BPS black holes, wall-crossing and mock modular forms of higher depth - I

Boris Pioline

THEORIQUE ET HAUTES ENERGIES

SORBONNE UNIVERSITÉ

Workshop on Moonshine, Erwin Schrödinger Institute, Vienna, 13/09/2018

based on arXiv:1804.06928,1808.08479 with Sergei Alexandrov, and earlier works 1605.05945,1702.05497 with S. Banerjee and J. Manschot

Precision counting of $\mathcal{N}=4$ BPS black holes I

- Our goal is precision counting of BPS black holes in $\mathcal{N}=2$ string vacua. For perspective, I will first recall aspects of the $\mathcal{N}=4$ story, which should be more familiar to Moonshine practitioners.
- In $\mathcal{N}=4$ string vacua, such as type II strings compactified on $K_{3} \times T_{2}$, heterotic strings on T^{6} or orbifolds thereof, the BPS indices $\Omega(\gamma, z)$ counting $1 / 4$-BPS states with charge $\gamma=(Q, P)$ in a vacuum with moduli $z \in \mathcal{M}_{4}$ at spatial infinity are given by Fourier coefficients of a meromorphic Siegel modular form,

$$
\Omega(\gamma, z)=\oint_{\mathcal{C}(\gamma, z)} \frac{e^{2 \pi \operatorname{iTr}(\tau \cdot \gamma \otimes \gamma)}}{\Phi(\tau)}, \quad \gamma \otimes \gamma=\left(\begin{array}{cc}
Q^{2} & Q \cdot P \\
Q \cdot P & P^{2}
\end{array}\right)
$$

Dijkgraaf Verlinde Verlinde '96; David Jatkar Sen '05-06; . . .

Precision counting of $\mathcal{N}=4$ BPS black holes II

- When z crosses real codimension-1 walls

$$
W\left(\gamma_{L}, \gamma_{R}\right)=\left\{z \in \mathcal{M}_{4}, M\left(\gamma_{L}+\gamma_{R}\right)=M\left(\gamma_{L}\right)+M\left(\gamma_{R}\right)\right\}
$$

where γ_{L}, γ_{R} are 1/2-BPS charge vectors, the contour $\mathcal{C}(\gamma, z)$ crosses a pole of $1 / \Phi(\tau)$, so that the index Ω jumps according to the primitive wall-crossing formula

$$
\Delta \Omega\left(\gamma_{L}+\gamma_{R}\right)=\left\langle\gamma_{L}, \gamma_{R}\right\rangle \Omega\left(\gamma_{L}\right) \Omega\left(\gamma_{R}\right)
$$

Denef Moore '07; Cheng, Verlinde '07; Sen '07-08
corresponding to contributions of bound states of two 1/2-BPS black holes.

Precision counting of $\mathcal{N}=4$ BPS black holes III

- One may extract the contributions of single-centered black holes by evaluating $\Omega(\gamma, z)$ at the attractor point z_{γ}, where two-centered bound states are not allowed to form.

- The attractor indices $\Omega_{*}(\gamma)=\Omega\left(\gamma, z_{\gamma}\right)$ turn out to be Fourier coefficients of a vector-valued mock modular form. [Dabholkar Murthy Zagier '12]
- An interesting question is to derive $\Omega_{*}(\gamma)$ from holography in $A d S_{2} \times S^{2}$, and understand the origin of the non-holomorphic correction term in the modular completion. [Murthy BP'18]

Precision counting of $\mathcal{N}=2$ BPS black holes I

In $\mathcal{N}=2$ string vacua, such as type II strings compactified on a CY threefold \mathfrak{Y}, the situation is far more complicated, due to the fact that

- The moduli space of scalars is no longer a symmetric space, instead

$$
\mathcal{M}_{4}=\mathcal{M}_{V} \times \mathcal{M}_{H}
$$

where \mathcal{M}_{V} receives worldsheet instanton corrections (in IIA), and \mathcal{M}_{H} receives both worldsheet instanton (in IIB), Euclidean D-brane instantons and NS5-brane instantons (in both)

- Fortunately, the BPS index and mass depend only on \mathcal{M}_{v}; in particular

$$
M(\gamma, z)=|Z(\gamma, z)|
$$

where $Z\left(\gamma, z^{a}\right)$ is linear in γ and holomorphic in $z \in \mathcal{M}_{V}$

Precision counting of $\mathcal{N}=2$ BPS black holes II

- BPS bound states can involve an arbitrary number of BPS constituents with charges $\left\{\gamma_{i}\right\}$ such that $\gamma=\sum_{i} \gamma_{i}$. In particular, across a wall where $Z\left(\gamma_{L}\right) \| Z\left(\gamma_{R}\right)$, all indices $\Omega(\gamma, z)$ with $\gamma \in \operatorname{Span}\left(\gamma_{L}, \gamma_{R}\right)$ may jump.
- The jump $\Delta \Omega\left(N_{L} \gamma_{L}+N_{R} \gamma_{R}\right)$ was first computed by Joyce-Song and Kontsevich-Soibelman in the context of generalized Donaldson-Thomas invariants, which count stable coherent sheaves with $\gamma \sim \operatorname{ch}(\mathcal{E})$ and stability condition $Z(\gamma, z)$.
- The KS/JS wall-crossing formulae were (re)derived physically from the SUSY quantum mechanics of multi-centered black holes.

Denef Moore '07; de Boer et al '08; Andriyash et al '10, Manschot BP Sen '10

Precision counting of $\mathcal{N}=2$ BPS black holes III

- The challenge is to compute $\Omega(\gamma, z)$ exactly, in some chamber and for an infinite class of charge vectors γ with $S_{\mathrm{BH}}(\gamma)>0$.
- This may become feasible if the indices are Fourier coefficients of some quasi-modular generating function, with prescribed modular anomaly or modular completion.
- A natural sector is to consider D4-D2-D0 branes wrapped on a divisor $\mathcal{D} \subset \mathfrak{Y}$. In M-theory on $\mathfrak{Y} \times S_{1}$, this configuration lifts to an M5-brane wrapping $\mathcal{D} \times S_{1}$, described at low energy by a $(0,4)$ 'black string SCFT' with computable central charges.

Maldacena Strominger Witten '97

Precision counting of $\mathcal{N}=2$ BPS black holes IV

- One expects that the generating function of the D4-D2-D0 indices

$$
h_{p^{a}}(\tau, z) \sim \sum_{q_{a}, q_{0}} \Omega\left(0, p^{a}, q_{a}, q_{0} ; z\right) \mathbf{e}\left(\tau q_{0}+y^{a} q_{a}\right)
$$

is given by the elliptic genus of this SCFT, therefore (after performing the theta series decomposition to extract the sum over D2-brane fluxes q_{a}) by a vector-valued modular form of weight $w=-\frac{1}{2} b_{2}(\mathfrak{Y})-1$ and multiplier system.

Gaiotto Strominger Yin '06, de Boer et al '06, Denef Moore '07

- This strategy was applied successfully to compute BPS indices for a single D4-brane on the quintic, using modularity plus explicit computations at small D0-brane charge.

Gaiotto et al '05-06, Collinucci Wyder '08

Precision counting of $\mathcal{N}=2$ BPS black holes V

- However, this expectation may break down for non-primitive D4-brane charge, or more generally when the D4-brane wraps a reducible divisor, due to wall-crossing.
- We shall be interested in the generating function of D4-D2-D0 BPS indices at the large volume attractor point

$$
z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow+\infty}\left(-q^{a}+\mathrm{i} \lambda p^{a}\right), \quad\left\{\begin{array}{c}
q^{a}=\kappa^{a b} q_{b} \\
\kappa_{a b}=\kappa_{a b c} p^{c}
\end{array}\right.
$$

where D4-brane bound states are ruled out. We abuse notation and denote $\Omega_{*}(\gamma)=\Omega\left(\gamma, z_{\infty}^{a}(\gamma)\right)$, which we call MSW invariants.
de Boer et al 08, Andriyash 08, Manschot 09

Modularity from S-duality I

- To determine the precise modular properties of generalized DT invariants, one can focus on a particular BPS-saturated coupling in the low-energy action of type IIA/ $\mathfrak{Y} \times S_{1}(R)$, which receives contributions from Euclidean BPS black holes wrapped on S_{1}. [Gunaydin Neitzke BP Waldron '05]
- Namely, in $D=3$ the moduli space factorizes as $\mathcal{M}_{3}=\mathcal{M}_{V} \times \mathcal{M}_{H}$, where both factors are quaternion-Kähler manifolds. As $R \rightarrow \infty$,

$$
\widetilde{\mathcal{M}}_{V} \sim \operatorname{c-map}\left(\mathcal{M}_{V}\right)+\sum_{\sim} \Omega\left(\gamma, z^{a}\right) e^{-R M(\gamma)}+\ldots
$$

Cecotti Ferrara Girardello '89, Ferrara Sabharwal '90; Alexandrov BP Vandoren '08

- Since IIA/ $\mathfrak{Y} \times S_{1}=\mathrm{M} / \mathfrak{Y} \times T^{2}, \widetilde{\mathcal{M}}_{V}$ must admit an isometric action of $S L(2, \mathbb{Z})$, which stays unbroken in the large volume limit.

Modularity from S-duality II

- Main point: this requirement implies that the generating function of DT invariants satisfies the MSW modularity constraints, at least when the divisor \mathcal{D} wrapped by the D4-brane is irreducible.
- When \mathcal{D} is a sum of $n \geq 2$ irreducible divisors, the generating function acquires a specific modular anomaly: they are now mock modular forms of depth $n-1$. [Alexandrov Banerjee Manschot $B P^{\prime} 16$, Alexandrov BP '18]
- Remark: $\widetilde{\mathcal{M}}_{V}$ is also the hypermultiplet moduli space \mathcal{M}_{H} in type IIB string theory compactified on \mathfrak{Y}, with $\operatorname{SL}(2, \mathbb{Z})$ being the usual type IIB S-duality in $D=10$. Counting D4-D2-D0 bound states is equivalent to computing $D 3-D 1-D(-1)$ instanton corrections to \mathcal{M}_{H}.

Alexandrov, Banerjee, Manschot, Persson, BP, Saueressig, Vandoren '08-18

Outline

(1) Introduction
(2) Twistorial description of the VM moduli space in $D=3$
(3) Modularity constraints at large volume
(4) The tree flow formula

Outline

(1) Introduction

(2) Twistorial description of the VM moduli space in $D=3$

(3) Modularity constraints at large volume

4 The tree flow formula

Vector multiplet moduli space in $D=3$ I

- The VM moduli space $\mathcal{M}=\widetilde{\mathcal{M}}_{V}$ in M-theory compactified on $\mathfrak{Y} \times T^{2}$ has dimension $4 b_{2}+4$:
- τ : complex structure of T^{2}
- t^{a} : Kähler moduli of \mathfrak{Y} on a basis $\gamma^{a}, a=1 \ldots b_{2}$ of $H_{2}(\mathfrak{Y}, \mathbb{Z})$
- (b^{a}, c^{a}): period of the 3 -form on $\gamma^{a} \times S_{1}$
- \tilde{c}_{a} : period of 6 -form on $\gamma_{a} \times T^{2}, \gamma_{a}$ basis of $H_{4}(\mathfrak{Y}, \mathbb{Z})$
- ($\left.\tilde{c}_{0}, \psi\right)$: dual of the KK gravitons
- In IIA/ $\mathfrak{Y} \times S_{1}(R)$, the moduli $\left(\zeta^{\wedge}, \tilde{\zeta}_{\Lambda}\right) \sim\left(\tau_{1}, c^{a}, \tilde{c}_{a}, \tilde{c}_{0}\right)$ defined via the classical mirror map are fibered over the complexified Kähler moduli space parametrized by $z^{a}=b^{a}+i t^{a}$, and transform as a vector under the monodromy group $\Gamma \subset \operatorname{Sp}\left(2 b_{2}+2, \mathbb{Z}\right)$.

Böhm Günther Herrmann Louis '99

Vector multiplet moduli space in $D=3$ II

- In the large volume limit $t^{a} \rightarrow \infty, \mathcal{M}$ reduces to the c-map of the special Kähler space with prepotential

$$
F(X)=-\frac{1}{6} \kappa_{a b c} \frac{X^{a} X^{b} X^{c}}{X^{0}}, \quad \frac{X^{a}}{X^{0}}=z^{a}=b^{a}+\mathrm{i}^{a}
$$

It admits an isometric action of $S L(2, \mathbb{R})$:

$$
\begin{aligned}
\tau \mapsto \frac{a \tau+b}{c \tau+d}, & t^{a} \mapsto|c \tau+d| t^{a}, \quad\binom{c^{a}}{b^{a}} \mapsto\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{c^{a}}{b^{a}}, \\
\tilde{c}_{a} \mapsto \tilde{c}_{a}, & \binom{\tilde{c}_{0}}{\psi} \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{c}_{0}}{\psi}
\end{aligned}
$$

- $S L(2, \mathbb{R})$ is broken by worldsheet and D-instantons to $S L(2, \mathbb{Z})$

Robles-Llana Rocek Saueressig Theis Vandoren '05

- In absence of KK monopoles (or NS5-D5 instantons in IIB picture), the continuous isometries along ($\left.\tilde{c}_{0}, \psi\right)$ are unbroken.

Twistorial description of instanton corrections I

- Instanton corrections to the QK metric are most easily described in terms of a complex contact structure on the twistor space $\mathbb{P}_{t}^{1} \rightarrow \mathcal{Z} \rightarrow \mathcal{M}$. Locally, the contact 1 -form can be written as

$$
e^{\Phi}\left(\frac{\mathrm{d} t}{t}+\frac{p_{+}}{t}+p_{3}+t p_{-}\right)=\mathrm{d} \alpha+\tilde{\xi}_{\wedge} \mathrm{d} \xi^{\wedge}
$$

where $p_{ \pm}, p_{3}$ are the components of the $S U(2)$ part of the Levi-Civita connection on $\mathcal{M}, \alpha, \xi^{\wedge}, \tilde{\xi}_{\wedge}$ are local Darboux coordinates and $\Phi(t, x)$ is the contact potential.

- The contact structure is defined globally by specifying complex contact transformations on overlaps of Darboux coordinate patches.
- Key fact: any isometry of \mathcal{M} lifts to a holomorphic contact transformation on \mathcal{Z}. [Salamon, Le Brun]

Twistorial description of instanton corrections II

- In the large volume limit, a single Darboux coordinate system suffices, away from $t=0$ and $t=\infty$,

$$
\begin{array}{lc}
\xi^{\wedge}=\zeta^{\wedge}+\frac{\tau_{2}}{2}\left(\bar{X}^{\wedge} t-X^{\wedge} t^{-1}\right) & \alpha=\psi+\ldots \\
\tilde{\xi}_{\Lambda}=\tilde{\zeta}_{\Lambda}+\frac{\tau_{2}}{2}\left(\bar{F}_{\Lambda} t-F_{\Lambda} t^{-1}\right) & F_{\Lambda}=\partial F / \partial X^{\wedge}
\end{array}
$$

and the contact potential is $e^{\Phi}=\frac{\tau_{2}^{2}}{12}\left(t^{3}\right)$ where $\left(t^{3}\right) \equiv \kappa_{a b c} t^{2} t^{b} t^{c}$.

- Under $S L(2, \mathbb{R})$, with a suitable action on the \mathbb{P}^{1} fiber, the Darboux coordinates transform by a complex contact transformation,

$$
\xi^{0} \mapsto \frac{a \xi_{0}+b}{c \xi^{0}+d}, \quad \xi^{a} \mapsto \frac{\xi^{a}}{c \xi^{0}+d}, \ldots, \quad e^{\phi} \mapsto \frac{e^{\phi}}{|c \tau+d|} .
$$

- It is advantageous to define $z=\frac{t+i}{t-i}$ so that the action of $S L(2, \mathbb{Z})$ on the \mathbb{P}^{1} fiber simplifies to a phase rotation, $z \mapsto \frac{c \bar{\tau}+d}{|c \tau+d|} z$.

Twistorial description of instanton corrections III

- Instanton corrections induce discontinuities in Darboux coordinates along the BPS rays $\ell_{\gamma}=\left\{t \in \mathbb{P}^{1}, Z_{\gamma} / t \in \mathbb{R} \mathbb{R}^{-}\right\}$. The coordinates in each angular sector are solutions of the 'TBA eqs'

$$
\mathcal{X}_{\gamma}(t)=\mathcal{X}_{\gamma}^{\mathrm{cl}}(t) \mathbf{e}\left(\frac{1}{8 \pi^{2}} \sum_{\gamma^{\prime} \in \Gamma} \bar{\Omega}\left(\gamma^{\prime}\right)\left\langle\gamma, \gamma^{\prime}\right\rangle \int_{\ell_{\gamma^{\prime}}} \frac{\mathrm{d} t^{\prime}}{t^{\prime}} \frac{t+t^{\prime}}{t-t^{\prime}} \mathcal{X}_{\gamma^{\prime}}\left(t^{\prime}\right)\right)
$$

where $\mathcal{X}_{\left(p^{\wedge}, q_{\wedge}\right)}=\mathbf{e}\left(p^{\wedge} \tilde{\xi}_{\wedge}-q_{\wedge} \xi^{\wedge}\right)$ are the 'holomorphic Fourier modes' and $\mathcal{X}_{\gamma}^{\mathrm{cl}}$ their classical (a.k.a semi-flat) limit.

- Here $\bar{\Omega}(\gamma)=\sum_{d \mid \gamma} \frac{1}{d^{2}} \Omega(\gamma / d)$ are the rational DT invariants. $\bar{\Omega}(\gamma)$ may jump across walls of marginal stability, but the wall-crossing formula ensures that the QK metric on \mathcal{M} is smooth.

Gaiotto Moore Neitze '08; Alexandrov '09

Twistorial description of instanton corrections IV

- As $\tau_{2} \rightarrow \infty$, the integrals over ℓ_{γ} are dominated by a saddle point at $t_{\gamma}=\mathrm{i} \arg Z_{\gamma}$, leading to corrections of order $e^{-\pi \tau_{2}\left|Z_{\gamma}\right|}$. Thus, one may solve the system iteratively, producing a multi-instanton series in the form of a sum over rooted trees.

Gaiotto Moore Neitze '08; Stoppa 11

- Having found \mathcal{X}_{γ}, hence $\left(\xi^{\wedge}, \tilde{\xi}_{\wedge}\right)$, the coordinate α and contact potential follow by one further integration, e.g.

$$
e^{\Phi}=\frac{\tau_{2}^{2}}{8} \operatorname{Im}\left(X^{\wedge} \bar{F}_{\Lambda}\right)+\frac{\mathrm{i} \tau_{2}}{16} \sum_{\gamma} \int_{\ell_{\gamma}} \frac{\mathrm{d} t}{t}\left(t^{-1} Z_{\gamma}-t \bar{Z}_{\gamma}\right) H_{\gamma},
$$

where $H_{\gamma}=\frac{\bar{\Omega}(\gamma)}{(2 \pi)^{2}} \mathcal{X}_{\gamma}$.

Outline

(1) Introduction

(2) Twistorial description of the VM moduli space in $D=3$

(3) Modularity constraints at large volume

4 The tree flow formula

Multi-instantons in the large volume limit I

- In the large volume limit $t^{a} \rightarrow \infty$, the saddle point $t_{\gamma} \rightarrow \pm \mathrm{i}$ so that $z_{\gamma}=-\mathrm{i} \frac{\left(q_{a}+(p b)_{a}\right) t^{a}}{\left(p t^{2}\right)}$. The QK metric on \mathcal{M} admits a simplified twistorial description by zooming near $z \rightarrow 0$ keeping $z t^{a}$ fixed.
- In addition, one needs to take account corrections to the mirror map, determined such that the standard $S L(2, \mathbb{Z})$ action on $t^{a},\left(c^{a}, b^{a}\right), \ldots$ lifts to a holomorphic action on $\left(\xi^{\wedge}, \tilde{\xi}_{\Lambda}, \alpha\right)$.

Multi-instantons in the large volume limit II

- Keeping only contributions from D4-branes (or D3-branes in IIB language), we find that the TBA equations reduce to

$$
H_{\gamma}(z)=H_{\gamma}^{\mathrm{cl}}(z) \exp \left[\sum_{\gamma^{\prime} \in \Gamma_{+}} \int_{\ell_{\gamma^{\prime}}} \mathrm{d} z^{\prime} K_{\gamma \gamma^{\prime}}\left(z, z^{\prime}\right) H_{\gamma^{\prime}}\left(z^{\prime}\right)\right]
$$

where $\ell_{\gamma}=\mathbb{R}+\mathrm{i} z_{\gamma}, H_{\gamma}=\frac{\bar{\Omega}(\gamma)}{(2 \pi)^{2}} \mathcal{X}_{\gamma}$,

$$
K_{\gamma_{1} \gamma_{2}}\left(z_{1}, z_{2}\right)=2 \pi\left(\left(t p_{1} p_{2}\right)+\frac{i\left\langle\gamma_{1}, \gamma_{2}\right\rangle}{z_{1}-z_{2}}\right)
$$

H_{γ}^{cl} is obtained by replacing \mathcal{X}_{γ} by its classical limit

$$
\mathcal{X}_{\gamma}^{\mathrm{cl}}=e^{-\pi \tau_{2}(p t)^{2}+2 \pi \mathrm{i} p^{2} \tilde{c}_{a}-2 \pi \tau_{2}\left(p t^{2}\right)\left(z^{2}-2 z_{\gamma}\right)+\ldots}
$$

Multi-instantons in the large volume limit III

- The same expansion can be carried out for the contact potential:

$$
e^{\Phi}=\frac{\tau_{2}^{2}}{12}\left(t^{3}\right)+\frac{\tau_{2}}{2} \operatorname{Re}\left(\mathcal{D}_{-\frac{3}{2}} \mathcal{G}\right)+\frac{1}{32 \pi^{2}} \kappa_{a b c} t^{c} \partial_{\tilde{C}_{a}} \mathcal{G} \partial_{\tilde{\tau}_{b}} \overline{\mathcal{G}} .
$$

where \mathcal{G} is the instanton generating function

$$
\mathcal{G}=\sum_{\gamma \in \Gamma_{+}} \int_{\ell_{\gamma}} \mathrm{d} z H_{\gamma}(z)-\frac{1}{2} \sum_{\gamma_{1}, \gamma_{2} \in \Gamma_{+}} \int_{\ell_{\gamma_{1}}} \mathrm{~d} z_{1} \int_{\ell_{\gamma_{2}}} \mathrm{~d} z_{2} K_{\gamma_{1} \gamma_{2}}\left(z_{1}, z_{2}\right) H_{\gamma_{1}}\left(z_{1}\right) H_{\gamma_{2}}\left(z_{2}\right)
$$

and $\mathcal{D}_{\mathfrak{h}}$ is the Maass raising operator

$$
\mathcal{D}_{\mathfrak{h}}=\frac{1}{2 \pi \mathrm{i}}\left(\partial_{\tau}+\frac{\mathfrak{h}}{2 \mathrm{i} \tau_{2}}+\frac{\mathrm{i} t^{a}}{4 \tau_{2}} \partial_{t^{a}}\right),
$$

Multi-instantons in the large volume limit IV

- As $\tau_{2} \rightarrow \infty$, the integral is dominated by a saddle point at $z=z_{\gamma}$, leading to exponentially suppressed corrections of order $e^{-\pi \tau_{2}\left(p t^{2}\right)}$.
- These equations can be solved iteratively,

$$
\begin{aligned}
& H_{\gamma_{1}}=H_{\gamma_{1}}^{\mathrm{cl}}+\sum_{\gamma_{2}} K_{12} H_{\gamma_{1}}^{\mathrm{cl}} H_{\gamma_{2}}^{\mathrm{cl}}+\sum_{\gamma_{2}, \gamma_{3}}\left(\frac{1}{2} K_{12} K_{13}+K_{12} K_{23}\right) H_{\gamma_{1}}^{\mathrm{cl}} H_{\gamma_{2}}^{\mathrm{cl}} H_{\gamma_{3}}^{\mathrm{cl}}+\ldots \\
& \mathcal{G}=\sum_{\gamma} H_{\gamma}^{\mathrm{cl}}+\frac{1}{2} \sum_{\gamma_{1}, \gamma_{2}} K_{12} H_{\gamma_{1}}^{\mathrm{cl}} H_{\gamma_{2}}^{\mathrm{cl}}+\frac{1}{2} \sum_{\gamma_{1}, \gamma_{2}, \gamma_{3}} K_{12} K_{23} H_{\gamma_{1}}^{\mathrm{cl}} H_{\gamma_{2}}^{\mathrm{cl}} H_{\gamma_{3}}^{\mathrm{cl}}+\ldots
\end{aligned}
$$

where we denote $K_{i j}=K_{\gamma_{i} \gamma_{j}}\left(z_{i}, z_{j}\right)$ and omit the integrals.

Multi-instantons in the large volume limit V

- To all orders, the expansion is given by a sum over trees

$$
\mathcal{G}=\sum_{n=1}^{\infty}\left(\prod_{i=1}^{n} \sum_{\gamma_{i} \in \Gamma_{+}} \int_{\ell_{\gamma_{i}}} \mathrm{~d} z_{i} H_{\gamma_{i}}^{\mathrm{cl}}\left(z_{i}\right)\right) \sum_{\mathcal{T} \in \mathbb{T}_{n}} \frac{\prod_{e \in E_{\mathcal{T}}} K_{s(e) t(e)}}{|\operatorname{Aut}(\mathcal{T})|}
$$

where \mathbb{T}_{n} is the set of (unrooted) trees with n vertices.

- One may show that jumps of $H^{\mathrm{cl}}\left(\gamma_{i}\right)$ across walls of marginal stability cancel against contributions of poles due to exchanging contours ℓ_{γ}, in such a way that \mathcal{G} is smooth.

Modularity of the instanton generating function I

- Returning to the result for the contact potential,

$$
e^{\Phi}=\frac{\tau_{2}^{2}}{12}\left(t^{3}\right)+\frac{\tau_{2}}{2} \operatorname{Re}\left(\mathcal{D}_{-\frac{3}{2}} \mathcal{G}\right)+\frac{1}{32 \pi^{2}} \kappa_{a b c} t^{c} \partial_{\tilde{c}_{\mathcal{G}}} \mathcal{G} \partial_{\widetilde{c}_{b}} \overline{\mathcal{G}},
$$

and requiring $e^{\phi} \mapsto \frac{e^{\phi}}{|c \tau+d|}$, we conclude that \mathcal{G} should transform as a modular form of weight ($-\frac{3}{2}, \frac{1}{2}$) (and specific multiplier system)

- In the one-instanton approximation, \mathcal{G} coincides with the naive modified elliptic genus of the black string $(0,4)$ SCFT, reproducing the modularity constraints of MSW.

Outline

(1) Introduction

(2) Twistorial description of the VM moduli space in $D=3$

(3) Modularity constraints at large volume

4 The tree flow formula

Tree flow formula I

- In order to spell out the constraints from modularity, we need to express the moduli-independent DT invariants $\Omega\left(\gamma, z^{a}\right)$ in terms of the attractor indices $\Omega_{*}(\gamma)$. For this, we may use the tree flow formula, inspired by the split attractor conjecture:

$$
\bar{\Omega}\left(\gamma, z^{a}\right)=\sum_{\sum_{i=1}^{n} \gamma_{i}=\gamma} g_{\mathrm{tr}}\left(\left\{\gamma_{i}\right\}, z^{a}\right) \prod_{i=1}^{n} \bar{\Omega}_{*}\left(\gamma_{i}\right)
$$

where the tree index is a sum over attractor flow trees,

$$
g_{\mathrm{tr}}\left(\left\{\gamma_{i}\right\}, z^{a}\right)=\frac{1}{n!} \sum_{T \in \mathbb{T}_{n}^{a f}} \Delta(T) \kappa(T)
$$

Denef Green Raugas '01; Denef Moore '07, Manschot 2010; Alexandrov BP '18

Tree flow formula II

- $\Delta(T) \in\{0, \pm 1\}$ ensures that only stable trees contribute,

$$
\Delta(T)=\prod_{v \in V_{T}} \frac{1}{2}\left[\operatorname{sgn} \operatorname{Im}\left[Z_{\gamma_{L(v)}} \bar{Z}_{\gamma_{R(v)}}\left(z_{p(v)}^{a}\right)\right]+\operatorname{sgn}\left\langle\gamma_{L(v)}, \gamma_{R(v)}\right\rangle\right]
$$

where $z_{p(v)}^{a}$ are the moduli at the parent of the vertex v. The sign can be computed recursively in terms of the stability parameters $c_{i}=\operatorname{Im}\left[Z_{\gamma_{i}} \bar{Z}_{\gamma}\left(z^{a}\right)\right]$ using a discrete version of the attractor flow.

- $\kappa(T)$ is the bound state degeneracy:

$$
\kappa(T) \equiv(-1)^{n-1} \prod_{v \in V_{T}} \kappa\left(\left\langle\gamma_{L(v)}, \gamma_{R(v)}\right\rangle\right), \quad \kappa(x)=\frac{(-y)^{x}-(-y)^{-x}}{y-1 / y}
$$

- The flow tree formula is manifestly consistent with the (refined) wall-crossing formula across walls of marginal stability. Apparent discontinuities across fake walls cancel after summing over trees.

Tree flow formula III

- Expressing $\Delta(T)$ in terms of asymptotic data, one finds products of sign functions whose arguments are polynomial in $\gamma_{i j}=\left\langle\gamma_{i}, \gamma_{j}\right\rangle$, and linear in the stability parameters c_{i}.
- After summing over trees and using sign identities such as

$$
\operatorname{sgn}\left(x_{1}+x_{2}\right) \times\left[\operatorname{sgn}\left(x_{1}\right)+\operatorname{sgn}\left(x_{2}\right)\right]=1+\operatorname{sgn}\left(x_{1}\right) \operatorname{sgn}\left(x_{2}\right)
$$

$g_{t r}$ can be rewritten as a sum of products of sign functions whose arguments are linear both in $\gamma_{i j}$ and c_{i}.

- To show this, we write the refined tree index as

$$
g_{\mathrm{tr}}\left(\left\{\gamma_{i}, c_{i}\right\}, y\right)=\frac{(-1)^{n-1+\sum_{i<j} \gamma_{i j}}}{\left(y-y^{-1}\right)^{n-1}} \operatorname{Sym}\left\{F_{\mathrm{tr}}\left(\left\{\gamma_{i}, c_{i}\right\}\right) y^{\sum_{i<j} \gamma_{i j}}\right\},
$$

where the partial tree index $F_{\text {tr }}$ is a sum over planar flow trees,

$$
F_{\mathrm{tr}}\left(\left\{\gamma_{i}, c_{i}\right\}\right)=\sum_{T \in \mathbb{T}_{n}^{\text {af-pl }}} \Delta(T)
$$

Tree flow formula IV

- By definition, the partial tree index satisfies the recursion

$$
\begin{aligned}
F_{\mathrm{tr}}\left(\left\{\gamma_{i}, c_{i}\right\}\right)= & \frac{1}{2} \sum_{\ell=1}^{n-1}\left(\operatorname{sgn}\left(S_{\ell}\right)-\operatorname{sgn}\left(\Gamma_{n \ell}\right)\right) \\
& \times F_{\mathrm{tr}}\left(\left\{\gamma_{i}, c_{i}^{(\ell)}\right\}_{i=1}^{\ell}\right) F_{\mathrm{tr}}\left(\left\{\gamma_{i}, c_{i}^{(\ell)}\right\}_{i=\ell+1}^{n}\right)
\end{aligned}
$$

where $c_{i}^{(\ell)}=c_{i}-\frac{\beta_{n i}}{\Gamma_{n \ell}} S_{\ell}$,

$$
S_{\ell}=\sum_{i=1}^{\ell} c_{i}, \quad \beta_{k \ell}=\sum_{i=1}^{k} \gamma_{i \ell}, \quad \Gamma_{k \ell}=\sum_{i=1}^{k} \sum_{j=1}^{\ell} \gamma_{i j} .
$$

This sums over all ways of constructing a planar tree with n leaves by merging planar trees with ℓ and $n-\ell$ leaves.

Tree flow formula V

- Less obvious is the fact that it satisfies another recursion,

$$
\begin{aligned}
F_{\mathrm{tr}}\left(\left\{\gamma_{i}, c_{i}\right\}\right) & =F_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right) \\
& -\sum_{\substack{n_{1}+\ldots+n_{m}=n \\
n_{k} \geq 1, m<n}} F_{\mathrm{tr}}\left(\left\{\gamma_{k}^{\prime}, c_{k}^{\prime}\right\}_{k=1}^{m}\right) \prod_{k=1}^{m} F_{n_{k}}^{(\star)}\left(\gamma_{j_{k-1}+1}, \ldots, \gamma_{j_{k}}\right),
\end{aligned}
$$

where the sum runs over ordered partitions of n with m parts,

$$
\begin{gathered}
j_{0}=0, \quad j_{k}=n_{1}+\cdots+n_{k}, \quad \gamma_{k}^{\prime}=\gamma_{j_{k-1}+1}+\cdots+\gamma_{j_{k}} \\
F_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)=\frac{1}{2^{n-1}} \prod_{i=1}^{n-1} \operatorname{sgn}\left(S_{i}\right), \quad F_{n}^{(\star)}\left(\left\{\gamma_{i}\right\}\right)=\frac{1}{2^{n-1}} \prod_{i=1}^{n-1} \operatorname{sgn}\left(\Gamma_{n i}\right)
\end{gathered}
$$

The virtue of this representation is that the sign functions have arguments which are now manifestly linear in $\gamma_{i j}$ and c_{i}.

Upshot I

- S-duality dictates that \mathcal{G} should be modular of weight $\left(-\frac{3}{2}, \frac{1}{2}\right)$,

$$
\begin{aligned}
& \mathcal{G}=\frac{1}{(2 \pi)^{2}} \sum_{n=1}^{\infty}\left(\prod_{i=1}^{n} \sum_{\substack{\gamma_{i} \in \Gamma_{+} \\
\mathcal{T} \in \mathbb{T}_{n}}} \frac{\bar{\Omega}\left(\gamma_{i}, z^{a}\right)}{|\operatorname{Aut}(\mathcal{T})|} \int_{\ell_{\gamma_{i}}} \mathrm{~d} z_{i} \sigma_{\gamma_{i}} \mathcal{X}_{\gamma_{i}}^{\mathrm{cl}}\left(z_{i}\right) \prod_{e \in E_{\mathcal{T}}} K_{s(e) t(e)}\right) \\
& \bar{\Omega}\left(\gamma, z^{a}\right)=\sum_{\gamma=\sum_{i=1}^{n} \gamma_{j}} g_{\mathrm{tr}}\left(\left\{\gamma_{i}, c_{i}\right\}\right) \prod_{j=1}^{n} \bar{\Omega}_{*}\left(\gamma_{i}\right)
\end{aligned}
$$

Since $\mathcal{X}^{\mathrm{cl}}\left(z_{i}\right)$ is Gaussian in z_{i} and $K_{i j}$ are rational in $z_{i}-z_{j}$, the integrals over $z_{i} \in \mathbb{P}^{1}$ are generalized error functions!

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016

- In his talk, Sergei will explain how the modularity of \mathcal{G} can be translated into modularity constraints for the generating functions of the MSW invariants $\bar{\Omega}_{*}(\gamma)$.

Upshot II

Thanks for your attention...

... and be ready for some serious weightlifting !

