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Introduction

The counting of BPS states in QFT or string models with extended
supersymmetry has been a fertile arena for connections between
physics and mathematics: algebraic/symplectic geometry,
representation theory, automorphic forms...
Connections to automorphic forms for reductive groups arise for
models with 16 supercharges or more, where the moduli space of
vacua is a symmetric space G/K , with no quantum corrections.
In 4 dimensions, BPS states exist only in models with at least 8
supercharges, in which case the moduli space is no longer
symmetric, though still constrained by SUSY.
We shall be interested in counting BPS black holes in string
models with N = 2 SUSY in D = 4, primarily IIA/CY3, which is
under better mathematical control than IIB/CY3 or Het/K 3× T 2.
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Introduction

IIA = M/S1 IIB Heterotic
X CY3 CY3 K 3× T 2

MV MKahler MComplex MNarain
BPS states D6D4D2D0 D3 KK/F1/NS5/KK 5
Lattice Λ K (X ) H3(X ,Z) ΓN ⊕ Γ∨N
Category C DbCoh(X ) Fukaya(X ) ?

Under mirror symmetry, IIA/X = IIB/X̂ . When X is K3-fibered,
IIA/X = Het/K 3× T 2 for suitable choice of bundle on K 3× T 2.
BPS states correspond to stable objects of charge γ ∈ Λ in the
category of BPS states C, counted by the BPS index Ωσ(γ)
Upon compactification on a circle of radius R, BPS states in D = 4
induce O(Ω(γ)e−R|Z (γ)|) corrections to the metric on the vector
multiplet moduli space M̃V in D = 3.
M̃V should admit an isometric action of SL(2,Z) for M/T 2 or
IIB/S1, or SL(3,Z) for Het/T 3, which puts constraints on Ωσ(γ).
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Mathematical preliminaries

Let X a compact CY threefold, and C = DbCohX the bounded
derived category of coherent sheaves. Objects E ∈ C are
bounded complexes of coherent sheaves Ek on X ,

E = (· · · d−2
→ E−1 d−1

→ E0 d0
→ E1 d1

→ . . . ) ,

with morphisms dk : Ek → Ek+1 such that dk+1dk = 0. Physically,
Ek describe D6-branes for k even, or anti D6-branes for k odd,
and dk are open strings .
C is graded by the Grothendieck group K (C). Let Γ ⊂ Heven(X ,Q)
be the image of K (C) under E 7→ ch E =

∑
k (−1)k ch Ek . The

lattice of electromagnetic charges Γ is equipped with the
skew-symmetric (Dirac-Schwinger-Zwanziger) pairing

〈E ,E ′〉 = χ(E ′,E) =

∫
X

(ch E ′)∨ ch(E) Td(TX ) ∈ Z
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Bridgeland stability conditions

Stability conditions are pairs σ = (Z ,A), where Z : Γ→ C is a
linear map (the central charge) and A ⊂ C is an Abelian
subcategory (heart of bounded t-structure), subject to certain
compatibility conditions. In particular, ImZ (E) ≥ 0∀E ∈ A.
Let S = Stab(C) be the space of of stability conditions. If not
empty, then it is a complex manifold of dimension rk Γ = beven(X ),
locally parametrized by Z (γi) with γi a basis of Γ.
Stability conditions are known to exist only for a handful of CY
threefolds, including the quintic in P4 [Li’18]. Their construction
depends on the conjectural Bayer-Macrì-Toda (BMT) inequality.
Weak stability conditions are much easier to construct.
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Physical stability conditions

Physics/Mirror symmetry conjecturally selects a subspace
Π ⊂ Stab C, known as ‘physical slice’ or slice of Π-stability
conditions, parametrized by complexified Kähler structure of X , or
complex structure of X̂ . Hence dimC Π = b2(X ) + 1 = b3(X̂ ).
Along this slice, the central charge is given by the period

Z (γ) =

∫
γ̂

Ω3,0

of the holomorphic 3-form on X̂ on a dual 3-cycle γ̂ ∈ H3(X̂ ,Z).
Near the large volume point inMK (X ), or MUM point inMcx (X̂ ),

Z (E) ∼ −
∫

X
e−zaHa

√
Td(TX ) ch(E)

where Ha is a basis of H2(X ,Z), and za = ba + ita are the
complexified Kähler moduli.
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Generalized Donaldson-Thomas invariants

Given a (weak) stability condition σ = (Z ,A), an object F ∈ A is
called σ-semi-stable if arg Z (F ′) ≤ arg Z (F ) for every non-zero
subobject F ′ ⊂ F (where 0 < arg Z ≤ π).
LetMσ(γ) be the moduli stack of σ-semi-stable objects of class γ
in A. Following [Joyce-Song’08] one can associate the DT invariant
Ω̄σ(γ) ∈ Q. WhenMσ(γ) is a smooth projective variety, then
Ω̄σ(γ) = (−1)dimCMσ(γ)χ(Mσ(γ)) is integer.

Conjecturally, the invariants Ωσ(γ) :=
∑

m|γ µ(m) Ω̄σ(γ/m)
m2 are

integer, and coincide with the physical BPS indices.
Examples:

1 Ωσ(k [pt ]) = −χX for all k ≥ 1 throughout the space of geometric
stability conditions.

2 For any β ∈ H2(X ,Z), Ωσ([β] + k [pt ]) = GV (0)
β for all k ≥ 0 in the

large volume limit.
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Wall-crossing

The invariants Ω̄σ(γ) are locally constant on S, but jump across
walls of instability (or marginal stability), where the central charge
Z (γ) aligns with Z (γ′) where γ′ = ch E ′ for a subobject E ′ ⊂ E .
The jump is governed by a universal wall-crossing formula.

Joyce Song’08; Kontsevich Soibelman’08

Physically, the jump corresponds to the (dis)appearance of
multi-centered black hole bound states. In the simplest case,

∆Ω̄(γ1 + γ2) = (−1)〈γ1,γ2〉+1|〈γ1, γ2〉| Ω̄(γ1) Ω̄(γ2)
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GV/DT/PT relation

For a single D6-brane, the DT-invariant DT (q,n) = Ω(1,0,q,n) at
large volume can be computed via the GV/DT relation

∑
Q,n

DT (Q,n) qnvQ = M(−q)χX
∏

Q,g,`

(
1− (−q)g−`−1vQ

)(−1)g+`

(
2g − 2
`

)
GV(g)

Q

where M(q) =
∏

n≥1(1− qn)−n is the Mac-Mahon function.
Maulik Nekrasov Okounkov Pandharipande’06

The topological string partition function is given by

Ψtop(z, λ) = M(−q)−χX/2ZDT , q = eiλ, v = e2πiz/λ

can be computed by the direct integration method, assuming
conifold gap conditions and Castelnuovo-type bounds g ≤ gmax(Q)
[BCOV 93, Huang Klemm Quackenbush’06].
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Rank 0 DT invariants from GV invariants

Thm [Feyzbakhsh Thomas’20-22]: Let (X ,H) be any polarized
CY3 satisfying the BMT conjecture (see below). Then all DT
invariants for H-Gieseker stability are determined by rank 1 DT
invariants, hence by GV invariants.
This relies on wall-crossing in a family of weak stability conditions
parametrized by (b, t) ∈ R× R+, with degenerate central charge

Z tilt
b,t (E) = i

6 t3 ch0−1
2 t2 chb

1−it chb
2 +0 chb

3

where chb
k =

∫
X H3−ke−bH ch(E). The BMT conjecture states that

tilt-semistable objects exist only when Ck := ch0
k satisfy

(C2
1 −2C0C2)(1

2b2 + 1
6 t2) + (3C0C3−C1C2)b + (2C2

2 −3C1C3) ≥ 0
Bayer Macri Toda’11; Bayer Macri Stellari’16
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Rank 0 DT invariants from GV invariants

Walls for tilt stability are nested half-circles in the Poincaré upper
half-plane spanned by z = b + i t√

3
.

2 4 6 8
b

1

2

3

4

5

t

3

The BMT inequality provides an empty chamber whenever the
discriminant at t = 0 is positive:

8C0C3
2 + 6C3

1C3 + 9C2
0C2

3 − 3C2
1C2

2 − 18C0C1C2C3 ≥ 0
m

8
9κp0q3

1 −
2
3κq0(p1)3 − (p0q0)2 + 1

3(p1q1)2 − 2p0p1q0q1 ≤ 0

hence when single centered black hole solutions are ruled out !
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S-duality constraints on D4-D2-D0 indices

For classes supported on an irreducible divisor D of class
paγa ∈ Λ = H4(X ,Z), the generating series of rank 0 DT invariants

hpa,qa(τ) =
∑

n

Ω̄?(0,pa,qa,n) qn+ 1
2 qaκabqb+ 1

2 paqa−χ(D)
24

should be a vector-valued, weakly holomorphic modular form of
weight w = −1

2b2(X )− 1 and prescribed multiplier system.
Here, Ω̄?(0,pa,qa,n) is the index in the large volume attractor
chamber

Ω̄?(γ) = lim
λ→+∞

Ω̄−κabqb+iλpa(γ)

where κab is the inverse of the quadratic form κab = κabcpc with
Lorentzian signature (1,b2(X )− 1).
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S-duality constraints on D4-D2-D0 indices

By construction, Ω?(0,pa,qa,n) is invariant under tensoring with a
line bundle O(maHa) (aka spectral flow)

qa → qa − κabmb , n 7→ n −maqa + 1
2κabmamb

Thus, the D2-brane charge qa can be restricted to the finite set
Λ∗/Λ, of cardinal |det(κab)|.
hpa,qa transforms under the Weil representation of Mp(2,Z)
associated to the lattice Λ, e.g.

hpa,qa(−1/τ) =
∑

q′a∈Λ∗/Λ

e−2πiκabqaq′b+ iπ
4 (b2(X)+2χ(OD)−2)

τ1+ 1
2 b2(X)

√
|det(κab)|

hpa,q′a(τ)

Equivalently, Zp(τ, v) =
∑

q∈Λ∗/Λ hp,q(τ)Θq(τ, v), where Θq(τ, v) is
the Siegel theta series for the indefinite lattice (Λ, κab), transforms
as a (non-holomorphic) Jacobi form.

Maldacena Strominger Witten’98, Cheng de Boer Dijkgraaf Manschot Verlinde’06
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Mock modularity constraints on D4-D2-D0 indices

For γ supported on a reducible divisor class D =
∑n≥2

i=1 Di , the
generating series hp (omitting q index for brevity) should be a
vector-valued mock modular form of depth n − 1.

Alexandrov Banerjee Manschot BP ’16-19

There exists explicit non-holomorphic theta series such that

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

transforms as a modular form of weight −1
2b2(X )− 1. The

completion satisfies an explicit holomorphic anomaly equation,

∂τ̄ ĥp(τ, τ̄) =
∑

p=
∑n≥2

i=1 pi

Θ̂n({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)
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Indefinite theta series

Θn and Θ̂n belongs to the class of indefinite theta series

ϑΦ,q(τ, τ̄) =
∑

k∈Λ+q

Φ
(√

2τ2k
)

e−iπτQ(k)

where (Λ,Q) is an even lattice of signature (r ,d − r), q ∈ Λ∗/Λ.
Conditions for modularity were spelled out in [Vignéras’78]

The relevant lattice for Θn and Θ̂n is Λ = H2(X ,Z)⊕(n−1), with
signature (r ,d − r) = (n − 1)(1,b2(X )− 1). The relevant Φ is a
linear combination of generalized error functions
En−1({Ci}, x) := eπQ(x+) ?

∏n−1
i=1 sgn(Ci , x) where ? is the

convolution product. [Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016]

Similar theta series arise by integrating the r -form valued
Kudla-Millson theta series on a suitable polyhedron in Gr(r ,d − r)

Kudla Funke 2016-21
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Modularity for one-modulus compact CY

X χX κ c2(TX ) χ(OD) n1 C1
X5(15) −200 5 50 5 7 0
X6(14,2) −204 3 42 4 4 0
X8(14,4) −296 2 44 4 4 0
X10(13,2,5) −288 1 34 3 2 0
X4,3(15,2) −156 6 48 5 9 0
X4,4(14,22) −144 4 40 4 6 1
X6,2(15,3) −256 4 52 5 7 0
X6,4(13,22,3) −156 2 32 3 3 0
X6,6(12,22,32) −120 1 22 2 1 0
X3,3(16) −144 9 54 6 14 1
X4,2(16) −176 8 56 6 15 1
X3,2,2(17) −144 12 60 7 21 1
X2,2,2,2(18) −128 16 64 8 33 3
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Abelian D4-D2-D0 invariants

For N = 1, the generating series

h1,q =
∑
n∈Z

Ω?(0,1,q,n) qn+ q2

2κ+ q
2−

χ(D)
24 , q ∈ Z/κZ

should transform as a vector-valued modular form of weight −3
2 in

the Weil representation of Z[κ] with κ = H3 [Gaiotto Strominger Yin’06]

An overcomplete basis is given for κ even by

Ea
4 Eb

6
η4κ+c2

D`(ϑ
(κ)
q ) with ϑ

(κ)
q =

∑
k∈Z+ q

κ

q
1
2κk2

where D = q∂q − w
12E2, is the Serre derivative and

4a + 6b + 2`− 2κ− c2
2 + 1

2 = −3
2 .

For κ odd, the same works with ϑ(κ)
q =

∑
k∈Z+ q

κ
+ 1

2
(−1)κk kq

1
2κk2

.

B. Pioline (LPTHE, Paris) Counting CY black holes Pollica, June 5, 2023 18 / 27



Rank 0 DT invariants from GV invariants

For a D4-D2-D0 charge γ = (0, r ,q,n) close enough to the (usual)
Bogomolov-Gieseker bound, [Toda’13, Feyzbakhsh’22]

Ω̄r ,q(n) =
∑

ri ,Qi ,ni

(−1)〈γ1,γ2〉DT(Q1,n1) PT(Q2,n2)

where DT(Q1,n1),PT(Q2,n2) counts BPS states with charge
γ1 = (1,0,−Q1,−n1), γ2 = (−1,0,Q2,−n2), respectively
Alternatively, one can study wall crossing for γ = (−1,0,q,n). For
(q,n) large enough, there is an empty chamber and a single wall
corresponding to D6→ D6 + D4 contributes to PT (q,n):

PT (q,n) = (−1)〈D6(1),γD4〉+1〈D6(1), γD4〉 Ω̄(γD4)

with D6(1) := OX (H)[1] and γD4 = (0,1,q,n) [Feyzbakhsh’22].
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Modular predictions for D4-D2-D0

Using this idea, we can compute all polar terms and many
non-polar ones, and verify modular invariance. E.g. for X5:

h1,0 = q−
55
24

(
5− 800q + 58500q2 + 5817125q3 + 75474060100q4

+28096675153255q5 + 3756542229485475q6

+277591744202815875q7 + 13610985014709888750q8 + . . .
)
,

h1,±1 = q−
55
24 + 3

5

(
0 + 8625q− 1138500q2 + 3777474000q3

+ 3102750380125q4 + 577727215123000q5 + . . .
)

h1,±2 = q−
55
24 + 2

5

(
0 + 0q− 1218500q2 + 441969250q3 + 953712511250q4

+ 217571250023750q5 + 22258695264509625q6 + . . .
)

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23
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Mock modularity for non-Abelian D4-D2-D0 indices

For D4-D2-D0 indices with N = 2 units of D4-brane charge,
{h2,q,q ∈ Z/(2κZ)} should transform as a vv mock modular form
with modular completion

ĥ2,q(τ, τ̄) = h2,q(τ) +
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−q Θ

(κ)
q2−q1+κ h1,q1 h1,q2

where

Θ
(κ)
q (τ, τ̄) = (−1)q

8π

∑
k∈2κZ+q

|k |β
(
τ2k2

κ

)
e−

πiτ
2κ k2

,

and β(x) = 2|x |−1/2e−πx − 2πErfc(
√
π|x |).

The series Θ
(κ)
q is convergent but not modular invariant.
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Mock modularity for non-Abelian D4-D2-D0 indices

Suppose there exists a holomorphic function g(κ)
q such that

Θ
(κ)
q + g(κ)

q transforms as a vv modular form. Then

h̃2,q(τ, τ̄) = h2,q(τ)−
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−q g(κ)

q2−q1+κ h1,q1 h1,q2

will be an ordinary weak holomorphic vv modular form, hence
uniquely determined by its polar part.

For κ = 1, the series Θ
(1)
q is the one appearing in the modular

completion of the generating series of Hurwitz class numbers
[Hirzebruch Zagier 1973] (or rank 2 Vafa-Witten invariants on P2)

H0(τ) =− 1
12 + 1

2q + q2 + 4
3q3 + 3

2q4 + . . .

H1(τ) = q
3
4

(
1
3 + q + q2 + 2q3 + q4 + . . .

)
Thus we can choose g(1)

q = Hq(τ).
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Mock modularity for non-Abelian D4-D2-D0 indices

X χX κ c2 χ(O2D) n2 C2
X5(15) −200 5 50 15 36 1
X6(14,2) −204 3 42 11 19 1
X8(14,4) −296 2 44 10 14 1
X10(13,2,5) −288 1 34 7 7 0
X4,3(15,2) −156 6 48 16 42 0
X4,4(14,22) −144 4 40 12 25 1
X6,2(15,3) −256 4 52 14 30 1
X6,4(13,22,3) −156 2 32 8 11 1
X6,6(12,22,32) −120 1 5 2 5 0
X3,3(16) −144 9 54 21 78 3
X4,2(16) −176 8 56 20 69 3
X3,2,2(17) −144 12 60 26 117 0
X2,2,2,2(18) −128 16 64 32 185 4
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Mock modularity for non-Abelian D4-D2-D0 indices

For X10, we computed the 7 polar terms + 4 non-polar terms and
found a unique mock modular form reproducing this data:

h2,µ =
5397523E12

4 +70149738E9
4 E2

6−12112656E6
4 E4

6−61127530E3
4 E6

6−2307075E8
6

46438023168η100 ϑ(1,2)
µ

+
−10826123E10

4 E6−14574207E7
4 E3

6 +20196255E4
4 E5

6 +5204075E4E7
6

1934917632η100 Dϑ(1,2)
µ

+ (−1)µ+1Hµ+1(τ) h1(τ)2

with h1 =
203E4

4 +445E4E2
6

216 η35 = q−
35
24 (3− 575q + . . . ), leading to integer

DT invariants

h(int)
2,0 =q−

19
6

(
7− 1728q + 203778q2 − 13717632q3 − 23922034036q4 + . . .

)
h(int)

2,1 =q−
35
12

(
−6 + 1430q− 1086092q2 + 208065204q3 + . . .

)
The extension to other one-parameter models is in progress.
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Quantum geometry from stability and modularity

Conversely, we can use our knowledge of Abelian D4-D2-D0 invariants
to compute GV invariants and push the direct integration method to
higher genus !

Gopakumar-Vafa
invariants GV(g)

Q

Pandharipande-Thomas
invariants PT(Q,n)

Rank 0 DT-invariants
hN,q(τ)

Wall crossing

MNOP relation
new constraints on

holomorphic ambiguities

Modular
bootstrap

Direct integration

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

X χX κ type ginteg gmod gavail

X5(15) −200 5 F 53 69 64
X6(14,2) −204 3 F 48 63 48
X8(14,4) −296 2 F 60 80 60
X10(13,2,5) −288 1 F 50 91 65
X4,3(15,2) −156 6 F 20 24 24
X6,4(13,22,3) −156 2 F 14 17 17
X6,6(12,22,32) −120 1 K 18 21 21
X4,4(14,22) −144 4 K 26 34 34
X3,3(16) −144 9 K 29 33 33
X4,2(16) −176 8 C 50 64 50
X6,2(15,3) −256 4 C 63 78 42
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Thanks for your attention !
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