Counting Calabi-Yau black holes with (mock) modular forms

Boris Pioline

SORBONNE UNIVERSITÉ

Pollica Summer Workshop 05/06/2023

References

- "Black holes and higher depth mock modular forms", with S. Alexandrov, Commun.Math.Phys. 374 (2019) 549 [arXiv:1808.08479]
- "S-duality and refined BPS indices", with S. Alexandrov and J. Manschot, Commun.Math.Phys. 380 (2020) 755 [arXiv:1910.03098]
- "Modular bootstrap for D4-D2-D0 indices on compact Calabi-Yau threefolds", with S. Alexandrov, N. Gaddam, J. Manschot [arXiv:2204.02207], to appear in Adv. Th. Math. Phys.
- "Quantum geometry, stability and modularity", with S. Alexandrov, S. Feyzbakhsh, A. Klemm, T. Schimannek [arXiv:2301.08066]+ work in progress

Introduction

- The counting of BPS states in QFT or string models with extended supersymmetry has been a fertile arena for connections between physics and mathematics: algebraic/symplectic geometry, representation theory, automorphic forms...
- Connections to automorphic forms for reductive groups arise for models with 16 supercharges or more, where the moduli space of vacua is a symmetric space G / K, with no quantum corrections.
- In 4 dimensions, BPS states exist only in models with at least 8 supercharges, in which case the moduli space is no longer symmetric, though still constrained by SUSY.
- We shall be interested in counting BPS black holes in string models with $\mathcal{N}=2$ SUSY in $D=4$, primarily IIA/CY Y_{3}, which is under better mathematical control than $I I B / C Y_{3}$ or $\mathrm{Het} / K 3 \times T^{2}$.

Introduction

	$I I A=M / S^{1}$	$I I B$	Heterotic
X	$C Y_{3}$	$C Y_{3}$	$K 3 \times T^{2}$
\mathcal{M}_{V}	$\mathcal{M}_{\text {Kahler }}$	$\mathcal{M}_{\text {Complex }}$	$\mathcal{M}_{\text {Narain }}$
BPS states	$D 6 D 4 D 2 D 0$	$D 3$	$K K / F 1 / N S 5 / K K 5$
Lattice Λ	$K(X)$	$H_{3}(X, \mathbb{Z})$	$\Gamma_{N} \oplus \Gamma_{N}^{\vee}$
Category \mathcal{C}	$D^{b} \operatorname{Coh}(X)$	Fukaya (X)	$?$

- Under mirror symmetry, IIA/X=IIB/X . When X is K3-fibered, $I I A / X=H e t / K 3 \times T^{2}$ for suitable choice of bundle on $K 3 \times T^{2}$.
- BPS states correspond to stable objects of charge $\gamma \in \Lambda$ in the category of BPS states \mathcal{C}, counted by the BPS index $\Omega_{\sigma}(\gamma)$
- Upon compactification on a circle of radius R, BPS states in $D=4$ induce $\mathcal{O}\left(\Omega(\gamma) e^{-R|Z(\gamma)|}\right)$ corrections to the metric on the vector multiplet moduli space $\widetilde{\mathcal{M}}_{V}$ in $D=3$.
- $\widetilde{\mathcal{M}}_{V}$ should admit an isometric action of $S L(2, \mathbb{Z})$ for M / T^{2} or $I I B / S^{1}$, or $S L(3, \mathbb{Z})$ for Het / T^{3}, which puts constraints on $\Omega_{\sigma}(\gamma)$.

Mathematical preliminaries

- Let X a compact $C Y$ threefold, and $\mathcal{C}=D^{b} \operatorname{Coh} X$ the bounded derived category of coherent sheaves. Objects $E \in \mathcal{C}$ are bounded complexes of coherent sheaves \mathcal{E}^{k} on X,

$$
E=\left(\cdots \xrightarrow{d^{-2}} \mathcal{E}^{-1} \xrightarrow{d^{-1}} \mathcal{E}^{0} \xrightarrow{d^{0}} \mathcal{E}^{1} \xrightarrow{d^{1}} \ldots\right),
$$

with morphisms $d^{k}: \mathcal{E}^{k} \rightarrow \mathcal{E}^{k+1}$ such that $d^{k+1} d^{k}=0$. Physically, \mathcal{E}^{k} describe D6-branes for k even, or anti D6-branes for k odd, and d^{k} are open strings .

- \mathcal{C} is graded by the Grothendieck group $K(\mathcal{C})$. Let $\Gamma \subset H^{\text {even }}(X, \mathbb{Q})$ be the image of $K(\mathcal{C})$ under $E \mapsto$ ch $E=\sum_{k}(-1)^{k}$ ch \mathcal{E}_{k}. The lattice of electromagnetic charges Γ is equipped with the skew-symmetric (Dirac-Schwinger-Zwanziger) pairing

$$
\left\langle E, E^{\prime}\right\rangle=\chi\left(E^{\prime}, E\right)=\int_{X}\left(\operatorname{ch} E^{\prime}\right)^{\vee} \operatorname{ch}(E) \operatorname{Td}(T X) \in \mathbb{Z}
$$

Bridgeland stability conditions

- Stability conditions are pairs $\sigma=(Z, \mathcal{A})$, where $Z: \Gamma \rightarrow \mathbb{C}$ is a linear map (the central charge) and $\mathcal{A} \subset \mathcal{C}$ is an Abelian subcategory (heart of bounded t-structure), subject to certain compatibility conditions. In particular, $\operatorname{Im} Z(E) \geq 0 \forall E \in \mathcal{A}$.
- Let $\mathcal{S}=\operatorname{Stab}(\mathcal{C})$ be the space of of stability conditions. If not empty, then it is a complex manifold of dimension rk $\Gamma=b_{\text {even }}(X)$, locally parametrized by $Z\left(\gamma_{i}\right)$ with γ_{i} a basis of Γ.
- Stability conditions are known to exist only for a handful of CY threefolds, including the quintic in $\mathbb{P}^{4}\left[\mathrm{Li}^{\prime} 18\right]$. Their construction depends on the conjectural Bayer-Macrì-Toda (BMT) inequality. Weak stability conditions are much easier to construct.

Physical stability conditions

- Physics/Mirror symmetry conjecturally selects a subspace $\Pi \subset S t a b \mathcal{C}$, known as 'physical slice' or slice of Π-stability conditions, parametrized by complexified Kähler structure of X, or complex structure of \widehat{X}. Hence $\operatorname{dim}_{\mathbb{C}} \Pi=b_{2}(X)+1=b_{3}(\widehat{X})$.
- Along this slice, the central charge is given by the period

$$
Z(\gamma)=\int_{\hat{\gamma}} \Omega_{3,0}
$$

of the holomorphic 3-form on \widehat{X} on a dual 3-cycle $\hat{\gamma} \in H_{3}(\hat{X}, \mathbb{Z})$.

- Near the large volume point in $\mathcal{M}_{K}(X)$, or MUM point in $\mathcal{M}_{C X}(\widehat{X})$,

$$
Z(E) \sim-\int_{X} e^{-z^{a} H_{a}} \sqrt{T d(T X)} \operatorname{ch}(E)
$$

where H_{a} is a basis of $H^{2}(X, \mathbb{Z})$, and $z^{a}=b^{a}+i t^{a}$ are the complexified Kähler moduli.

Generalized Donaldson-Thomas invariants

- Given a (weak) stability condition $\sigma=(Z, \mathcal{A})$, an object $F \in \mathcal{A}$ is called σ-semi-stable if $\arg Z\left(F^{\prime}\right) \leq \arg Z(F)$ for every non-zero subobject $F^{\prime} \subset F$ (where $\left.0<\arg Z \leq \pi\right)$.
- Let $\mathcal{M}_{\sigma}(\gamma)$ be the moduli stack of σ-semi-stable objects of class γ in \mathcal{A}. Following [Joyce-Song'08] one can associate the DT invariant $\bar{\Omega}_{\sigma}(\gamma) \in \mathbb{Q}$. When $\mathcal{M}_{\sigma}(\gamma)$ is a smooth projective variety, then $\bar{\Omega}_{\sigma}(\gamma)=(-1)^{\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{\sigma}(\gamma)} \chi\left(\mathcal{M}_{\sigma}(\gamma)\right)$ is integer.
- Conjecturally, the invariants $\Omega_{\sigma}(\gamma):=\sum_{m \mid \gamma} \mu(m) \frac{\bar{\Omega}_{\sigma}(\gamma / m)}{m^{2}}$ are integer, and coincide with the physical BPS indices.
- Examples:
(1) $\Omega_{\sigma}(k[p t])=-\chi x$ for all $k \geq 1$ throughout the space of geometric stability conditions.
(2) For any $\beta \in H_{2}(X, \mathbb{Z}), \Omega_{\sigma}([\beta]+k[p t])=G V_{\beta}^{(0)}$ for all $k \geq 0$ in the large volume limit.

Wall-crossing

- The invariants $\bar{\Omega}_{\sigma}(\gamma)$ are locally constant on \mathcal{S}, but jump across walls of instability (or marginal stability), where the central charge $Z(\gamma)$ aligns with $Z\left(\gamma^{\prime}\right)$ where $\gamma^{\prime}=$ ch E^{\prime} for a subobject $E^{\prime} \subset E$. The jump is governed by a universal wall-crossing formula.

Joyce Song'08; Kontsevich Soibelman'08

- Physically, the jump corresponds to the (dis)appearance of multi-centered black hole bound states. In the simplest case,

$$
\Delta \bar{\Omega}\left(\gamma_{1}+\gamma_{2}\right)=(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle+1}\left|\left\langle\gamma_{1}, \gamma_{2}\right\rangle\right| \bar{\Omega}\left(\gamma_{1}\right) \bar{\Omega}\left(\gamma_{2}\right)
$$

GV/DT/PT relation

- For a single D6-brane, the DT-invariant $D T(q, n)=\Omega(1,0, q, n)$ at large volume can be computed via the GV/DT relation
$\sum_{Q, n} D T(Q, n) \mathrm{q}^{n} v^{Q}=M(-\mathrm{q})^{\chi x} \prod_{Q, g, \ell}\left(1-(-\mathrm{q})^{g-\ell-1} v^{Q}\right)^{(-1)^{g+\ell}\binom{2 g-2}{\ell} G V_{Q}^{(g)}}$
where $M(\mathrm{q})=\prod_{n \geq 1}\left(1-\mathrm{q}^{n}\right)^{-n}$ is the Mac-Mahon function.

Maulik Nekrasov Okounkov Pandharipande'06

- The topological string partition function is given by

$$
\Psi_{\text {top }}(z, \lambda)=M(-\mathrm{q})^{-\chi \chi / 2} Z_{D T}, \quad \mathrm{q}=e^{\mathrm{i} \lambda}, v=e^{2 \pi \mathrm{i} z / \lambda}
$$

can be computed by the direct integration method, assuming conifold gap conditions and Castelnuovo-type bounds $g \leq g_{\max }(Q)$ [BCOV 93, Huang Klemm Quackenbush'06].

Rank 0 DT invariants from GV invariants

- Thm [Feyzbakhsh Thomas'20-22]: Let (X, H) be any polarized CY3 satisfying the BMT conjecture (see below). Then all DT invariants for H -Gieseker stability are determined by rank 1 DT invariants, hence by GV invariants.
- This relies on wall-crossing in a family of weak stability conditions parametrized by $(b, t) \in \mathbb{R} \times \mathbb{R}^{+}$, with degenerate central charge

$$
Z_{b, t}^{\mathrm{tillt}}(E)=\frac{\mathrm{i}}{6} t^{3} \mathrm{ch}_{0}-\frac{1}{2} t^{2} \mathrm{ch}_{1}^{b}-\mathrm{i} t \mathrm{ch}_{2}^{b}+0 \mathrm{ch}_{3}^{b}
$$

where $\mathrm{ch}_{k}^{b}=\int_{X} H^{3-k} e^{-b H} \operatorname{ch}(E)$. The BMT conjecture states that tilt-semistable objects exist only when $C_{k}:=\mathrm{ch}_{k}^{0}$ satisfy

$$
\left(C_{1}^{2}-2 C_{0} C_{2}\right)\left(\frac{1}{2} b^{2}+\frac{1}{6} t^{2}\right)+\left(3 C_{0} C_{3}-C_{1} C_{2}\right) b+\left(2 C_{2}^{2}-3 C_{1} C_{3}\right) \geq 0
$$

Bayer Macri Toda'11; Bayer Macri Stellari'16

Rank 0 DT invariants from GV invariants

- Walls for tilt stability are nested half-circles in the Poincaré upper half-plane spanned by $z=b+\mathrm{i} \frac{t}{\sqrt{3}}$.

- The BMT inequality provides an empty chamber whenever the discriminant at $t=0$ is positive:

$$
\begin{gathered}
8 C_{0} C_{2}^{3}+6 C_{1}^{3} C_{3}+9 C_{0}^{2} C_{3}^{2}-3 C_{1}^{2} C_{2}^{2}-18 C_{0} C_{1} C_{2} C_{3} \geq 0 \\
\frac{8}{9 \kappa} p^{0} q_{1}^{3}-\frac{2}{3} \kappa q_{0}\left(p^{1}\right)^{3}-\left(p^{0} q_{0}\right)^{2}+\frac{1}{3}\left(p^{1} q_{1}\right)^{2}-2 p^{0} p^{1} q_{0} q_{1} \leq 0
\end{gathered}
$$

hence when single centered black hole solutions are ruled out!

S-duality constraints on D4-D2-D0 indices

- For classes supported on an irreducible divisor \mathcal{D} of class $p^{a} \gamma_{a} \in \Lambda=H_{4}(X, \mathbb{Z})$, the generating series of rank 0 DT invariants

$$
h_{p^{a}, q_{a}}(\tau)=\sum_{n} \bar{\Omega}_{\star}\left(0, p^{a}, q_{a}, n\right) \mathrm{q}^{n+\frac{1}{2} q_{a} \kappa^{a b} q_{b}+\frac{1}{2} p^{a} q_{a}-\frac{\chi(\mathcal{D})}{24}}
$$

should be a vector-valued, weakly holomorphic modular form of weight $w=-\frac{1}{2} b_{2}(X)-1$ and prescribed multiplier system.

- Here, $\bar{\Omega}_{\star}\left(0, p^{a}, q_{a}, n\right)$ is the index in the large volume attractor chamber

$$
\bar{\Omega}_{\star}(\gamma)=\lim _{\lambda \rightarrow+\infty} \bar{\Omega}_{-\kappa^{a b}} q_{b}+\mathrm{i} \lambda p^{a}(\gamma)
$$

where $\kappa^{a b}$ is the inverse of the quadratic form $\kappa_{a b}=\kappa_{a b c} p^{c}$ with Lorentzian signature $\left(1, b_{2}(X)-1\right)$.

S-duality constraints on D4-D2-D0 indices

- By construction, $\Omega_{\star}\left(0, p^{a}, q_{a}, n\right)$ is invariant under tensoring with a line bundle $\mathcal{O}\left(m^{a} H_{a}\right)$ (aka spectral flow)

$$
q_{a} \rightarrow q_{a}-\kappa_{a b} m^{b}, \quad n \mapsto n-m^{a} q_{a}+\frac{1}{2} \kappa_{a b} m^{a} m^{b}
$$

Thus, the D2-brane charge q_{a} can be restricted to the finite set Λ^{*} / Λ, of cardinal $\left|\operatorname{det}\left(\kappa_{a b}\right)\right|$.

- $h_{p^{a}, q_{a}}$ transforms under the Weil representation of $\operatorname{Mp}(2, \mathbb{Z})$ associated to the lattice Λ, e.g.

$$
h_{p^{a}, q_{a}}(-1 / \tau)=\sum_{q_{a}^{\prime} \in \Lambda^{*} / \Lambda} \frac{e^{-2 \pi \mathrm{i} \kappa^{a b}} q_{a} q_{b}^{\prime}+\frac{\mathrm{i} \pi}{4}\left(b_{2}(X)+2 \chi\left(\mathcal{O}_{\mathcal{D}}\right)-2\right)}{\tau^{1+\frac{1}{2} b_{2}(X)} \sqrt{\left|\operatorname{det}\left(\kappa_{a b}\right)\right|}} h_{p^{a}, q_{a}^{\prime}}(\tau)
$$

- Equivalently, $Z_{p}(\tau, v)=\sum_{q \in \Lambda^{*} / \Lambda} h_{p, q}(\tau) \Theta_{q}(\tau, v)$, where $\Theta_{q}(\tau, v)$ is the Siegel theta series for the indefinite lattice $\left(\Lambda, \kappa_{a b}\right)$, transforms as a (non-holomorphic) Jacobi form.

Maldacena Strominger Witten'98, Cheng de Boer Dijkgraaf Manschot Verlinde'06

Mock modularity constraints on D4-D2-D0 indices

- For γ supported on a reducible divisor class $\mathcal{D}=\sum_{i=1}^{n \geq 2} \mathcal{D}_{i}$, the generating series h_{p} (omitting q index for brevity) should be a vector-valued mock modular form of depth $n-1$.

Alexandrov Banerjee Manschot BP '16-19

- There exists explicit non-holomorphic theta series such that

$$
\widehat{h}_{p}(\tau, \bar{\tau})=h_{p}(\tau)+\sum_{p=\sum_{i=1}^{n \geq 2} p_{i}} \Theta_{n}\left(\left\{p_{i}\right\}, \tau, \bar{\tau}\right) \prod_{i=1}^{n} h_{p_{i}}(\tau)
$$

transforms as a modular form of weight $-\frac{1}{2} b_{2}(X)-1$. The completion satisfies an explicit holomorphic anomaly equation,

$$
\partial_{\bar{\tau}} \widehat{h}_{p}(\tau, \bar{\tau})=\sum_{p=\sum_{i=1}^{n \geq 2} p_{i}} \widehat{\Theta}_{n}\left(\left\{p_{i}\right\}, \tau, \bar{\tau}\right) \prod_{i=1}^{n} \widehat{h}_{p_{i}}(\tau, \bar{\tau})
$$

Indefinite theta series

- Θ_{n} and $\widehat{\Theta}_{n}$ belongs to the class of indefinite theta series

$$
\vartheta_{\Phi, q}(\tau, \bar{\tau})=\sum_{k \in \Lambda+q} \Phi\left(\sqrt{2 \tau_{2}} k\right) e^{-\mathrm{i} \pi \tau Q(k)}
$$

where (Λ, Q) is an even lattice of signature $(r, d-r), q \in \Lambda^{*} / \Lambda$.
Conditions for modularity were spelled out in [Vignéras'78]

- The relevant lattice for Θ_{n} and $\widehat{\Theta}_{n}$ is $\Lambda=H^{2}(X, \mathbb{Z})^{\oplus(n-1)}$, with signature $(r, d-r)=(n-1)\left(1, b_{2}(X)-1\right)$. The relevant Φ is a linear combination of generalized error functions
$\mathcal{E}_{n-1}\left(\left\{C_{i}\right\}, x\right):=e^{\pi Q\left(x_{+}\right)} \star \prod_{i=1}^{n-1} \operatorname{sgn}\left(C_{i}, x\right)$ where \star is the
convolution product. [Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016]
- Similar theta series arise by integrating the r-form valued Kudla-Millson theta series on a suitable polyhedron in $\operatorname{Gr}(r, d-r)$

Kudla Funke 2016-21

Modularity for one-modulus compact CY

X	χX	κ	$C_{2}(T X)$	$\chi\left(\mathcal{O}_{\mathcal{D}}\right)$	n_{1}	C_{1}
$X_{5}\left(1^{5}\right)$	-200	5	50	5	7	0
$X_{6}\left(1^{4}, 2\right)$	-204	3	42	4	4	0
$X_{8}\left(1^{4}, 4\right)$	-296	2	44	4	4	0
$X_{10}\left(1^{3}, 2,5\right)$	-288	1	34	3	2	0
$X_{4,3}\left(1^{5}, 2\right)$	-156	6	48	5	9	0
$X_{4,4}\left(1^{4}, 2^{2}\right)$	-144	4	40	4	6	1
$X_{6,2}\left(1^{5}, 3\right)$	-256	4	52	5	7	0
$X_{6,4}\left(1^{3}, 2^{2}, 3\right)$	-156	2	32	3	3	0
$X_{6,6}\left(1^{2}, 2^{2}, 3^{2}\right)$	-120	1	22	2	1	0
$X_{3,3}\left(1^{6}\right)$	-144	9	54	6	14	1
$X_{4,2}\left(1^{6}\right)$	-176	8	56	6	15	1
$X_{3,2,2}\left(1^{7}\right)$	-144	12	60	7	21	1
$X_{2,2,2,2}\left(1^{8}\right)$	-128	16	64	8	33	3

Abelian D4-D2-D0 invariants

- For $N=1$, the generating series

$$
h_{1, q}=\sum_{n \in \mathbb{Z}} \Omega_{\star}(0,1, q, n) \mathrm{q}^{n+\frac{q^{2}}{2 \kappa}+\frac{q}{2}-\frac{\chi(\mathcal{D})}{24}}, \quad q \in \mathbb{Z} / \kappa \mathbb{Z}
$$

should transform as a vector-valued modular form of weight $-\frac{3}{2}$ in the Weil representation of $\mathbb{Z}[\kappa]$ with $\kappa=H^{3}$ [Gaiotto Strominger Yin'06]

- An overcomplete basis is given for κ even by

$$
\frac{E_{4}^{a} E_{6}^{b}}{\eta^{4 \kappa+c_{2}}} D^{\ell}\left(\vartheta_{q}^{(\kappa)}\right) \quad \text { with } \quad \vartheta_{q}^{(\kappa)}=\sum_{k \in \mathbb{Z}+\frac{q}{\kappa}} q^{\frac{1}{2} \kappa k^{2}}
$$

where $D=\mathrm{q} \partial_{\mathrm{q}}-\frac{w}{12} E_{2}$, is the Serre derivative and
$4 a+6 b+2 \ell-2 \kappa-\frac{c_{2}}{2}+\frac{1}{2}=-\frac{3}{2}$.

- For κ odd, the same works with $\vartheta_{q}^{(\kappa)}=\sum_{k \in \mathbb{Z}+\frac{q}{\kappa}+\frac{1}{2}}(-1)^{\kappa k} k q^{\frac{1}{2} \kappa k^{2}}$.

Rank 0 DT invariants from GV invariants

- For a D4-D2-D0 charge $\gamma=(0, r, q, n)$ close enough to the (usual) Bogomolov-Gieseker bound, [Toda'13, Feyzbakhsh'22]

$$
\bar{\Omega}_{r, q}(n)=\sum_{r_{i}, Q_{i}, n_{i}}(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle} \mathrm{DT}\left(Q_{1}, n_{1}\right) \mathrm{PT}\left(Q_{2}, n_{2}\right)
$$

where $\operatorname{DT}\left(Q_{1}, n_{1}\right), \operatorname{PT}\left(Q_{2}, n_{2}\right)$ counts BPS states with charge $\gamma_{1}=\left(1,0,-Q_{1},-n_{1}\right), \gamma_{2}=\left(-1,0, Q_{2},-n_{2}\right)$, respectively

- Alternatively, one can study wall crossing for $\gamma=(-1,0, q, n)$. For (q, n) large enough, there is an empty chamber and a single wall corresponding to $\overline{D 6} \rightarrow \overline{D 6}+D 4$ contributes to $P T(q, n)$:

$$
P T(q, n)=(-1)^{\left\langle\overline{\langle 6(1)}, \gamma_{D 4}\right\rangle+1}\left\langle\overline{D 6(1)}, \gamma_{D 4}\right\rangle \bar{\Omega}\left(\gamma_{D 4}\right)
$$

with $\overline{D 6(1)}:=\mathcal{O}_{X}(H)[1]$ and $\gamma_{D 4}=(0,1, q, n)$ [Feyzbakhsh'22].

Modular predictions for D4-D2-D0

- Using this idea, we can compute all polar terms and many non-polar ones, and verify modular invariance. E.g. for X_{5} :

$$
\left.\begin{array}{rl}
h_{1,0}= & q^{-\frac{55}{24}}\left(\underline{5-800 q}+58500 q^{2}\right.
\end{array}+5817125 q^{3}+75474060100 q^{4}\right)
$$

Mock modularity for non-Abelian D4-D2-D0 indices

- For D4-D2-D0 indices with $N=2$ units of D4-brane charge, $\left\{h_{2, q}, q \in \mathbb{Z} /(2 \kappa \mathbb{Z})\right\}$ should transform as a vv mock modular form with modular completion

$$
\widehat{h}_{2, q}(\tau, \bar{\tau})=h_{2, q}(\tau)+\sum_{q_{1}, q_{2}=0}^{\kappa-1} \delta_{q_{1}+q_{2}-q}^{(\kappa)} \Theta_{q_{2}-q_{1}+\kappa}^{(\kappa)} h_{1, q_{1}} h_{1, q_{2}}
$$

where

$$
\Theta_{q}^{(\kappa)}(\tau, \bar{\tau})=\frac{(-1)^{q}}{8 \pi} \sum_{k \in 2 \kappa \mathbb{Z}+q}|k| \beta\left(\frac{\tau_{2} k^{2}}{\kappa}\right) e^{-\frac{\pi i \tau}{2 \kappa} k^{2}}
$$

and $\beta(x)=2|x|^{-1 / 2} e^{-\pi x}-2 \pi \operatorname{Erfc}(\sqrt{\pi|x|})$.

- The series $\Theta_{q}^{(\kappa)}$ is convergent but not modular invariant.

Mock modularity for non-Abelian D4-D2-D0 indices

- Suppose there exists a holomorphic function $g_{a}^{(k)}$ such that $\Theta_{q}^{(\kappa)}+g_{q}^{(\kappa)}$ transforms as a vv modular form. Then

$$
\tilde{h}_{2, q}(\tau, \bar{\tau})=h_{2, q}(\tau)-\sum_{q_{1}, q_{2}=0}^{\kappa-1} \delta_{q_{1}+q_{2}-q}^{(\kappa)} g_{q_{2}-q_{1}+\kappa}^{(\kappa)} h_{1, q_{1}} h_{1, q_{2}}
$$

will be an ordinary weak holomorphic vv modular form, hence uniquely determined by its polar part.

- For $\kappa=1$, the series $\Theta_{q}^{(1)}$ is the one appearing in the modular completion of the generating series of Hurwitz class numbers [Hirzebruch Zagier 1973] (or rank 2 Vafa-Witten invariants on \mathbb{P}^{2})

$$
\begin{aligned}
& H_{0}(\tau)=-\frac{1}{12}+\frac{1}{2} q+q^{2}+\frac{4}{3} q^{3}+\frac{3}{2} q^{4}+\ldots \\
& H_{1}(\tau)=q^{\frac{3}{4}}\left(\frac{1}{3}+q+q^{2}+2 q^{3}+q^{4}+\ldots\right)
\end{aligned}
$$

Thus we can choose $g_{q}^{(1)}=H_{q}(\tau)$.

Mock modularity for non-Abelian D4-D2-D0 indices

X	χX	κ	C_{2}	$\chi\left(\mathcal{O}_{2 \mathcal{D}}\right)$	n_{2}	C_{2}
$X_{5}\left(1^{5}\right)$	-200	5	50	15	36	1
$X_{6}\left(1^{4}, 2\right)$	-204	3	42	11	19	1
$X_{8}\left(1^{4}, 4\right)$	-296	2	44	10	14	1
$X_{10}\left(1^{3}, 2,5\right)$	-288	1	34	7	7	0
$X_{4,3}\left(1^{5}, 2\right)$	-156	6	48	16	42	0
$X_{4,4}\left(1^{4}, 2^{2}\right)$	-144	4	40	12	25	1
$X_{6,2}\left(1^{5}, 3\right)$	-256	4	52	14	30	1
$X_{6,4}\left(1^{3}, 2^{2}, 3\right)$	-156	2	32	8	11	1
$X_{6,6}\left(1^{2}, 2^{2}, 3^{2}\right)$	-120	1	5	2	5	0
$X_{3,3}\left(1^{6}\right)$	-144	9	54	21	78	3
$X_{4,2}\left(1^{6}\right)$	-176	8	56	20	69	3
$X_{3,2,2}\left(1^{7}\right)$	-144	12	60	26	117	0
$X_{2,2,2,2}\left(1^{8}\right)$	-128	16	64	32	185	4

Mock modularity for non-Abelian D4-D2-D0 indices

- For X_{10}, we computed the 7 polar terms + 4 non-polar terms and found a unique mock modular form reproducing this data:

$$
\begin{aligned}
h_{2, \mu}= & \frac{5397523 E_{4}^{12}+70149738 E_{4}^{9} E_{6}^{2}-12112656 E_{4}^{6} E_{6}^{4}-61127530 E_{4}^{3} E_{6}^{6}-2307075 E_{6}^{8}}{46438023168 \eta^{100}} \vartheta_{\mu}^{(1,2)} \\
& +\frac{-10826123 E_{4}^{10} E_{6}-14574207 E_{4}^{7} E_{6}^{3}+20196255 E_{4}^{4} E_{6}^{5}+5204075 E_{4} E_{6}^{7}}{1934917632 \eta^{100}} D \vartheta_{\mu}^{(1,2)} \\
& +(-1)^{\mu+1} H_{\mu+1}(\tau) h_{1}(\tau)^{2}
\end{aligned}
$$

with $h_{1}=\frac{203 E_{4}^{4}+445 E_{4} E_{6}^{2}}{216 \eta^{35}}=\mathrm{q}^{-\frac{35}{24}}(\underline{3-575 \mathrm{q}}+\ldots)$, leading to integer
DT invariants
$h_{2,0}^{(\text {int })}=q^{-\frac{19}{6}}\left(\underline{7-1728 q}+203778 q^{2}-13717632 q^{3}-23922034036 q^{4}+\right.$.
$h_{2,1}^{(\text {int })}=\mathrm{q}^{-\frac{35}{12}}\left(\underline{-6+1430 q-1086092 q^{2}}+208065204 q^{3}+\ldots\right)$

- The extension to other one-parameter models is in progress.

Quantum geometry from stability and modularity

Conversely, we can use our knowledge of Abelian D4-D2-D0 invariants to compute GV invariants and push the direct integration method to higher genus !

Alexandrov Feyzbakhsh Klemm BP Schimannek'23

Quantum geometry from stability and modularity

X	χX	κ	type	$g_{\text {integ }}$	$g_{\text {mod }}$	$g_{\text {avail }}$
$X_{5}\left(1^{5}\right)$	-200	5	F	53	69	64
$X_{6}\left(1^{4}, 2\right)$	-204	3	F	48	63	48
$X_{8}\left(1^{4}, 4\right)$	-296	2	F	60	80	60
$X_{10}\left(1^{3}, 2,5\right)$	-288	1	F	50	91	65
$X_{4,3}\left(1^{5}, 2\right)$	-156	6	F	20	24	24
$X_{6,4}\left(1^{3}, 2^{2}, 3\right)$	-156	2	F	14	17	17
$X_{6,6}\left(1^{2}, 2^{2}, 3^{2}\right)$	-120	1	K	18	21	21
$X_{4,4}\left(1^{4}, 2^{2}\right)$	-144	4	K	26	34	34
$X_{3,3}\left(1^{6}\right)$	-144	9	K	29	33	33
$X_{4,2}\left(1^{6}\right)$	-176	8	C	50	64	50
$X_{6,2}\left(1^{5}, 3\right)$	-256	4	C	63	78	42

Thanks for your attention !

