal{E}_{4 \Lambda_{5}}^{S O(5,5, \mathbb{Z})}
$$

where $\Gamma_{d, d}^{(2)}$ is the genus-two Siegel-Narain theta series;

1/8-BPS couplings in $\mathcal{N}=8$ string vacua

- In $D=6$, a solution reproducing known perturbative contributions up to genus 3 is [BP 2015]

$$
f_{\nabla^{6} \mathcal{R}^{4}}^{(6)}=\pi \text { R.N. } \int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \Gamma_{5,5}^{(2)} \varphi_{K Z}+\frac{8}{189} \mathcal{E}_{4 \Lambda_{5}}^{S O(5,5, \mathbb{Z})}
$$

where $\Gamma_{d, d}^{(2)}$ is the genus-two Siegel-Narain theta series;

- Here $\varphi_{K Z}$ is the Kawazumi-Zhang invariant, a real-analytic Siegel modular function which appears in the integrand of the genus-two $\nabla^{6} \mathcal{R}^{4}$ coupling [d'Hoker Phong '01-05, d'Hoker Green '14]

$$
f_{\nabla^{6} \mathcal{R}^{4}}^{(D, 2-10 o p)} \sim \int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \Gamma_{d, d}^{(2)} \varphi_{K Z}
$$

1/8-BPS couplings in $\mathcal{N}=8$ string vacua

- In $D=6$, a solution reproducing known perturbative contributions up to genus 3 is [BP 2015]

$$
f_{\nabla^{6} \mathcal{R}^{4}}^{(6)}=\pi \text { R.N. } \int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \Gamma_{5,5}^{(2)} \varphi_{K Z}+\frac{8}{189} \mathcal{E}_{4 \Lambda_{5}}^{S O(5,5, \mathbb{Z})}
$$

where $\Gamma_{d, d}^{(2)}$ is the genus-two Siegel-Narain theta series;

- Here $\varphi_{K Z}$ is the Kawazumi-Zhang invariant, a real-analytic Siegel modular function which appears in the integrand of the genus-two $\nabla^{6} \mathcal{R}^{4}$ coupling [d'Hoker Phong '01-05, d'Hoker Green '14]

$$
f_{\nabla^{6} \mathcal{R}^{4}}^{(D, 2-10 o p)} \sim \int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \Gamma_{d, d}^{(2)} \varphi_{K Z}
$$

- In generic dimension, another proposal for the exact $\nabla^{6} \mathcal{R}^{4}$ coupling is obtained by covariantizing the two-loop supergravity amplitude [Bossard Kleinschmidt '15; Bossard Kleinschmidt BP '20]

Exact $\nabla^{6} \mathcal{R}^{4}$ coupling in $\mathcal{N}=8$ string vacua

- Performing the change of variables [Green Kwon Vanhove '99]

$$
\left(\begin{array}{cc}
L_{1}+L_{2} & L_{2} \\
L_{2} & L_{2}+L_{3}
\end{array}\right)=\frac{1}{V \tau_{2}}\left(\begin{array}{cc}
1 & \tau_{1} \\
\tau_{1} & |\tau|^{2}
\end{array}\right)
$$

and integrating over overall scale V, this produces

$$
f_{\nabla^{6} \mathcal{R}^{4}}^{(D)}=\frac{8 \pi^{2}}{3} \frac{\Gamma(d-2)}{\pi^{d-2}} \int_{\mathcal{F}} \frac{\mathrm{d} \tau_{1} \mathrm{~d} \tau_{2}}{\tau_{2}^{2}} A(\tau) \sum_{\substack{Q_{1}, Q_{2} \in \Lambda_{d+1} \\ Q_{i} \times Q_{j}=0}}^{\prime}\left[\frac{\tau_{2}}{G\left(Q_{1}+\tau Q_{2}, Q_{1}+\bar{\tau} Q_{2}\right)}\right]^{d-2}
$$

where $A(\tau)$ is given in standard fundamental domain \mathcal{F} by

$$
A(\tau)=\frac{|\tau|^{2}-\tau_{1}+1}{\tau_{2}}+\frac{5 \tau_{1}\left(\tau_{1}-1\right)\left(|\tau|^{2}-\tau_{1}\right)}{\tau_{2}^{3}}, \quad \frac{A(\tau)}{V}=L_{1}+L_{2}+L_{3}-\frac{5 L_{1} L_{2} L_{3}}{L_{1} L_{2}+L_{2} L_{3}+L_{3} L_{1}}
$$

and extended to upper half-plane by modular-invariance.

Exact $\nabla^{6} \mathcal{R}^{4}$ coupling and BPS indices

- The agreement with weak coupling expansion (and alternative proposal in $D=6, d=4$) follows by observing [BKP'20]

$$
\varphi_{K Z}(\Omega)=\left.\sum_{\gamma \in\left(G L(2, \mathbb{Z}) \times \mathbb{Z}^{3}\right) \backslash S p(4, \mathbb{Z})}(A(\tau) / V)\right|_{\gamma}
$$

Exact $\nabla^{6} \mathcal{R}^{4}$ coupling and BPS indices

- The agreement with weak coupling expansion (and alternative proposal in $D=6, d=4$) follows by observing [ВКР'20]

$$
\varphi_{K Z}(\Omega)=\left.\sum_{\gamma \in\left(G L(2, \mathbb{Z}) \propto \mathbb{Z}^{3}\right) \backslash S p(4, \mathbb{Z})}(A(\tau) / V)\right|_{\gamma}
$$

- The large radius expansion is computable from the Fourier expansion of $\varphi_{K Z}$, which follows from the theta lift representation

$$
\varphi_{K Z}(\Omega)=\int_{\mathcal{H} / \Gamma_{0}(4)} \frac{\mathrm{d} \rho \mathrm{~d} \bar{\rho}}{\rho_{2}^{2}} \Gamma_{3,2}^{(1)}(\rho ; \Omega) D_{\rho} h(\rho), \quad h(\rho)=\frac{\theta_{4}(2 \rho)}{\eta^{6}(4 \rho)}
$$

where $\Gamma_{3,2}$ is a genus-1 Siegel-Narain theta series [BP 2015]

Exact $\nabla^{6} \mathcal{R}^{4}$ coupling and BPS indices

- The agreement with weak coupling expansion (and alternative proposal in $D=6, d=4$) follows by observing [ВКР'20]

$$
\varphi_{K Z}(\Omega)=\left.\sum_{\gamma \in\left(G L(2, \mathbb{Z}) \ltimes \mathbb{Z}^{3}\right) \backslash S p(4, \mathbb{Z})}(A(\tau) / V)\right|_{\gamma}
$$

- The large radius expansion is computable from the Fourier expansion of $\varphi_{K Z}$, which follows from the theta lift representation

$$
\varphi_{K Z}(\Omega)=\int_{\mathcal{H} / \Gamma_{0}(4)} \frac{\mathrm{d} \rho \mathrm{~d} \bar{\rho}}{\rho_{2}^{2}} \Gamma_{3,2}^{(1)}(\rho ; \Omega) D_{\rho} h(\rho), \quad h(\rho)=\frac{\theta_{4}(2 \rho)}{\eta^{6}(4 \rho)}
$$

where $\Gamma_{3,2}$ is a genus-1 Siegel-Narain theta series [BP 2015]

- As a result, upon decompactifying from $D=3$ to $D=4$, black holes of charge Q are weighted by $c\left(I_{4}(Q)\right)$ as expected !

Exact $\nabla^{6} \mathcal{R}^{4}$ coupling and BPS indices

- The agreement with weak coupling expansion (and alternative proposal in $D=6, d=4$) follows by observing [BКР'20]

$$
\varphi_{K Z}(\Omega)=\left.\sum_{\gamma \in\left(G L(2, \mathbb{Z}) \propto \mathbb{Z}^{3}\right) \backslash S p(4, \mathbb{Z})}(A(\tau) / V)\right|_{\gamma}
$$

- The large radius expansion is computable from the Fourier expansion of $\varphi_{K Z}$, which follows from the theta lift representation

$$
\varphi_{K Z}(\Omega)=\int_{\mathcal{H} / \Gamma_{0}(4)} \frac{\mathrm{d} \rho \mathrm{~d} \bar{\rho}}{\rho_{2}^{2}} \Gamma_{3,2}^{(1)}(\rho ; \Omega) D_{\rho} h(\rho), \quad h(\rho)=\frac{\theta_{4}(2 \rho)}{\eta^{6}(4 \rho)}
$$

where $\Gamma_{3,2}$ is a genus-1 Siegel-Narain theta series [BP 2015]

- As a result, upon decompactifying from $D=3$ to $D=4$, black holes of charge Q are weighted by $c\left(I_{4}(Q)\right)$ as expected !
- In addition, there are D- \bar{D} pairs and Kaluza-Klein monopoles...

Outline

(1) From BPS indices to BPS-saturated couplings

(2) $1 / 8$-BPS couplings in $\mathcal{N}=8$ string vacua
(3) 1/4-BPS couplings in $\mathcal{N}=4$ string vacua

4 $1 / 2$-BPS couplings in $\mathcal{N}=2$ string vacua

(5) Conclusion

Duality $\mathcal{N}=4$ string vacua

- A similar philosophy works for $\mathcal{N}=4$ string vacua, such as heterotic string compactified on T^{6}, or type II on $K 3 \times T^{2}$. The moduli space in $D=4$ factorizes into

$$
\mathcal{M}_{4}=\frac{S L(2)}{U(1)} \times \frac{O(22,6)}{O(22) \times O(6)}
$$

Duality $\mathcal{N}=4$ string vacua

- A similar philosophy works for $\mathcal{N}=4$ string vacua, such as heterotic string compactified on T^{6}, or type II on $K 3 \times T^{2}$. The moduli space in $D=4$ factorizes into

$$
\mathcal{M}_{4}=\frac{S L(2)}{U(1)} \times \frac{O(22,6)}{O(22) \times O(6)}
$$

- After compactification on a circle, the moduli space extends to

$$
\mathcal{M}_{3}=\frac{O(24,8)}{O(24) \times O(8)} \supset\left\{\begin{array}{l}
\mathbb{R}_{R}^{+} \times \mathcal{M}_{4} \times \mathbb{R}^{56+1} \\
\mathbb{R}_{1 / g_{3}^{2}}^{+} \times \frac{O(23,7)}{O(23) \times O(7)} \times \mathbb{R}^{23+7}
\end{array}\right.
$$

Duality $\mathcal{N}=4$ string vacua

- A similar philosophy works for $\mathcal{N}=4$ string vacua, such as heterotic string compactified on T^{6}, or type II on $K 3 \times T^{2}$. The moduli space in $D=4$ factorizes into

$$
\mathcal{M}_{4}=\frac{S L(2)}{U(1)} \times \frac{O(22,6)}{O(22) \times O(6)}
$$

- After compactification on a circle, the moduli space extends to

$$
\mathcal{M}_{3}=\frac{O(24,8)}{O(24) \times O(8)} \supset\left\{\begin{array}{l}
\mathbb{R}_{R}^{+} \times \mathcal{M}_{4} \times \mathbb{R}^{56+1} \\
\mathbb{R}_{1 / g_{3}^{2}}^{+} \times \frac{O(23,7)}{O(23) \times O(7)} \times \mathbb{R}^{23+7}
\end{array}\right.
$$

- Accordingly, the U-duality group enhances from

$$
G_{4}(\mathbb{Z})=S L(2, \mathbb{Z}) \times O(22,6, \mathbb{Z}) \text { to } G_{3}(\mathbb{Z})=O(24,8, \mathbb{Z}) \text { [Sen 1994] }
$$

1/2-BPS and 1/4-BPS couplings in $\mathcal{N}=4$ string vacua

- The 4-derivative and 6-derivative couplings in $D=3$
$F_{a b c d}(\Phi) \nabla \Phi^{a} \nabla \Phi^{b} \nabla \Phi^{c} \nabla \Phi^{d}+G_{a b, c d}(\Phi) \nabla\left(\nabla \Phi^{a} \nabla \Phi^{b}\right) \nabla\left(\nabla \Phi^{c} \nabla \Phi^{d}\right)$
are expected to get contributions from 1/2-BPS and 1/4-BPS instantons, respectively. [Bossard Cosnier-Horeau BP '16]

$1 / 2-$ BPS and $1 / 4-$ BPS couplings in $\mathcal{N}=4$ string vacua

- The 4-derivative and 6-derivative couplings in $D=3$

$$
F_{a b c d}(\Phi) \nabla \Phi^{a} \nabla \Phi^{b} \nabla \Phi^{c} \nabla \Phi^{d}+G_{a b, c d}(\Phi) \nabla\left(\nabla \Phi^{a} \nabla \Phi^{b}\right) \nabla\left(\nabla \Phi^{c} \nabla \Phi^{d}\right)
$$

are expected to get contributions from 1/2-BPS and 1/4-BPS instantons, respectively. [Bossard Cosnier-Horeau BP '16]

- SUSY requires that the coefficients satisfy various differential constraints. Schematically,

$$
\mathcal{D}_{e f}^{2} F_{a b c d}=0, \quad \mathcal{D}_{e f}^{2} G_{a b, c d}=F_{a b k(e} F_{f) c d}{ }^{k}
$$

where $\mathcal{D}_{\text {ef }}^{2}$ is a second order differential operator on \mathcal{M}_{3}.

1/2-BPS and 1/4-BPS couplings in $\mathcal{N}=4$ string vacua

- The 4-derivative and 6-derivative couplings in $D=3$

$$
F_{a b c d}(\Phi) \nabla \Phi^{a} \nabla \Phi^{b} \nabla \Phi^{c} \nabla \Phi^{d}+G_{a b, c d}(\Phi) \nabla\left(\nabla \Phi^{a} \nabla \Phi^{b}\right) \nabla\left(\nabla \Phi^{c} \nabla \Phi^{d}\right)
$$

are expected to get contributions from 1/2-BPS and 1/4-BPS instantons, respectively. [Bossard Cosnier-Horeau BP '16]

- SUSY requires that the coefficients satisfy various differential constraints. Schematically,

$$
\mathcal{D}_{e f}^{2} F_{a b c d}=0, \quad \mathcal{D}_{e f}^{2} G_{a b, c d}=F_{a b k(e} F_{f) c d}{ }^{k}
$$

where $\mathcal{D}_{\text {ef }}^{2}$ is a second order differential operator on \mathcal{M}_{3}.

- These constraints imply that $F_{a b c d}$ is perturbatively exact at one-loop, while $G_{a b, c d}$ is perturbatively exact at two-loop in heterotic perturbation theory. For brevity we focus on $G_{a b, c d}$.

BPS indices from Siegel modular forms

- Degeneracies of 1/4-BPS dyons are given by Fourier coefficients of a meromorphic Siegel modular form:

$$
\Omega_{6}(Q, P ; z)=(-1)^{Q \cdot P} \int_{\mathcal{C}} \mathrm{d}^{3} \Omega \frac{e^{\mathrm{i} \pi\left(\rho Q^{2}+\sigma P^{2}+2 v Q \cdot P\right)}}{\Phi_{10}(\Omega)}
$$

where $\Omega=\left(\begin{array}{cc}\rho & v \\ v & \sigma\end{array}\right) \in \mathcal{H}_{2}$, and Φ_{10} is the Igusa cusp form of weight 10 under $\operatorname{Sp}(4, \mathbb{Z})$. [Dijkgraaf Verlinde Verlinde '96; David Jatkar Sen '05-06]

BPS indices from Siegel modular forms

- Degeneracies of $1 / 4$-BPS dyons are given by Fourier coefficients of a meromorphic Siegel modular form:

$$
\Omega_{6}(Q, P ; z)=(-1)^{Q \cdot P} \int_{\mathcal{C}} \mathrm{d}^{3} \Omega \frac{e^{\mathrm{i} \pi\left(\rho Q^{2}+\sigma P^{2}+2 v Q \cdot P\right)}}{\Phi_{10}(\Omega)}
$$

where $\Omega=\left(\begin{array}{cc}\rho & v \\ v & \sigma\end{array}\right) \in \mathcal{H}_{2}$, and Φ_{10} is the Igusa cusp form of weight 10 under $\operatorname{Sp}(4, \mathbb{Z})$. [Dijkgraaf Verlinde Verlinde '96; David Jatkar Sen '05-06]

- The integration contour is chosen as $\mathcal{C}=[0,1]^{3}+i \Omega_{2}^{*}$ with

$$
\Omega_{2}^{\star}=\Lambda\left[\frac{1}{S_{2}}\left(\begin{array}{cc}
1 & S_{1} \\
S_{1} & |S|^{2}
\end{array}\right)+\frac{1}{\left|P_{R} \wedge Q_{R}\right|}\left(\begin{array}{cc}
\left|P_{R}\right|^{2} & -P_{R} \cdot Q_{R} \\
-P_{R} \cdot Q_{R} & \left|Q_{R}\right|^{2}
\end{array}\right)\right]
$$

with $\Lambda \gg 1$. This ensures that \mathcal{C} crosses a zero of Φ_{10} whenever z crosses a wall of marginal stability. [Cheng Verlinde '07]

Wall-crossing from residues

- By virtue of

$$
\frac{1}{\Phi_{10}(\Omega)} \stackrel{v \rightarrow 0}{\sim} \frac{1}{v^{2}} \times \frac{1}{\Delta(\rho)} \times \frac{1}{\Delta(\sigma)}
$$

where $1 / \Delta=\sum_{N>-1} c(N) q^{N}$ is the generating function of the BPS indices $\Omega_{4}(Q, P)$ counting $1 / 2$-BPS states, the jump in $\Omega_{6}(Q, P ; z)$ matches the contribution of bound states of two 1/2-BPS dyons:

$$
\Delta \Omega_{6}(Q, P)= \pm\left(P_{1} Q_{2}-P_{2} Q_{1}\right) \Omega_{4}\left(Q_{1}, P_{1}\right) \Omega_{4}\left(Q_{2}, P_{2}\right)
$$

$$
\text { where } P_{1}\left\|Q_{1}, P_{2}\right\| Q_{2},(Q, P)=\left(Q_{1}, P_{1}\right)+\left(Q_{2}, P_{2}\right)
$$

Denef Moore '07

Perturbative $\nabla^{2}(\nabla \phi)^{4}$ coupling in $D=3$

- The $\nabla^{2}(\nabla \Phi)^{4}$ coupling ireceives up to two-loop corrections,

$$
g_{3}^{6} G_{a b, c d}=\frac{c_{0}}{g_{3}^{2}} \delta_{a b} \delta_{c d}+\delta_{a b} G_{c d}^{(1)}+g_{3}^{2} G_{a b, c d}^{(2)}+\mathcal{O}\left(e^{-1 / g_{3}^{2}}\right)
$$

where the one-loop correction is given by [Sakai Tanii '87]

$$
G_{a b}^{(1)}=\mathrm{RN} \int_{\mathcal{F}_{1}} \mathrm{~d} \mu_{1} \frac{\widehat{E}_{2} \Gamma_{23,7}\left[P_{a b}\right]}{\Delta},
$$

while the two-loop correction is [d'Hoker Phong '05],

$$
G_{a b, c d}^{(2)}=\mathrm{RN} \int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \frac{\Gamma_{23,7}^{(2)}\left[P_{a b, c d}\right]}{\Phi_{10}}
$$

Perturbative $\nabla^{2}(\nabla \phi)^{4}$ coupling in $D=3$

- The $\nabla^{2}(\nabla \Phi)^{4}$ coupling ireceives up to two-loop corrections,

$$
g_{3}^{6} G_{a b, c d}=\frac{c_{0}}{g_{3}^{2}} \delta_{a b} \delta_{c d}+\delta_{a b} G_{c d}^{(1)}+g_{3}^{2} G_{a b, c d}^{(2)}+\mathcal{O}\left(e^{-1 / g_{3}^{2}}\right)
$$

where the one-loop correction is given by [Sakai Tanii ' 87]

$$
G_{a b}^{(1)}=\mathrm{RN} \int_{\mathcal{F}_{1}} \mathrm{~d} \mu_{1} \frac{\widehat{E}_{2} \Gamma_{23,7}\left[P_{a b}\right]}{\Delta},
$$

while the two-loop correction is [d'Hoker Phong '05],

$$
G_{a b, c d}^{(2)}=\mathrm{RN} \int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \frac{\Gamma_{23,7}^{(2)}\left[P_{a b, c d}\right]}{\Phi_{10}}
$$

- Here, $P_{a b}$ and $P_{a b, c d}$ are quadratic and quartic polynomials in lattice vectors.

Exact $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$

- It is natural to conjecture that the exact coefficient of the $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$ is given by

$$
G_{a b, c d}=\int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \frac{\Gamma_{24,8}^{(2)}\left[P_{a b, c d}\right]}{\Phi_{10}}
$$

Exact $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$

- It is natural to conjecture that the exact coefficient of the $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$ is given by

$$
G_{a b, c d}=\int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \frac{\Gamma_{24,8}^{(2)}\left[P_{a b, c d}\right]}{\Phi_{10}}
$$

- This ansatz satisfies the differential constraint $\mathcal{D}^{2} G=F^{2}$, where the source term originates from the pole of $1 / \Phi_{10}$ in the separating degeneration.

Exact $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$

- It is natural to conjecture that the exact coefficient of the $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$ is given by

$$
G_{a b, c d}=\int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \frac{\Gamma_{24,8}^{(2)}\left[P_{a b, c d}\right]}{\Phi_{10}}
$$

- This ansatz satisfies the differential constraint $\mathcal{D}^{2} G=F^{2}$, where the source term originates from the pole of $1 / \Phi_{10}$ in the separating degeneration.
- The limit $g_{3} \rightarrow 0$ reproduces the known perturbative terms up to genus-two, plus an infinite series of NS5/KK5-brane instantons.

Exact $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$

- It is natural to conjecture that the exact coefficient of the $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$ is given by

$$
G_{a b, c d}=\int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \frac{\Gamma_{24,8}^{(2)}\left[P_{a b, c d}\right]}{\Phi_{10}}
$$

- This ansatz satisfies the differential constraint $\mathcal{D}^{2} G=F^{2}$, where the source term originates from the pole of $1 / \Phi_{10}$ in the separating degeneration.
- The limit $g_{3} \rightarrow 0$ reproduces the known perturbative terms up to genus-two, plus an infinite series of NS5/KK5-brane instantons.
- In the large radius limit, we find expected contributions from 1/4-BPS black holes, weighted by the Fourier coefficients of $1 / \Phi_{10}$ in desired chamber. Works for any CHL model...

Exact $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$

- It is natural to conjecture that the exact coefficient of the $\nabla^{2}(\nabla \Phi)^{4}$ coupling in $D=3$ is given by

$$
G_{a b, c d}=\int_{\mathcal{F}_{2}} \mathrm{~d} \mu_{2} \frac{\Gamma_{24,8}^{(2)}\left[P_{a b, c d}\right]}{\Phi_{10}}
$$

- This ansatz satisfies the differential constraint $\mathcal{D}^{2} G=F^{2}$, where the source term originates from the pole of $1 / \Phi_{10}$ in the separating degeneration.
- The limit $g_{3} \rightarrow 0$ reproduces the known perturbative terms up to genus-two, plus an infinite series of NS5/KK5-brane instantons.
- In the large radius limit, we find expected contributions from 1/4-BPS black holes, weighted by the Fourier coefficients of $1 / \Phi_{10}$ in desired chamber. Works for any CHL model...
- In addition, there are D- \bar{D} pairs and Kaluza-Klein monopoles...

Outline

(1) From BPS indices to BPS-saturated couplings

2 $1 / 8$-BPS couplings in $\mathcal{N}=8$ string vacua
(3) 1/4-BPS couplings in $\mathcal{N}=4$ string vacua

4 $1 / 2-\mathrm{BPS}$ couplings in $\mathcal{N}=2$ string vacua
(5) Conclusion

Instanton corrections to QK metric

- The same strategy applies for $\mathcal{N}=2$ string vacua, such as type IIA strings compactified on a Calabi-Yau threefold \mathcal{X}.

Instanton corrections to QK metric

- The same strategy applies for $\mathcal{N}=2$ string vacua, such as type IIA strings compactified on a Calabi-Yau threefold \mathcal{X}.
- The metric on vector moduli space in $D=3$ gets corrections from BPS black holes in $D=4$, along with Kaluza-Klein monopoles.

Instanton corrections to QK metric

- The same strategy applies for $\mathcal{N}=2$ string vacua, such as type IIA strings compactified on a Calabi-Yau threefold \mathcal{X}.
- The metric on vector moduli space in $D=3$ gets corrections from BPS black holes in $D=4$, along with Kaluza-Klein monopoles.
- The D-instanton corrected QK metric on \mathcal{M}_{3} (equivalently, the complex symplectic structure on twistor space $\left.\mathbb{P}^{1} \rightarrow \mathcal{Z} \rightarrow \mathcal{M}_{3}\right)$ is determined from the BPS indices $\Omega(\gamma, z)$ by a system of TBA-like equations à la GMN. Effects of KKM are not fully understood yet.

Alexandrov BP Saueressig Vandoren '08, Alexandrov Persson BP '10

Instanton corrections to QK metric

- The same strategy applies for $\mathcal{N}=2$ string vacua, such as type IIA strings compactified on a Calabi-Yau threefold \mathcal{X}.
- The metric on vector moduli space in $D=3$ gets corrections from BPS black holes in $D=4$, along with Kaluza-Klein monopoles.
- The D-instanton corrected QK metric on \mathcal{M}_{3} (equivalently, the complex symplectic structure on twistor space $\left.\mathbb{P}^{1} \rightarrow \mathcal{Z} \rightarrow \mathcal{M}_{3}\right)$ is determined from the BPS indices $\Omega(\gamma, z)$ by a system of TBA-like equations à la GMN. Effects of KKM are not fully understood yet.

Alexandrov BP Saueressig Vandoren '08, Alexandrov Persson BP '10

- Since IIA $/ \mathcal{X} \times S_{1}=\mathrm{M} / \mathcal{X} \times T^{2}, \widetilde{\mathcal{M}}_{3}$ must admit an isometric action of $S L(2, \mathbb{Z})$. This puts powerful constraints on the indices $\Omega(\gamma, z)$.

Instanton corrections to QK metric

- The same strategy applies for $\mathcal{N}=2$ string vacua, such as type IIA strings compactified on a Calabi-Yau threefold \mathcal{X}.
- The metric on vector moduli space in $D=3$ gets corrections from BPS black holes in $D=4$, along with Kaluza-Klein monopoles.
- The D-instanton corrected QK metric on \mathcal{M}_{3} (equivalently, the complex symplectic structure on twistor space $\left.\mathbb{P}^{1} \rightarrow \mathcal{Z} \rightarrow \mathcal{M}_{3}\right)$ is determined from the BPS indices $\Omega(\gamma, z)$ by a system of TBA-like equations à la GMN. Effects of KKM are not fully understood yet.

Alexandrov BP Saueressig Vandoren '08, Alexandrov Persson BP '10

- Since IIA $/ \mathcal{X} \times S_{1}=\mathrm{M} / \mathcal{X} \times T^{2}, \widetilde{\mathcal{M}}_{3}$ must admit an isometric action of $S L(2, \mathbb{Z})$. This puts powerful constraints on the indices $\Omega(\gamma, z)$.
- For $\gamma=n[p t]$ supported on a point, S-duality requires $\Omega(\gamma, z)=-\chi \mathcal{X}$ (independent of z)

Robles-Llana Rocek Saueressig Theis Vandoren '06

Constraining DT invariants from S-duality

- For $\gamma=\beta+n[p t]$ supported on a curve $\beta, \Omega(\gamma, z)=\sum_{d \mid \beta} \frac{1}{d^{3}} n_{\beta / d}^{(0)}$ hence coincides with genus-zero Gopakumar-Vafa invariant (independent of z)

Robles-Llana Saueressig Theis Vandoren '07

Constraining DT invariants from S-duality

- For $\gamma=\beta+n[p t]$ supported on a curve $\beta, \Omega(\gamma, z)=\sum_{d \mid \beta} \frac{1}{d^{3}} n_{\beta / d}^{(0)}$ hence coincides with genus-zero Gopakumar-Vafa invariant (independent of z)

Robles-Llana Saueressig Theis Vandoren '07

- For $\gamma=\mathcal{D}+\beta+n[p t]$ supported on an ample divisor \mathcal{D}, the generating series of attractor indices $h_{\mathcal{D}, \beta}(\tau)=\sum_{n} \Omega_{\star}(\gamma) q^{n}$ should be a vector-valued weakly holomorphic modular form of prescribed (negative) weight and multiplier system.

Maldacena Strominger Witten '98; Alexandrov Manschot BP '12

Constraining DT invariants from S-duality

- For $\gamma=\beta+n[p t]$ supported on a curve $\beta, \Omega(\gamma, z)=\sum_{d \mid \beta} \frac{1}{d^{3}} n_{\beta / d}^{(0)}$ hence coincides with genus-zero Gopakumar-Vafa invariant (independent of z)

Robles-Llana Saueressig Theis Vandoren '07

- For $\gamma=\mathcal{D}+\beta+n[p t]$ supported on an ample divisor \mathcal{D}, the generating series of attractor indices $h_{\mathcal{D}, \beta}(\tau)=\sum_{n} \Omega_{\star}(\gamma) q^{n}$ should be a vector-valued weakly holomorphic modular form of prescribed (negative) weight and multiplier system.

Maldacena Strominger Witten '98; Alexandrov Manschot BP '12

- For γ supported on a reducible divisor $\mathcal{D}=\sum_{i=1}^{n} \mathcal{D}_{i}$, the same generating series $h_{\mathcal{D}, \beta}(\tau)$ should be a vector-valued mock modular form of depth $n-1$ and same weight/multiplier system.

Alexandrov Banerjee Manschot BP '16-19

Constraining DT invariants from S-duality

- For $\gamma=\beta+n[p t]$ supported on a curve $\beta, \Omega(\gamma, z)=\sum_{d \mid \beta} \frac{1}{d^{3}} n_{\beta / d}^{(0)}$ hence coincides with genus-zero Gopakumar-Vafa invariant (independent of z)

Robles-Llana Saueressig Theis Vandoren '07

- For $\gamma=\mathcal{D}+\beta+n[p t]$ supported on an ample divisor \mathcal{D}, the generating series of attractor indices $h_{\mathcal{D}, \beta}(\tau)=\sum_{n} \Omega_{\star}(\gamma) q^{n}$ should be a vector-valued weakly holomorphic modular form of prescribed (negative) weight and multiplier system.

Maldacena Strominger Witten '98; Alexandrov Manschot BP '12

- For γ supported on a reducible divisor $\mathcal{D}=\sum_{i=1}^{n} \mathcal{D}_{i}$, the same generating series $h_{\mathcal{D}, \beta}(\tau)$ should be a vector-valued mock modular form of depth $n-1$ and same weight/multiplier system.

Alexandrov Banerjee Manschot BP '16-19

- For γ supported on the full CY3, S-duality relates $\Omega(\gamma, z)$ to topological string partition function and ill-understood KKM effects.

Mock modularity for DT invariants

- More explicitly (setting $\mathcal{D}=p$ and suppressing dependence on β) there exists explicit functions $R_{n}\left(\left\{\gamma_{i}\right\}, \tau_{2}\right)$, built out of generalized error functions $\left.\mathcal{E}_{v}=\mathcal{E}_{v}^{(0)}+\mathcal{E}_{v}^{(+)}\right)$such that

$$
\widehat{h}_{p}=h_{p}+\sum_{n=2}^{\infty} \sum_{\gamma=\sum_{i=1}^{n} \gamma_{i}} e^{\mathrm{i} \pi \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} R_{n}\left(\left\{\gamma_{i}\right\}, \tau_{2}\right) \prod_{i=1}^{n} h_{p_{i}}
$$

transforms as a modular form of weight $-\frac{1}{2} b_{2}-1$. Here
$Q_{n}\left(\left\{\gamma_{i}\right\}\right)=\kappa^{a b} q_{a} q_{b}-\sum_{i=1}^{n} \kappa_{i}^{a b} q_{i, a} q_{i, b}$ and $\kappa^{a b}=\left(\kappa_{a b c} p^{c}\right)^{-1}$

$$
R_{n}=\operatorname{Sym}\left\{\sum_{T \in \mathbb{T}_{n}^{S}}(-1)^{n_{T}-1} \mathcal{E}_{v_{0}}^{(+)} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{V}^{(0)}\right\}
$$

Alexandrov Banerjee Manschot BP '16-19

Mock modularity for DT invariants

- \widehat{h}_{p} is modular but not holomorphic. Its anti-holomorphic derivative is entirely determined in terms of $\widehat{h}_{p_{i}}$,

$$
\partial_{\bar{\tau}} \widehat{h}_{p}=\sum_{n=2}^{\infty} \sum_{\gamma=\sum_{i=1}^{n} \gamma_{i}} e^{\mathrm{i} \pi \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \widehat{R}_{n}\left(\left\{\gamma_{i}\right\}, \tau_{2}\right) \prod_{i=1}^{n} \widehat{h}_{p_{i}}
$$

$$
\widehat{R}_{n}=\operatorname{Sym}\left\{\sum_{T \in \mathbb{T}_{n}^{S}}(-1)^{n_{T}-1} \mathcal{E}_{v_{0}} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{v}\right\}
$$

Mock modularity for DT invariants

- \widehat{h}_{p} is modular but not holomorphic. Its anti-holomorphic derivative is entirely determined in terms of $\widehat{h}_{p_{i}}$,

$$
\begin{gathered}
\partial_{\bar{\tau}} \widehat{h}_{p}=\sum_{n=2}^{\infty} \sum_{\gamma=\sum_{i=1}^{n} \gamma_{i}} e^{\mathrm{i} \pi \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \widehat{R}_{n}\left(\left\{\gamma_{i}\right\}, \tau_{2}\right) \prod_{i=1}^{n} \widehat{h}_{p_{i}} \\
\widehat{R}_{n}=\operatorname{Sym}\left\{\sum_{T \in \mathbb{T}_{n}^{S}}(-1)^{n_{T}-1} \mathcal{E}_{V_{0}} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{V}\right\}
\end{gathered}
$$

- In principle, one can use this information to determine h_{p} from the knowledge of the polar coefficients. In practice, this has only been done for one-parameter families of compact CY (such as the quintic) with primitive D4-brane charge [Gaiotto Strominger Yin '06]

DT invariants and VW invariants

- For local CY three-folds of the form $\mathcal{X}=K_{S}$ where S is a Fano surface, the DT invariants supported on $N[S]$ are equal to rank N Vafa-Witten invariants.

DT invariants and VW invariants

- For local CY three-folds of the form $\mathcal{X}=K_{S}$ where S is a Fano surface, the DT invariants supported on $N[S]$ are equal to rank N Vafa-Witten invariants.
- They are computable by various techniques, for example by using the equivalence between the derived category of coherent sheaves $D(S)$ and the derived category of a certain quiver with potential. [Manschot '11-14; Beaujard Manschot BP '20]

DT invariants and VW invariants

- For local CY three-folds of the form $\mathcal{X}=K_{S}$ where S is a Fano surface, the DT invariants supported on $N[S]$ are equal to rank N Vafa-Witten invariants.
- They are computable by various techniques, for example by using the equivalence between the derived category of coherent sheaves $D(S)$ and the derived category of a certain quiver with potential. [Manschot '11-14; Beaujard Manschot BP '20]
- The construction above predicts the non-holomorphic modular completion of the generating series of Vafa-Witten invariants for any Fano surface S and rank N ! [Alexandrov BP Manschot '18-19]

DT invariants and VW invariants

- For local CY three-folds of the form $\mathcal{X}=K_{S}$ where S is a Fano surface, the DT invariants supported on $N[S]$ are equal to rank N Vafa-Witten invariants.
- They are computable by various techniques, for example by using the equivalence between the derived category of coherent sheaves $D(S)$ and the derived category of a certain quiver with potential. [Manschot '11-14; Beaujard Manschot BP '20]
- The construction above predicts the non-holomorphic modular completion of the generating series of Vafa-Witten invariants for any Fano surface S and rank N ! [Alexandrov BP Manschot '18-19]
- For $N=2, S=\mathbb{P}^{2}$, it reduces to the usual story about the generating series of Hurwitz class numbers.

Zagier '75; Klyashko '91; Yoshioka '94; Vafa Witten '94; Dabholkar Putrov Witten '20

Outline

(1) From BPS indices to BPS-saturated couplings

2 $1 / 8$-BPS couplings in $\mathcal{N}=8$ string vacua
(3) 1/4-BPS couplings in $\mathcal{N}=4$ string vacua

4 $1 / 2$-BPS couplings in $\mathcal{N}=2$ string vacua
(5) Conclusion

Conclusion

- Suitable BPS-saturated couplings in $D=3$ conveniently capture the spectrum of BPS black holes in $D=4$ for arbitrary charge γ and moduli z.

Conclusion

- Suitable BPS-saturated couplings in $D=3$ conveniently capture the spectrum of BPS black holes in $D=4$ for arbitrary charge γ and moduli z.
- These couplings are given by automorphic forms of the U-duality group $G_{3}(\mathbb{Z})$ of unusual type, which satisfy non-linear equations.

Conclusion

- Suitable BPS-saturated couplings in $D=3$ conveniently capture the spectrum of BPS black holes in $D=4$ for arbitrary charge γ and moduli z.
- These couplings are given by automorphic forms of the U-duality group $G_{3}(\mathbb{Z})$ of unusual type, which satisfy non-linear equations.
- The contributions from $D-\bar{D}$ instantons and Kaluza-Klein monopoles are not well understood yet. A first principle derivation from string field theory would be desirable.

Conclusion

- Suitable BPS-saturated couplings in $D=3$ conveniently capture the spectrum of BPS black holes in $D=4$ for arbitrary charge γ and moduli z.
- These couplings are given by automorphic forms of the U-duality group $G_{3}(\mathbb{Z})$ of unusual type, which satisfy non-linear equations.
- The contributions from $D-\bar{D}$ instantons and Kaluza-Klein monopoles are not well understood yet. A first principle derivation from string field theory would be desirable.
- The hypermultiplet moduli space in type IIB/X is identical to the vector multiplet moduli space in type IIA on $\mathcal{X} \times S^{1}$, and determined by the same DT invariants, so this story may have implications for string phenomenology as well.

