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Precision counting of N = 4 BPS black holes I

Our goal is precision counting of BPS black holes in N = 2 string
vacua. For perspective, I will first recall aspects of the N = 4
story, which should be more familiar to Moonshine practitioners.
In N = 4 string vacua, such as type II strings compactified on
K3 × T2, heterotic strings on T 6 or orbifolds thereof, the BPS
indices Ω(γ, z) counting 1/4-BPS states with charge γ = (Q,P) in
a vacuum with moduli z ∈M4 at spatial infinity are given by
Fourier coefficients of a meromorphic Siegel modular form,

Ω(γ, z) =

∮
C(γ,z)

e2πiTr(τ ·γ⊗γ)

Φ(τ)
, γ ⊗ γ =

(
Q2 Q · P

Q · P P2

)

Dijkgraaf Verlinde Verlinde ’96; David Jatkar Sen ’05-06; . . .
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Precision counting of N = 4 BPS black holes II
When z crosses real codimension-1 walls

W (γL, γR) = {z ∈M4,M(γL + γR) = M(γL) + M(γR)}

where γL, γR are 1/2-BPS charge vectors, the contour C(γ, z)
crosses a pole of 1/Φ(τ), so that the index Ω jumps according to
the primitive wall-crossing formula

∆Ω(γL + γR) = 〈γL, γR〉Ω(γL) Ω(γR)

Denef Moore ’07; Cheng, Verlinde ’07; Sen ’07-08

corresponding to contributions of bound states of two 1/2-BPS
black holes.
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Precision counting of N = 4 BPS black holes III

One may extract the contributions of single-centered black holes
by evaluating Ω(γ, z) at the attractor point zγ , where two-centered
bound states are not allowed to form.

The attractor indices Ω∗(γ) = Ω(γ, zγ) turn out to be Fourier
coefficients of a vector-valued mock modular form. [Dabholkar Murthy

Zagier ’12]

An interesting question is to derive Ω∗(γ) from holography in
AdS2 × S2, and understand the origin of the non-holomorphic
correction term in the modular completion. [Murthy BP’18]
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Precision counting of N = 2 BPS black holes I

In N = 2 string vacua, such as type II strings compactified on a CY
threefold Y, the situation is far more complicated, due to the fact that

The moduli space of scalars is no longer a symmetric space,
instead

M4 =MV ×MH

whereMV receives worldsheet instanton corrections (in IIA), and
MH receives both worldsheet instanton (in IIB), Euclidean
D-brane instantons and NS5-brane instantons (in both)
Fortunately, the BPS index and mass depend only onMV ; in
particular

M(γ, z) = |Z (γ, z)|

where Z (γ, za) is linear in γ and holomorphic in z ∈MV
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Precision counting of N = 2 BPS black holes II
BPS bound states can involve an arbitrary number of BPS
constituents with charges {γi} such that γ =

∑
i γi . In particular,

across a wall where Z (γL) ‖ Z (γR), all indices Ω(γ, z) with
γ ∈ Span(γL, γR) may jump.
The jump ∆Ω(NLγL + NRγR) was first computed by Joyce-Song
and Kontsevich-Soibelman in the context of generalized
Donaldson-Thomas invariants, which count stable coherent
sheaves with γ ∼ ch(E) and stability condition Z (γ, z).
The KS/JS wall-crossing formulae were (re)derived physically
from the SUSY quantum mechanics of multi-centered black holes.

Denef Moore ’07; de Boer et al ’08; Andriyash et al ’10, Manschot BP Sen ’10
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Precision counting of N = 2 BPS black holes III
The challenge is to compute Ω(γ, z) exactly, in some chamber
and for an infinite class of charge vectors γ with SBH(γ) > 0.
This may become feasible if the indices are Fourier coefficients of
some quasi-modular generating function, with prescribed modular
anomaly or modular completion.
A natural sector is to consider D4-D2-D0 branes wrapped on a
divisor D ⊂ Y. In M-theory on Y× S1, this configuration lifts to an
M5-brane wrapping D × S1, described at low energy by a (0,4)
‘black string SCFT’ with computable central charges.

Maldacena Strominger Witten ’97
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Precision counting of N = 2 BPS black holes IV
One expects that the generating function of the D4-D2-D0 indices

hpa(τ, z) ∼
∑
qa,q0

Ω(0,pa,qa,q0; z) e(τq0 + yaqa)

is given by the elliptic genus of this SCFT, therefore (after
performing the theta series decomposition to extract the sum over
D2-brane fluxes qa) by a vector-valued modular form of weight
w = −1

2b2(Y)− 1 and multiplier system.

Gaiotto Strominger Yin ’06, de Boer et al ’06, Denef Moore ’07

This strategy was applied successfully to compute BPS indices for
a single D4-brane on the quintic, using modularity plus explicit
computations at small D0-brane charge.

Gaiotto et al ’05-06, Collinucci Wyder ’08
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Precision counting of N = 2 BPS black holes V

However, this expectation may break down for non-primitive
D4-brane charge, or more generally when the D4-brane wraps a
reducible divisor, due to wall-crossing.

We shall be interested in the generating function of D4-D2-D0
BPS indices at the large volume attractor point

za
∞(γ) = lim

λ→+∞
(−qa + iλpa) ,

{
qa = κabqb
κab = κabcpc

where D4-brane bound states are ruled out. We abuse notation
and denote Ω∗(γ) = Ω(γ, za

∞(γ)), which we call MSW invariants.

de Boer et al 08, Andriyash 08, Manschot 09
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Modularity from S-duality I

To determine the precise modular properties of generalized DT
invariants, one can focus on a particular BPS-saturated coupling
in the low-energy action of type IIA/Y× S1(R), which receives
contributions from Euclidean BPS black holes wrapped on S1.
[Gunaydin Neitzke BP Waldron ’05]

Namely, in D = 3 the moduli space factorizes as
M3 = M̃V ×MH , where both factors are quaternion-Kähler
manifolds. As R →∞,

M̃V ∼ c-map(MV ) +
∑
γ

Ω(γ, za) e−RM(γ) + . . .

Cecotti Ferrara Girardello ’89, Ferrara Sabharwal ’90; Alexandrov BP Vandoren ’08

Since IIA/Y× S1 = M/Y× T 2, M̃V must admit an isometric action
of SL(2,Z), which stays unbroken in the large volume limit.
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Modularity from S-duality II

Main point: this requirement implies that the generating function of
DT invariants satisfies the MSW modularity constraints, at least
when the divisor D wrapped by the D4-brane is irreducible.
When D is a sum of n ≥ 2 irreducible divisors, the generating
function acquires a specific modular anomaly: they are now mock
modular forms of depth n − 1. [Alexandrov Banerjee Manschot BP ’16,

Alexandrov BP ’18]

Remark: M̃V is also the hypermultiplet moduli spaceMH in type
IIB string theory compactified on Y, with SL(2,Z) being the usual
type IIB S-duality in D = 10. Counting D4-D2-D0 bound states is
equivalent to computing D3-D1-D(-1) instanton corrections toMH .

Alexandrov, Banerjee, Manschot, Persson, BP, Saueressig, Vandoren ’08-18

B. Pioline (LPTHE, Paris) Black holes and mock modular forms Vienna, 13/09/2018 11 / 34



Outline

1 Introduction

2 Twistorial description of the VM moduli space in D = 3

3 Modularity constraints at large volume

4 The tree flow formula

B. Pioline (LPTHE, Paris) Black holes and mock modular forms Vienna, 13/09/2018 12 / 34



Outline

1 Introduction

2 Twistorial description of the VM moduli space in D = 3

3 Modularity constraints at large volume

4 The tree flow formula

B. Pioline (LPTHE, Paris) Black holes and mock modular forms Vienna, 13/09/2018 13 / 34



Vector multiplet moduli space in D = 3 I

The VM moduli spaceM = M̃V in M-theory compactified on
Y× T 2 has dimension 4b2 + 4:

τ : complex structure of T 2

ta: Kähler moduli of Y on a basis γa, a = 1 . . . b2 of H2(Y,Z)
(ba, ca): period of the 3-form on γa × S1
c̃a: period of 6-form on γa × T 2, γa basis of H4(Y,Z)
(c̃0, ψ): dual of the KK gravitons

In IIA/Y× S1(R), the moduli (ζΛ, ζ̃Λ) ∼ (τ1, ca, c̃a, c̃0) defined via
the classical mirror map are fibered over the complexified Kähler
moduli space parametrized by za = ba + ita, and transform as a
vector under the monodromy group Γ ⊂ Sp(2b2 + 2,Z).

Böhm Günther Herrmann Louis ’99
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Vector multiplet moduli space in D = 3 II
In the large volume limit ta →∞,M reduces to the c-map of the
special Kähler space with prepotential

F (X ) = −1
6
κabc

X aX bX c

X 0 , X a

X 0 = za = ba + ita

It admits an isometric action of SL(2,R):

τ 7→ aτ + b
cτ + d

, ta 7→ |cτ + d | ta,

(
ca

ba

)
7→
(

a b
c d

)(
ca

ba

)
,

c̃a 7→ c̃a ,

(
c̃0
ψ

)
7→
(

d −c
−b a

)(
c̃0
ψ

)
SL(2,R) is broken by worldsheet and D-instantons to SL(2,Z)

Robles-Llana Rocek Saueressig Theis Vandoren ’05

In absence of KK monopoles (or NS5-D5 instantons in IIB
picture), the continuous isometries along (c̃0, ψ) are unbroken.
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Twistorial description of instanton corrections I

Instanton corrections to the QK metric are most easily described
in terms of a complex contact structure on the twistor space
P1

t → Z →M. Locally, the contact 1-form can be written as

eΦ

(
dt
t

+
p+

t
+ p3 + tp−

)
= dα + ξ̃ΛdξΛ

where p±,p3 are the components of the SU(2) part of the
Levi-Civita connection onM, α, ξΛ, ξ̃Λ are local Darboux
coordinates and Φ(t , x) is the contact potential.
The contact structure is defined globally by specifying complex
contact transformations on overlaps of Darboux coordinate
patches.
Key fact: any isometry ofM lifts to a holomorphic contact
transformation on Z. [Salamon, Le Brun]
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Twistorial description of instanton corrections II
In the large volume limit, a single Darboux coordinate system
suffices, away from t = 0 and t =∞,

ξΛ = ζΛ +
τ2

2

(
X̄ Λt − X Λ t−1

)
α = ψ + . . .

ξ̃Λ = ζ̃Λ +
τ2

2

(
F̄Λt − FΛ t−1

)
FΛ = ∂F/∂X Λ

and the contact potential is eΦ =
τ2

2
12(t3) where (t3) ≡ κabc tatbtc .

Under SL(2,R), with a suitable action on the P1 fiber, the Darboux
coordinates transform by a complex contact transformation,

ξ0 7→ aξ0 + b
cξ0 + d

, ξa 7→ ξa

cξ0 + d
, . . . , eφ 7→ eφ

|cτ + d |
.

It is advantageous to define z = t+i
t−i so that the action of SL(2,Z)

on the P1 fiber simplifies to a phase rotation, z 7→ cτ̄+d
|cτ+d | z.
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Twistorial description of instanton corrections III
Instanton corrections induce discontinuities in Darboux
coordinates along the BPS rays `γ = {t ∈ P1,Zγ/t ∈ iR−}. The
coordinates in each angular sector are solutions of the ‘TBA eqs’

Xγ(t) = X cl
γ (t) e

 1
8π2

∑
γ′∈Γ

Ω̄(γ′) 〈γ, γ′〉
∫
`γ′

dt ′
t ′

t+t ′
t−t ′ Xγ′(t

′)


where X(pΛ,qΛ) = e

(
pΛξ̃Λ − qΛξ

Λ
)

are
the ‘holomorphic Fourier modes’ and
X cl
γ their classical (a.k.a semi-flat) limit.

Here Ω̄(γ) =
∑

d |γ
1

d2 Ω(γ/d) are the rational DT invariants. Ω̄(γ)
may jump across walls of marginal stability, but the wall-crossing
formula ensures that the QK metric onM is smooth.

Gaiotto Moore Neitze ’08; Alexandrov ’09
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Twistorial description of instanton corrections IV

As τ2 →∞, the integrals over `γ are dominated by a saddle point
at tγ = i arg Zγ , leading to corrections of order e−πτ2|Zγ |. Thus, one
may solve the system iteratively, producing a multi-instanton
series in the form of a sum over rooted trees.

Gaiotto Moore Neitze ’08; Stoppa 11

Having found Xγ , hence (ξΛ, ξ̃Λ), the coordinate α and contact
potential follow by one further integration, e.g.

eΦ =
τ2

2
8

Im
(

X ΛF̄Λ

)
+

iτ2

16

∑
γ

∫
`γ

dt
t

(
t−1Zγ − t Z̄γ

)
Hγ ,

where Hγ = Ω̄(γ)
(2π)2Xγ .
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Multi-instantons in the large volume limit I

In the large volume limit ta →∞, the saddle point tγ → ±i so that
zγ = −i (qa+(pb)a) ta

(pt2)
. The QK metric onM admits a simplified

twistorial description by zooming near z → 0 keeping zta fixed.
In addition, one needs to take account corrections to the mirror
map, determined such that the standard SL(2,Z) action on
ta, (ca,ba), . . . lifts to a holomorphic action on (ξΛ, ξ̃Λ, α).
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Multi-instantons in the large volume limit II
Keeping only contributions from D4-branes (or D3-branes in IIB
language), we find that the TBA equations reduce to

Hγ(z) = Hcl
γ (z) exp

 ∑
γ′∈Γ+

∫
`γ′

dz ′ Kγγ′(z, z ′) Hγ′(z ′)


where `γ = R + izγ , Hγ = Ω̄(γ)

(2π)2 Xγ ,

Kγ1γ2(z1, z2) = 2π
(

(tp1p2) +
i〈γ1, γ2〉
z1 − z2

)
Hcl
γ is obtained by replacing Xγ by its classical limit

X cl
γ = e−πτ2(pt)2+2πipac̃a−2πτ2(pt2)(z2−2zγ)+...
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Multi-instantons in the large volume limit III
The same expansion can be carried out for the contact potential:

eΦ =
τ2

2
12

(t3) +
τ2

2
Re
(
D− 3

2
G
)

+
1

32π2 κabc tc∂c̃aG ∂c̃b
G.

where G is the instanton generating function

G =
∑
γ∈Γ+

∫
`γ

dz Hγ(z)− 1
2

∑
γ1,γ2∈Γ+

∫
`γ1

dz1

∫
`γ2

dz2 Kγ1γ2(z1, z2) Hγ1(z1)Hγ2(z2)

and Dh is the Maass raising operator

Dh =
1

2πi

(
∂τ +

h

2iτ2
+

ita

4τ2
∂ta

)
,
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Multi-instantons in the large volume limit IV
As τ2 →∞, the integral is dominated by a saddle point at z = zγ ,
leading to exponentially suppressed corrections of order e−πτ2(pt2).
These equations can be solved iteratively,

Hγ1 = Hcl
γ1

+
∑
γ2

K12Hcl
γ1

Hcl
γ2

+
∑
γ2,γ3

(1
2 K12K13 + K12K23

)
Hcl
γ1

Hcl
γ2

Hcl
γ3

+. . .

G =
∑
γ

Hcl
γ +

1
2

∑
γ1,γ2

K12Hcl
γ1

Hcl
γ2

+
1
2

∑
γ1,γ2,γ3

K12K23Hcl
γ1

Hcl
γ2

Hcl
γ3

+ . . .

where we denote Kij = Kγiγj (zi , zj) and omit the integrals.
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Multi-instantons in the large volume limit V

To all orders, the expansion is given by a sum over trees

G =
∞∑

n=1

 n∏
i=1

∑
γi∈Γ+

∫
`γi

dzi Hcl
γi

(zi)

 ∑
T ∈Tn

∏
e∈ET Ks(e)t(e)

|Aut(T )|

where Tn is the set of (unrooted) trees with n vertices.

One may show that jumps of Hcl(γi) across walls of marginal
stability cancel against contributions of poles due to exchanging
contours `γi , in such a way that G is smooth.
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Modularity of the instanton generating function I

Returning to the result for the contact potential,

eΦ =
τ2

2
12

(t3) +
τ2

2
Re
(
D− 3

2
G
)

+
1

32π2 κabc tc∂c̃aG ∂c̃b
G,

and requiring eφ 7→ eφ
|cτ+d | , we conclude that G should transform as

a modular form of weight (−3
2 ,

1
2) (and specific multiplier system)

In the one-instanton approximation, G coincides with the naive
modified elliptic genus of the black string (0,4) SCFT, reproducing
the modularity constraints of MSW.

Alexandrov Manschot BP ’12
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Tree flow formula I

In order to spell out the constraints from modularity, we need to
express the moduli-independent DT invariants Ω(γ, za) in terms of
the attractor indices Ω∗(γ). For this, we may use the tree flow
formula, inspired by the split attractor conjecture:

Ω̄(γ, za) =
∑

∑n
i=1 γi =γ

gtr({γi}, za)
n∏

i=1

Ω̄∗(γi)

where the tree index is a sum over attractor
flow trees,

gtr({γi}, za) =
1
n!

∑
T∈Taf

n

∆(T )κ(T ),

Denef Green Raugas ’01; Denef Moore ’07, Manschot 2010; Alexandrov BP ’18
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Tree flow formula II
∆(T ) ∈ {0,±1} ensures that only stable trees contribute,

∆(T ) =
∏

v∈VT

1
2

[
sgn Im

[
ZγL(v)

Z̄γR(v)
(za

p(v))
]

+ sgn〈γL(v), γR(v)〉
]

where za
p(v) are the moduli at the parent of the vertex v . The sign

can be computed recursively in terms of the stability parameters
ci = Im

[
Zγi Z̄γ(za)

]
using a discrete version of the attractor flow.

κ(T ) is the bound state degeneracy:

κ(T ) ≡ (−1)n−1
∏

v∈VT

κ(〈γL(v), γR(v)〉),
κ(x) = (−y)x−(−y)−x

y−1/y
y→1−→ (−1)x x

The flow tree formula is manifestly consistent with the (refined)
wall-crossing formula across walls of marginal stability. Apparent
discontinuities across fake walls cancel after summing over trees.
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Tree flow formula III
Expressing ∆(T ) in terms of asymptotic data, one finds products
of sign functions whose arguments are polynomial in γij = 〈γi , γj〉,
and linear in the stability parameters ci .
After summing over trees and using sign identities such as

sgn(x1 + x2)× [sgn(x1) + sgn(x2)] = 1 + sgn(x1) sgn(x2)

gtr can be rewritten as a sum of products of sign functions whose
arguments are linear both in γij and ci .
To show this, we write the refined tree index as

gtr({γi , ci}, y) =
(−1)n−1+

∑
i<j γij

(y − y−1)n−1 Sym
{

Ftr({γi , ci}) y
∑

i<j γij
}
,

where the partial tree index Ftr is a sum over planar flow trees,

Ftr({γi , ci}) =
∑

T∈Taf-pl
n

∆(T ),
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Tree flow formula IV

By definition, the partial tree index satisfies the recursion

Ftr({γi , ci}) =
1
2

n−1∑
`=1

(
sgn(S`)− sgn(Γn`)

)
× Ftr({γi , c

(`)
i }

`
i=1) Ftr({γi , c

(`)
i }

n
i=`+1),

where c(`)
i = ci − βni

Γn`
S`,

S` =
∑̀
i=1

ci , βk` =
k∑

i=1

γi`, Γk` =
k∑

i=1

∑̀
j=1

γij .

This sums over all ways of constructing a planar tree with n leaves
by merging planar trees with ` and n − ` leaves.
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Tree flow formula V

Less obvious is the fact that it satisfies another recursion,

Ftr({γi , ci}) = F (0)
n ({γi , ci})

−
∑

n1+···+nm=n
nk≥1, m<n

Ftr({γ′k , c′k}mk=1)
m∏

k=1

F (?)
nk

(γjk−1+1, . . . , γjk ),

where the sum runs over ordered partitions of n with m parts,

j0 = 0, jk = n1 + · · ·+ nk , γ′k = γjk−1+1 + · · ·+ γjk .

F (0)
n ({γi , ci}) =

1
2n−1

n−1∏
i=1

sgn(Si), F (?)
n ({γi}) =

1
2n−1

n−1∏
i=1

sgn(Γni).

The virtue of this representation is that the sign functions have
arguments which are now manifestly linear in γij and ci .
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Upshot I

S-duality dictates that G should be modular of weight (−3
2 ,

1
2),

G =
1

(2π)2

∞∑
n=1

 n∏
i=1

∑
γi∈Γ+
T ∈Tn

Ω̄(γi , za)

|Aut(T )|

∫
`γi

dzi σγiX
cl
γi

(zi)
∏

e∈ET

Ks(e)t(e)


Ω̄(γ, za) =

∑
γ=

∑n
i=1 γj

gtr({γi , ci})
n∏

j=1

Ω̄∗(γi)

Since X cl(zi) is Gaussian in zi and Kij are rational in zi − zj , the
integrals over zi ∈ P1 are generalized error functions !

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016

In his talk, Sergei will explain how the modularity of G can be
translated into modularity constraints for the generating functions
of the MSW invariants Ω̄∗(γ).
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Upshot II

Thanks for your attention...

... and be ready for some serious weightlifting !
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