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Introduction

Since [Strominger Vafa ’95], a lot of work has gone into performing
precision counting of BPS black hole micro-states in various string
vacua with extended SUSY, uncovering exciting connections with
many areas of mathematics: algebraic geometry, representation
theory, automorphic forms...

For string vacua with N ≥ 4 SUSY in 3+1 dimensions, the exact
BPS indices Ω(Q) are given by Fourier coefficients of (classical, or
Jacobi, or Siegel) modular forms. This gives access to their large
charge behavior, and enables detailed comparison with the
Bekenstein-Hawking formula log |Ω(Q)| ∼ 1

4A(Q)

Importantly, the BPS index Ω(Q, z) is discontinuous across real
codimension-one walls in moduli space, due to the
(dis)appearance of multi-centered black hole bound states.
For N = 4, subtracting contributions from two-centered bound
states, the indices counting single-centered black holes are
Fourier coefficients of mock Jacobi forms [Dabholkar Murthy Zagier’12].
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BPS indices and Donaldson-Thomas invariants

In N = 2 string vacua, such as type IIA strings compactified on a
Calabi-Yau threefold X , precision counting is much less advanced.

The mathematical incarnation of BPS indices are the generalized
Donaldson-Thomas invariants of the category of coherent
sheaves D(X ), which are notoriously difficult to compute.

Kontsevich ’94; Thomas ’99; Douglas ’00; Bridgeland ’05

One complication is that the moduli space of generic CY 3-folds is
no longer a locally symmetric space, and the U-duality group in
D = 4 is reduced to the monodromy group of X .
A second complication is that multi-centered black hole bound
states with arbitrary number of constituents may now contribute to
the index.

Denef ’00; Denef Moore ’07
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BPS instantons from BPS black holes

A general approach to the problem of precision counting of BPS
states in D + 1-dimensional string vacua is to consider protected
couplings in the low energy effective action in D dimensions after
compactifying on a circle of radius R.

Indeed, a stationary solution of energyM in dimension D + 1
descends to an instanton of action RM in D Euclidean
dimensions.
A famous example is the t Hooft-Polyakov monopole in D = 4,
which descends to the instanton responsible for confinement in 3D
QED [Polyakov 1977]
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Black hole counting from BPS couplings

In a supersymmetric theory with N supercharges, states which
break k supercharges descend to instantons which carry k
fermionic zero-modes.

Hence they contribute to only to interactions with f + 2n ≥ k ,
where f is the number of fermions and n the number of derivatives
(recall ∂φ ∼ ψψ).
BPS couplings are interactions with f + 2n < N , which only get
corrections from instantons preserving some fraction of SUSY:

N k (N − k)/N BPS couplings
32 16 1/2 R4

32 24 1/4 ∇4R4

32 28 1/8 ∇6R4

16 8 1/2 F 4,R2

16 12 1/4 ∇2F 4,F 2R2

8 4 1/2 (∇φ)2
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BPS indices from large radius limit

The coefficients of these couplings are functions f (D)(R, z, φ) of
the radius R, moduli z in dimension D + 1, and holonomies φ of
the n gauge fields along the circle:

MD ∼ R+ ×MD+1 × Tn

When D = 3, due to the duality between gauge fields and scalars
Fµν ∼ εµνρ∂ρφ, the torus Tn is promoted to a symplectic torus T2n.
In presence of gravity, the dual of the Kaluza-Klein gauge field
gµ,D+1 leads to an additional scalar σ, the NUT potential, which
lives in a circle bundle over T2n,

M3 ∼ R+ ×M4 × T2n × S1
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BPS indices from large radius limit

In the limit R →∞, f (D)(R, z, φ) is expected to behave as

f (D)(R, z, φ) ∼ R f (D+1)(z) +
∑

Q∈Λ\{0}

Ωn(Q, z) e−RM(Q,z)+i Q·φ + . . .

whereM(Q, z) is the BPS mass, Ωn(Q, z) ∼ Tr(−1)2J3(2J3)n is
the helicity supertrace counting BPS states with k = 2n fermionic
zero-modes.

The dots include

1 Power-like terms proportional to lower order couplings in the
derivative expansion, due to massless threshold effects

2 Loop corrections around each instanton sector
3 Multi-instanton contributions, needed to smoothen the jumps of

Ωn(Q, z) across walls of marginal stability
4 For gravitational theories in D = 3, contributions from Taub-NUT

instantons of order O(e−R2
), needed to resolve the ambiguity of the

divergent sum
∑

Q eSBH (Q)−RM(Q) [BP Vandoren (2009)]
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Black hole counting from BPS couplings

The take-home message is that the BPS coupling f (D)(R, z, ϕ)
provides a natural generating series of BPS indices in dimension
D + 1, similar in spirit to the naive black hole partition function
Zn(R, z, φ) =

∑
Q Ωn(Q, z)e−RM(Q,z)+iQ·φ but better behaved.

For vacua with N ≥ 4 supersymmetries, the moduli space is a
locally symmetric spaceMD = GD(Z)\GD/KD, where GD(Z) is an
arithmetic subgroup of GD known as U-duality group.
In such cases, f (D) is an automorphic function under GD(Z). Its
Fourier coefficients are automatically invariant under the subgroup
GD+1(Z) ⊂ GD(Z), acting linearly on the charge Q, but further
constrained by invariance under GD(Z).
For N = 2 vacua, viewing type IIA/X × S1 as M/X × T 2, we
expect the full spectrum of BPS states to be described by
automorphic forms under G3(Z) = SL(2,Z) n Mon(X ) n H2n+1.
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Outline

In the remainder of this talk, I will briefly survey three instances of
this approach:

1 ∇6R4 couplings in string vacua with 32 supercharges
Bossard D’Hoker Green Kleinschmidt BP Russo 2014-20

2 ∇2F 4 couplings in string vacua with 16 supercharges
Bossard Cosnier Horeau BP 2016-18

3 Quaternionic-Kähler metric on moduli space of M-theory on X × T 2

Alexandrov Banerjee BP Manschot Vandoren Saueressig 2008-19

In the first two cases, we recover the known counting of 1/8-BPS
(respectively 1/4-BPS) states. In addition, we encounter new
types of automorphic forms which may be of interest to
mathematicians (or not).
In third case, we find that generating series of DT invariants
supported on divisors are mock modular forms of higher depth.
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1/2-BPS and 1/4-BPS couplings in N = 8 string vacua

In type II string compactified on a torus T d , the LEEA is expected
to be invariant under GD=10−d (Z) = Ed+1(Z), which extends both
the T-duality group SO(d ,d ,Z) and global diffeomorphisms
SL(d + 1,Z) of the M-theory torus. [Hull Townsend 95,Witten 95]

Supersymmetric Ward identities and known perturbative
contributions uniquely determine the R4 and ∇4R4 couplings:

f (D)

R4 = 2ζ(3) EEd+1(Z)
3
2 Λ1

, f (D)

∇4R4 = ζ(5) EEd+1(Z)
5
2 Λ1

where EGD(Z)
sλk

is the Langlands-Eisenstein series

EGD(Z)
sλk

=
∑

γ∈Pk (Z)\G(Z)

y−2s
k |γ =

1
2ζ(2s)

∑
Q∈Λk
Q×Q=0

[M(Q)]−s
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1/2-BPS and 1/4-BPS couplings in N = 8 string vacua

At weak coupling coupling, these reproduce the known tree-level,
one-loop and two-loop contributions, plus infinite series of
D-instanton corrections. [Green Gutperle ’97, . . . ]

In the large radius limit, one recovers the expected O(e−RM(Q))
contributions from 1/2-BPS and 1/4-BPS states in dimension
D + 1, respectively, weighted by the helicity supertraces Ω8(Q)
and Ω12(Q), [Green Miller Russo Vanhove ’10, BP ’10, Bossard BP ’16]

Ω8(Q) =

{
1 (Q ×Q = 0)

0 (Q ×Q 6= 0)

Ω12(Q) =

{
σ3[gcd(Q ×Q)] (I′4(Q) = 0,Q ×Q 6= 0)

0 (I′4(Q) 6= 0)

where Q ×Q is the Jordan quadratic product on Λd+1 and I′4(Q) is
the gradient of the quartic invariant I4(Q).
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1/8-BPS couplings in N = 8 string vacua

The coupling ∇6R4 is not given by an Eisenstein series, since
SUSY requires(

∆Ed+1 −
6(D − 6)(14− D)

D − 2

)
f (D)

∇6R4 = −[f (D)

R4 ]2

up to additional linear source terms in dimension D = 4,5,6
where the local and non-local parts of the 1PI effective action mix.

Green Vanhove ’05, Green Russo Vanhove ’10; BP ’15; Bossard Verschinin ’15

Upon decompactifying from D = 3 to D = 4, we expect
contributions from 1/8-BPS black holes, weighted by
Ω14(Q) = c(I4(Q)) ∼ eπ

√
I4(Q), where c(n) are the coefficients of

the weak holomorphic form

h(ρ) =
θ4(2ρ)

η6(4ρ)
=
∑

n≥−1

c(n) qn, q = e2πiρ

Maldacena Moore Strominger ’99; Shih Strominger Yin ’05; BP ’05; Sen ’08
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1/8-BPS couplings in N = 8 string vacua

In D = 6, a solution reproducing known perturbative contributions
up to genus 3 is [BP 2015]

f (6)

∇6R4 = π R.N.
∫
F2

dµ2 Γ
(2)
5,5 ϕKZ +

8
189
ESO(5,5,Z)

4Λ5

where Γ
(2)
d ,d is the genus-two Siegel-Narain theta series;

Here ϕKZ is the Kawazumi-Zhang invariant, a real-analytic Siegel
modular function which appears in the integrand of the genus-two
∇6R4 coupling [d’Hoker Phong ’01-05, d’Hoker Green ’14]

f (D,2−loop)

∇6R4 ∼
∫
F2

dµ2 Γ
(2)
d ,d ϕKZ

In generic dimension, another proposal for the exact ∇6R4

coupling is obtained by covariantizing the two-loop supergravity
amplitude [Bossard Kleinschmidt ’15; Bossard Kleinschmidt BP ’20]
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Exact ∇6R4 coupling in N = 8 string vacua

Performing the change of variables [Green Kwon Vanhove ’99]

L1 L2 L3

(
L1 + L2 L2

L2 L2 + L3

)
= 1

Vτ2

(
1 τ1
τ1 |τ |2

)
and integrating over overall scale V , this produces

f (D)

∇6R4 =
8π2

3
Γ(d−2)
πd−2

∫
F

dτ1dτ2
τ2

2
A(τ)

′∑
Q1,Q2∈Λd+1

Qi×Qj =0

[
τ2

G(Q1+τQ2,Q1+τ̄Q2)

]d−2

where A(τ) is given in standard fundamental domain F by

A(τ) = |τ |2−τ1+1
τ2

+5τ1(τ1−1)(|τ |2−τ1)

τ3
2

,
A(τ)

V
= L1+L2+L3− 5L1L2L3

L1L2+L2L3+L3L1

and extended to upper half-plane by modular-invariance.
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Exact ∇6R4 coupling and BPS indices

The agreement with weak coupling expansion (and alternative
proposal in D = 6,d = 4) follows by observing [BKP’20]

ϕKZ (Ω) =
∑

γ∈(GL(2,Z)nZ3)\Sp(4,Z)

(A(τ)/V ) |γ

The large radius expansion is computable from the Fourier
expansion of ϕKZ , which follows from the theta lift representation

ϕKZ (Ω) =

∫
H/Γ0(4)

dρdρ̄
ρ2

2
Γ

(1)
3,2(ρ; Ω)Dρh(ρ) , h(ρ) =

θ4(2ρ)

η6(4ρ)

where Γ3,2 is a genus-1 Siegel-Narain theta series [BP 2015]

As a result, upon decompactifying from D = 3 to D = 4, black
holes of charge Q are weighted by c(I4(Q)) as expected !
In addition, there are D-D̄ pairs and Kaluza-Klein monopoles...
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Duality N = 4 string vacua

A similar philosophy works for N = 4 string vacua, such as
heterotic string compactified on T 6, or type II on K 3× T 2. The
moduli space in D = 4 factorizes into

M4 =
SL(2)

U(1)
× O(22,6)

O(22)×O(6)

After compactification on a circle, the moduli space extends to

M3 =
O(24,8)

O(24)×O(8)
⊃

{
R+

R ×M4 × R56+1

R+
1/g2

3
× O(23,7)

O(23)×O(7) × R23+7

Accordingly, the U-duality group enhances from
G4(Z) = SL(2,Z)×O(22,6,Z) to G3(Z) = O(24,8,Z) [Sen 1994]
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1/2-BPS and 1/4-BPS couplings in N = 4 string vacua

The 4-derivative and 6-derivative couplings in D = 3

Fabcd (Φ)∇Φa∇Φb∇Φc∇Φd + Gab,cd (Φ)∇(∇Φa∇Φb)∇(∇Φc∇Φd )

are expected to get contributions from 1/2-BPS and 1/4-BPS
instantons, respectively. [Bossard Cosnier-Horeau BP ’16]

SUSY requires that the coefficients satisfy various differential
constraints. Schematically,

D2
ef Fabcd =0 , D2

ef Gab,cd = Fabk(e F k
f )cd

where D2
ef is a second order differential operator onM3.

These constraints imply that Fabcd is perturbatively exact at
one-loop, while Gab,cd is perturbatively exact at two-loop in
heterotic perturbation theory. For brevity we focus on Gab,cd .
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BPS indices from Siegel modular forms

Degeneracies of 1/4-BPS dyons are given by Fourier coefficients
of a meromorphic Siegel modular form:

Ω6(Q,P; z) = (−1)Q·P
∫
C

d3Ω
eiπ(ρQ2+σP2+2vQ·P)

Φ10(Ω)

where Ω =
(
ρ v
v σ

)
∈ H2, and Φ10 is the Igusa cusp form of weight

10 under Sp(4,Z). [Dijkgraaf Verlinde Verlinde ’96; David Jatkar Sen ’05-06]

The integration contour is chosen as C = [0,1]3 + iΩ∗2 with

Ω?
2 = Λ

[
1

S2

(
1 S1

S1 |S|2
)

+ 1
|PR∧QR |

(
|PR|2 −PR ·QR
−PR ·QR |QR|2

) ]
with Λ� 1. This ensures that C crosses a zero of Φ10 whenever z
crosses a wall of marginal stability. [Cheng Verlinde ’07]
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Φ10(Ω)

where Ω =
(
ρ v
v σ

)
∈ H2, and Φ10 is the Igusa cusp form of weight

10 under Sp(4,Z). [Dijkgraaf Verlinde Verlinde ’96; David Jatkar Sen ’05-06]

The integration contour is chosen as C = [0,1]3 + iΩ∗2 with

Ω?
2 = Λ

[
1

S2

(
1 S1

S1 |S|2
)

+ 1
|PR∧QR |

(
|PR|2 −PR ·QR
−PR ·QR |QR|2

) ]
with Λ� 1. This ensures that C crosses a zero of Φ10 whenever z
crosses a wall of marginal stability. [Cheng Verlinde ’07]
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Wall-crossing from residues

By virtue of
1

Φ10(Ω)
v→0∼ 1

v2 ×
1

∆(ρ)
× 1

∆(σ)

where 1/∆ =
∑

N≥−1 c(N) qN is the generating function of the
BPS indices Ω4(Q,P) counting 1/2-BPS states, the jump in
Ω6(Q,P; z) matches the contribution of bound states of two
1/2-BPS dyons:

∆Ω6(Q,P) = ±(P1Q2 − P2Q1) Ω4(Q1,P1) Ω4(Q2,P2)

where P1 ‖ Q1,P2 ‖ Q2, (Q,P) = (Q1,P1) + (Q2,P2).
Denef Moore ’07
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Perturbative ∇2(∇Φ)4 coupling in D = 3

The ∇2(∇Φ)4 coupling ireceives up to two-loop corrections,

g6
3 Gab,cd =

c0

g 2
3
δabδcd + δabG(1)

cd + g2
3 G(2)

ab,cd +O(e−1/g2
3 )

where the one-loop correction is given by [Sakai Tanii ’87]

G(1)
ab = RN

∫
F1

dµ1
Ê2 Γ23,7[Pab]

∆
,

while the two-loop correction is [d’Hoker Phong ’05],

G(2)
ab,cd = RN

∫
F2

dµ2
Γ

(2)
23,7[Pab,cd ]

Φ10

Here, Pab and Pab,cd are quadratic and quartic polynomials in
lattice vectors.
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Exact ∇2(∇Φ)4 coupling in D = 3

It is natural to conjecture that the exact coefficient of the ∇2(∇Φ)4

coupling in D = 3 is given by

Gab,cd =

∫
F2

dµ2
Γ

(2)
24,8[Pab,cd ]

Φ10

This ansatz satisfies the differential constraint D2G = F 2, where
the source term originates from the pole of 1/Φ10 in the
separating degeneration.
The limit g3 → 0 reproduces the known perturbative terms up to
genus-two, plus an infinite series of NS5/KK5-brane instantons.
In the large radius limit, we find expected contributions from
1/4-BPS black holes, weighted by the Fourier coefficients of 1/Φ10
in desired chamber. Works for any CHL model...
In addition, there are D-D̄ pairs and Kaluza-Klein monopoles...
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1 From BPS indices to BPS-saturated couplings

2 1/8-BPS couplings in N = 8 string vacua

3 1/4-BPS couplings in N = 4 string vacua

4 1/2-BPS couplings in N = 2 string vacua
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Instanton corrections to QK metric

The same strategy applies for N = 2 string vacua, such as type
IIA strings compactified on a Calabi-Yau threefold X .

The metric on vector moduli space in D = 3 gets corrections from
BPS black holes in D = 4, along with Kaluza-Klein monopoles.
The D-instanton corrected QK metric onM3 (equivalently, the
complex symplectic structure on twistor space P1 → Z →M3) is
determined from the BPS indices Ω(γ, z) by a system of TBA-like
equations à la GMN. Effects of KKM are not fully understood yet.

Alexandrov BP Saueressig Vandoren ’08, Alexandrov Persson BP ’10

Since IIA/X × S1 = M/X × T 2, M̃3 must admit an isometric action
of SL(2,Z). This puts powerful constraints on the indices Ω(γ, z).
For γ = n[pt ] supported on a point, S-duality requires
Ω(γ, z) = −χX (independent of z)

Robles-Llana Rocek Saueressig Theis Vandoren ’06
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Constraining DT invariants from S-duality

For γ = β + n[pt ] supported on a curve β, Ω(γ, z) =
∑

d |β
1

d3 n(0)
β/d

hence coincides with genus-zero Gopakumar-Vafa invariant
(independent of z)

Robles-Llana Saueressig Theis Vandoren ’07

For γ = D + β + n[pt ] supported on an ample divisor D, the
generating series of attractor indices hD,β(τ) =

∑
n Ω?(γ)qn

should be a vector-valued weakly holomorphic modular form of
prescribed (negative) weight and multiplier system.

Maldacena Strominger Witten ’98; Alexandrov Manschot BP ’12

For γ supported on a reducible divisor D =
∑n

i=1Di , the same
generating series hD,β(τ) should be a vector-valued mock
modular form of depth n − 1 and same weight/multiplier system.

Alexandrov Banerjee Manschot BP ’16-19

For γ supported on the full CY3, S-duality relates Ω(γ, z) to
topological string partition function and ill-understood KKM effects.
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Mock modularity for DT invariants

More explicitly (setting D = p and suppressing dependence on β)
there exists explicit functions Rn({γi}, τ2), built out of generalized
error functions Ev = E(0)

v + E(+)
v ) such that

ĥp = hp +
∞∑

n=2

∑
γ=

∑n
i=1 γi

eiπτQn({γi})Rn({γi}, τ2)
n∏

i=1

hpi

transforms as a modular form of weight −1
2b2 − 1. Here

Qn({γi}) = κabqaqb −
∑n

i=1 κ
ab
i qi,aqi,b and κab = (κabcpc)−1

Rn = Sym

∑
T∈TS

n

(−1)nT−1E(+)
v0

∏
v∈VT \{v0}

E(0)
v


Alexandrov Banerjee Manschot BP ’16-19
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Mock modularity for DT invariants

ĥp is modular but not holomorphic. Its anti-holomorphic derivative
is entirely determined in terms of ĥpi ,

∂τ̄ ĥp =
∞∑

n=2

∑
γ=

∑n
i=1 γi

eiπτQn({γi})R̂n({γi}, τ2)
n∏

i=1

ĥpi

R̂n = Sym

∑
T∈TS

n

(−1)nT−1Ev0

∏
v∈VT \{v0}

Ev



In principle, one can use this information to determine hp from the
knowledge of the polar coefficients. In practice, this has only been
done for one-parameter families of compact CY (such as the
quintic) with primitive D4-brane charge [Gaiotto Strominger Yin ’06]
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DT invariants and VW invariants

For local CY three-folds of the form X = KS where S is a Fano
surface, the DT invariants supported on N[S] are equal to rank N
Vafa-Witten invariants.

They are computable by various techniques, for example by using
the equivalence between the derived category of coherent
sheaves D(S) and the derived category of a certain quiver with
potential. [Manschot ’11-14; Beaujard Manschot BP ’20]

The construction above predicts the non-holomorphic modular
completion of the generating series of Vafa-Witten invariants for
any Fano surface S and rank N ! [Alexandrov BP Manschot ’18-19]

For N = 2,S = P2, it reduces to the usual story about the
generating series of Hurwitz class numbers.

Zagier ’75; Klyashko ’91; Yoshioka ’94; Vafa Witten ’94; Dabholkar Putrov Witten ’20
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Conclusion

Suitable BPS-saturated couplings in D = 3 conveniently capture
the spectrum of BPS black holes in D = 4 for arbitrary charge γ
and moduli z.

These couplings are given by automorphic forms of the U-duality
group G3(Z) of unusual type, which satisfy non-linear equations.
The contributions from D − D̄ instantons and Kaluza-Klein
monopoles are not well understood yet. A first principle derivation
from string field theory would be desirable.
The hypermultiplet moduli space in type IIB/X is identical to the
vector multiplet moduli space in type IIA on X × S1, and
determined by the same DT invariants, so this story may have
implications for string phenomenology as well.
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from string field theory would be desirable.

The hypermultiplet moduli space in type IIB/X is identical to the
vector multiplet moduli space in type IIA on X × S1, and
determined by the same DT invariants, so this story may have
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