## BPS Modularity on Calabi-Yau threefolds

## Boris Pioline



SORBONNE UNIVERSITÉ

Workshop "New connections in number theory and physics" Newton Institute, 26/08/2022

## References

- " "Indefinite theta series and generalized error functions", with S. Alexandrov, S. Banerjee, J. Manschot, Selecta Math. 24 (2018) 3927 [arXiv:1606.05495]
- "Black holes and higher depth mock modular forms", with S. Alexandrov, Commun.Math.Phys. 374 (2019) 549 [arXiv:1808.08479]
- "S-duality and refined BPS indices", with S. Alexandrov and J. Manschot, Commun.Math.Phys. 380 (2020) 755 [arXiv:1910.03098]
- "Modular bootstrap for D4-D2-D0 indices on compact Calabi-Yau threefolds", with S. Alexandrov, N. Gaddam, J. Manschot [arXiv:2204.02207]
- S. Alexandrov, S. Feyzbakhsh, A. Klemm, BP, T. Schimannek, in progress.


## Precision counting of $\mathcal{N}=8$ BPS black holes

- Many fruitful connections between string theory and automorphic forms have emerged in trying to come to grips with non-perturbative effects and solitonic states in string vacua with extended supersymmetry.


## Precision counting of $\mathcal{N}=8$ BPS black holes

- Many fruitful connections between string theory and automorphic forms have emerged in trying to come to grips with non-perturbative effects and solitonic states in string vacua with extended supersymmetry.
- The simplest case arises in type II strings compactified on a torus $T^{d}$. The manifest $S L(d, \mathbb{Z})$ symmetry is enhanced to T-duality $O(d, d, \mathbb{Z})$ and even $U$-duality $E_{d+1}(\mathbb{Z})$, constraining the moduli dependence of higher-derivative interactions in the low energy effective action.


## Precision counting of $\mathcal{N}=8$ BPS black holes

- Many fruitful connections between string theory and automorphic forms have emerged in trying to come to grips with non-perturbative effects and solitonic states in string vacua with extended supersymmetry.
- The simplest case arises in type II strings compactified on a torus $T^{d}$. The manifest $S L(d, \mathbb{Z})$ symmetry is enhanced to T-duality $O(d, d, \mathbb{Z})$ and even $U$-duality $E_{d+1}(\mathbb{Z})$, constraining the moduli dependence of higher-derivative interactions in the low energy effective action.
- BPS states consist of D-branes, NS5-branes and KK-monopoles wrapped on subtori, and bound states thereof. They induce instanton corrections in one dimension lower, breaking the continuous $E_{d+1}(\mathbb{R})$ symmetry to an arithmetic subgroup.


## Precision counting of $\mathcal{N}=8$ BPS black holes

- The index $\Omega(\gamma)$ counting BPS bound states with charge $\gamma$ is independent of the moduli and, for the most interesting case of $1 / 8$-BPS states on $T^{6}$, given by the Fourier coefficient $c\left(I_{4}(\gamma)\right)$ of a weak modular form, growing as $e^{\pi \sqrt{n}} \sim e^{S_{B H}(\gamma)}$ [Moore Maldacena Strominger 1999, BP 2005, Shih Strominger Yin 2005]

$$
\frac{\theta_{3}(2 \tau)}{\eta^{6}(4 \tau)}=\sum_{n \geq-1} c(n) q^{n}=\frac{1}{q}+2+8 q^{3}+12 q^{4}+39 q^{7}+56 q^{8}+\ldots
$$

## Precision counting of $\mathcal{N}=8$ BPS black holes

- The index $\Omega(\gamma)$ counting BPS bound states with charge $\gamma$ is independent of the moduli and, for the most interesting case of $1 / 8$-BPS states on $T^{6}$, given by the Fourier coefficient $c\left(I_{4}(\gamma)\right)$ of a weak modular form, growing as $e^{\pi \sqrt{n}} \sim e^{S_{B H}(\gamma)}$ [Moore Maldacena Strominger 1999, BP 2005, Shih Strominger Yin 2005]

$$
\frac{\theta_{3}(2 \tau)}{\eta^{6}(4 \tau)}=\sum_{n \geq-1} c(n) q^{n}=\frac{1}{q}+2+8 q^{3}+12 q^{4}+39 q^{7}+56 q^{8}+\ldots
$$

- These indices can be read off from non-perturbative corrections to the $D^{6} \mathcal{R}^{4}$ coupling [BP'15, Bossard Kleinschmidt BP'20].


## Precision counting of $\mathcal{N}=8$ BPS black holes

- The index $\Omega(\gamma)$ counting BPS bound states with charge $\gamma$ is independent of the moduli and, for the most interesting case of $1 / 8$-BPS states on $T^{6}$, given by the Fourier coefficient $c\left(I_{4}(\gamma)\right)$ of a weak modular form, growing as $e^{\pi \sqrt{n}} \sim e^{S_{B H}(\gamma)}$ [Moore Maldacena Strominger 1999, BP 2005, Shih Strominger Yin 2005]

$$
\frac{\theta_{3}(2 \tau)}{\eta^{6}(4 \tau)}=\sum_{n \geq-1} c(n) q^{n}=\frac{1}{q}+2+8 q^{3}+12 q^{4}+39 q^{7}+56 q^{8}+\ldots
$$

- These indices can be read off from non-perturbative corrections to the $D^{6} \mathcal{R}^{4}$ coupling [BP'15, Bossard Kleinschmidt BP'20].
- Mathematically, the index $\Omega(\gamma)$ is given by a reduced Donaldson-Thomas invariant for the category of coherent sheaves on $X=T^{6}$. These invariants were computed rigorously for some choices of $\gamma$, though modularity and $E_{7}(\mathbb{Z})$-duality remains mysterious. [Bryan Oberdieck Pandharipande Yin'15].


## Precision counting of $\mathcal{N}=4$ BPS black holes

- The case of type II strings compactified on $K 3 \times T^{2}$ (or suitable orbifolds thereof) is richer. The duality group is enhanced from $O(3,19, \mathbb{Z}) \times S L(2, \mathbb{Z})$ to $O(6,22, \mathbb{Z}) \times S L(2, \mathbb{Z})$, or even $O(8,24, \mathbb{Z})$ after reducing on a circle.
- The index $\Omega_{z}(\gamma)$ counting 1/4-BPS states is given by a Fourier coefficient of a meromorphic Siegel modular form, with a moduli-dependent integration contour. The index jumps when the contour crosses a pole, reflecting the (dis)appearance of two-centered bound states [Dijkgraaf Verlinde Verlinde'96; Cheng Verlinde'07]


## Precision counting of $\mathcal{N}=4$ BPS black holes

- In the attractor chamber where no bound states contribute, the index is given by a Fourier coefficient of a mock modular form [Dabholkar Murthy Zagier '12]. Its modular completion gives access to the asymptotics of $\Omega(\gamma) \sim e^{S_{B H}(\gamma)}$ as $|\gamma| \rightarrow \infty$.
- The index and integration contour can also be read off from non-perturbative corrections to $D^{2} \mathcal{F}^{4}$ couplings, given by some genus-two theta lift [Bossard Cosnier-Horeau BP'16-18].
- The prediction is confirmed by rigorous computations of reduced DT invariants for some $\gamma$ [Bryan Oberdieck'18].


## Precision counting of Calabi-Yau black holes

- For type IIA strings compactified on a CY threefold $X$ of generic $S U(3)$ holonomy, the moduli space is no longer a symmetric space. The duality group reduces to the monodromy group $\Gamma \subset \operatorname{Sp}\left(2 b_{2}+2, \mathbb{Z}\right) \times \operatorname{Sp}\left(2 b_{3}, \mathbb{Z}\right)$.


## Precision counting of Calabi-Yau black holes

- For type IIA strings compactified on a CY threefold $X$ of generic $S U(3)$ holonomy, the moduli space is no longer a symmetric space. The duality group reduces to the monodromy group $\Gamma \subset S p\left(2 b_{2}+2, \mathbb{Z}\right) \times S p\left(2 b_{3}, \mathbb{Z}\right)$.
- Further reducing on a circle and viewing type IIA/S ${ }^{1}$ as $M / T^{2}$, one expects the two-derivative action and BPS spectrum to be constrained by $S L(2, \mathbb{Z}) \times \Gamma \ltimes H_{2 b_{2}+2} \times H_{2 b_{3}}$ where $H_{n}$ is a discrete Heisenberg group of large gauge transformations.


## Precision counting of Calabi-Yau black holes

- For type IIA strings compactified on a CY threefold $X$ of generic $S U(3)$ holonomy, the moduli space is no longer a symmetric space. The duality group reduces to the monodromy group $\Gamma \subset S p\left(2 b_{2}+2, \mathbb{Z}\right) \times S p\left(2 b_{3}, \mathbb{Z}\right)$.
- Further reducing on a circle and viewing type IIA/S ${ }^{1}$ as $M / T^{2}$, one expects the two-derivative action and BPS spectrum to be constrained by $S L(2, \mathbb{Z}) \times \Gamma \ltimes H_{2 b_{2}+2} \times H_{2 b_{3}}$ where $H_{n}$ is a discrete Heisenberg group of large gauge transformations.
- The main complication is that BPS bound states can involve an arbitrary number of constituents, leading to complicated dependence of the BPS index / DT invariant $\Omega_{z}(\gamma)$ on the Kähler moduli. Jumps across walls of marginal stability are governed by a universal wall-crossing formula [Kontsevich Soibelman'08].


## Precision counting of Calabi-Yau black holes

- For type IIA strings compactified on a CY threefold $X$ of generic $S U(3)$ holonomy, the moduli space is no longer a symmetric space. The duality group reduces to the monodromy group $\Gamma \subset S p\left(2 b_{2}+2, \mathbb{Z}\right) \times S p\left(2 b_{3}, \mathbb{Z}\right)$.
- Further reducing on a circle and viewing type IIA/S $S^{1}$ as $M / T^{2}$, one expects the two-derivative action and BPS spectrum to be constrained by $S L(2, \mathbb{Z}) \times \Gamma \ltimes H_{2 b_{2}+2} \times H_{2 b_{3}}$ where $H_{n}$ is a discrete Heisenberg group of large gauge transformations.
- The main complication is that BPS bound states can involve an arbitrary number of constituents, leading to complicated dependence of the BPS index / DT invariant $\Omega_{z}(\gamma)$ on the Kähler moduli. Jumps across walls of marginal stability are governed by a universal wall-crossing formula [Kontsevich Soibelman'08].
- Can one determine $\Omega_{z}(\gamma)$ exactly for some range of $\gamma$ and $z$ ?


## Outline

(1) Introduction
(2) Modular constraints on BPS indices
(3) Mock modularity for Vafa-Witten invariants on del Pezzo surfaces
(4) Modularity for one-modulus compact CY 3

## Outline

## (1) Introduction

(2) Modular constraints on BPS indices
(3) Mock modularity for Vafa-Witten invariants on del Pezzo surfaces
4) Modularity for one-modulus compact CY 3

## S-duality constraints on BPS indices

By requiring that the moduli space metric admits an isometric action of $S L(2, \mathbb{Z})$ near the large volume point, one can show [Alexandrov, Baneriee, Manschot, BP, Robles-Llana, Rocek, Saueressig, Theis, Vandoren '06-19]:

- For $\gamma=(0,0,0, n)$ corresponding to $n$ D0-branes, S-duality requires $\Omega_{z}(\gamma)=-\chi_{\mathcal{X}}$ (independent of $n$ )


## S-duality constraints on BPS indices

By requiring that the moduli space metric admits an isometric action of $S L(2, \mathbb{Z})$ near the large volume point, one can show [Alexandrov, Banerjee, Manschot, BP, Robles-Llana, Rocek, Saueressig, Theis, Vandoren '06-19]:

- For $\gamma=(0,0,0, n)$ corresponding to $n$ D0-branes, S-duality requires $\Omega_{z}(\gamma)=-\chi_{\mathcal{X}}$ (independent of $n$ )
- For $\gamma=\left(0,0, q_{a}, n\right)$ supported on a curve of class $q_{a} \gamma^{a}$, $\Omega_{z}(\gamma)=N_{q_{a}}^{(0)}$ is equal to the genus-zero Gopakumar-Vafa invariant (independent of $n$ )


## S-duality constraints on BPS indices

By requiring that the moduli space metric admits an isometric action of $S L(2, \mathbb{Z})$ near the large volume point, one can show [Alexandrov, Banerjee, Manschot, BP, Robles-Llana, Rocek, Saueressig, Theis, Vandoren '06-19]:

- For $\gamma=(0,0,0, n)$ corresponding to $n$ D0-branes, S-duality requires $\Omega_{z}(\gamma)=-\chi_{\mathcal{X}}$ (independent of $n$ )
- For $\gamma=\left(0,0, q_{a}, n\right)$ supported on a curve of class $q_{a} \gamma^{a}$, $\Omega_{z}(\gamma)=N_{q_{a}}^{(0)}$ is equal to the genus-zero Gopakumar-Vafa invariant (independent of $n$ )
- For $\gamma=\left(0, p^{a}, q_{a}, n\right)$ supported on an ample divisor $\mathcal{D}$ of class $p^{a} \gamma_{a}$, the generating series

$$
h_{p^{a}, q_{a}}(\tau)=\sum_{n} \Omega_{\star}(\gamma) q^{n-\frac{1}{2} q_{a} k^{a b} q_{b}}
$$

should be a vector-valued weakly holomorphic modular form of weight $w=-\frac{1}{2} b_{2}-1$ and prescribed multiplier system.

## Modular constraints on D4-D2-D0 indices

- Here, $\Omega_{\star}(\gamma)$ is the index in the large volume attractor chamber

$$
z_{\star}^{a}(\gamma)=\lim _{\lambda \rightarrow+\infty}\left(-q^{a}+i \lambda p^{a}\right), \quad\left\{\begin{array}{c}
q^{a}=\kappa^{a b} q_{b} \\
\kappa_{a b}=\kappa_{a b c} p^{c}
\end{array}\right.
$$

invariant under spectral flow (tensoring with line bundle on $\mathcal{D}$ )

$$
q_{a} \rightarrow q_{a}-\kappa_{a b} \epsilon^{b}, \quad n \mapsto n-\epsilon^{a} q_{a}+\frac{1}{2} \kappa_{a b} \epsilon^{a} \epsilon^{b}
$$

Thus, $q_{a} \in \Lambda^{*} / \Lambda$, taking $\left|\operatorname{det}\left(\kappa_{a b}\right)\right|$ possible values.

## Modular constraints on D4-D2-D0 indices

- Here, $\Omega_{\star}(\gamma)$ is the index in the large volume attractor chamber

$$
z_{\star}^{a}(\gamma)=\lim _{\lambda \rightarrow+\infty}\left(-q^{a}+i \lambda p^{a}\right), \quad\left\{\begin{array}{c}
q^{a}=\kappa^{a b} q_{b} \\
\kappa_{a b}=\kappa_{a b c} p^{c}
\end{array}\right.
$$

invariant under spectral flow (tensoring with line bundle on $\mathcal{D}$ )

$$
q_{a} \rightarrow q_{a}-\kappa_{a b} \epsilon^{b}, \quad n \mapsto n-\epsilon^{a} q_{a}+\frac{1}{2} \kappa_{a b} \epsilon^{a} \epsilon^{b}
$$

Thus, $q_{a} \in \Lambda^{*} / \Lambda$, taking $\left|\operatorname{det}\left(\kappa_{a b}\right)\right|$ possible values.

- This modularity constraint also follows from the fact that $Z_{p}=\sum_{q \in \Lambda^{*} / \Lambda} h_{p, q}(\tau) \Theta_{q}(\tau, v)$ coincides with the elliptic genus of the $(0,4)$ superconformal field theory obtained by wrapping an M5-brane on $\mathcal{D}$ [Maldacena Strominger Witten '98].


## Modular constraints on D4-D2-D0 indices

- A vector-valued weak modular form of negative weight is uniquely determined by the polar coefficients $\Omega(0, p, q, n)$ with $n-\frac{1}{2} q_{a} \kappa^{a b} q_{b}<0$, which are themselves constrained by modularity.


## Modular constraints on D4-D2-D0 indices

- A vector-valued weak modular form of negative weight is uniquely determined by the polar coefficients $\Omega(0, p, q, n)$ with $n-\frac{1}{2} q_{a} \kappa^{a b} q_{b}<0$, which are themselves constrained by modularity.
- Provided the leading polar coefficient is non-zero, the Hardy-Ramanujan-Rademacher expansion gives

$$
\log \Omega_{\star}(\gamma) \sim 2 \pi \sqrt{\frac{n}{6} \kappa_{a b c} p^{a} p^{b} p^{c}}+\mathcal{O}(\log n)
$$

in precise agreement with the Bekenstein-Hawking entropy.

## Modular constraints on D4-D2-D0 indices

- A vector-valued weak modular form of negative weight is uniquely determined by the polar coefficients $\Omega(0, p, q, n)$ with $n-\frac{1}{2} q_{a} \kappa^{a b} q_{b}<0$, which are themselves constrained by modularity.
- Provided the leading polar coefficient is non-zero, the Hardy-Ramanujan-Rademacher expansion gives

$$
\log \Omega_{\star}(\gamma) \sim 2 \pi \sqrt{\frac{n}{6} \kappa_{a b c} p^{a} p^{b} p^{c}}+\mathcal{O}(\log n)
$$

in precise agreement with the Bekenstein-Hawking entropy.

- I will discuss later how to compute polar indices in some simple CY3 manifolds. For now, let me continue with the general story.


## Mock modularity constraints on D4-D2-D0 indices

- For $\gamma$ supported on a reducible divisor $\mathcal{D}=\sum_{i=1}^{n} \mathcal{D}_{i}$, the generating series $h_{p}$ (omitting $q$ index for simplicity) is no longer expected to be modular. Rather, it should be a vector-valued mock modular form of depth $n-1$ and same weight/multiplier system.

Alexandrov Banerjee Manschot BP '16-19

## Mock modularity constraints on D4-D2-D0 indices

- For $\gamma$ supported on a reducible divisor $\mathcal{D}=\sum_{i=1}^{n} \mathcal{D}_{i}$, the generating series $h_{p}$ (omitting $q$ index for simplicity) is no longer expected to be modular. Rather, it should be a vector-valued mock modular form of depth $n-1$ and same weight/multiplier system.

Alexandrov Banerjee Manschot BP '16-19

- There exists explicit non-holomorphic theta series such that

$$
\widehat{h}_{p}(\tau, \bar{\tau})=h_{p}(\tau)+\sum_{n=2}^{\infty} \sum_{p=\sum_{i=1}^{n} p_{i}} \Theta_{n}\left(\left\{p_{i}\right\}, \tau, \bar{\tau}\right) \prod_{i=1}^{n} h_{p_{i}}(\tau)
$$

transforms as a modular form of weight $-\frac{1}{2} b_{2}(S)-1$. Moreover the completion satisfies an explicit holomorphic anomaly equation,

$$
\partial_{\bar{\tau}} \widehat{h}_{p}(\tau, \bar{\tau})=\sum_{n=2}^{\infty} \sum_{p=\sum_{i=1}^{n} p_{i}} \widehat{\Theta}_{n}\left(\left\{p_{i}\right\}, \tau, \bar{\tau}\right) \prod_{i=1}^{n} \widehat{h}_{p_{i}}(\tau, \bar{\tau})
$$

## Indefinite theta series

- $\Theta_{n}$ and $\widehat{\Theta}_{n}$ belongs to the class of indefinite theta series

$$
\vartheta_{\Phi, q}(\tau, \bar{\tau})=\tau_{2}^{-\lambda} \sum_{k \in \Lambda+q} \Phi\left(\sqrt{2 \tau_{2}} k\right) e^{-\mathrm{i} \pi \tau Q(k)}
$$

where $(\Lambda, Q)$ is an even lattice of signature $(r, d-r), q \in \Lambda^{*} / \Lambda$, $\lambda \in \mathbb{R}$. The series converges if $f(x) \equiv \Phi(x) e^{\frac{\pi}{2} Q(x)} \in L_{1}\left(\mathbb{R}^{d}\right)$.

## Indefinite theta series

- $\Theta_{n}$ and $\widehat{\Theta}_{n}$ belongs to the class of indefinite theta series

$$
\vartheta_{\Phi, q}(\tau, \bar{\tau})=\tau_{2}^{-\lambda} \sum_{k \in \Lambda+q} \Phi\left(\sqrt{2 \tau_{2}} k\right) e^{-\mathrm{i} \pi \tau Q(k)}
$$

where $(\Lambda, Q)$ is an even lattice of signature $(r, d-r), q \in \Lambda^{*} / \Lambda$, $\lambda \in \mathbb{R}$. The series converges if $f(x) \equiv \Phi(x) e^{\frac{\pi}{2} Q(x)} \in L_{1}\left(\mathbb{R}^{d}\right)$.

- Theorem (Vignéras, 1978): $\left\{\vartheta_{\Phi, q}, q \in \Lambda^{*} / \Lambda\right\}$ transforms as a vector-valued modular form of weight $\left(\lambda+\frac{d}{2}, 0\right)$ provided


## Indefinite theta series

- $\Theta_{n}$ and $\widehat{\Theta}_{n}$ belongs to the class of indefinite theta series

$$
\vartheta_{\Phi, q}(\tau, \bar{\tau})=\tau_{2}^{-\lambda} \sum_{k \in \Lambda+q} \Phi\left(\sqrt{2 \tau_{2}} k\right) e^{-\mathrm{i} \pi \tau Q(k)}
$$

where $(\Lambda, Q)$ is an even lattice of signature $(r, d-r), q \in \Lambda^{*} / \Lambda$, $\lambda \in \mathbb{R}$. The series converges if $f(x) \equiv \Phi(x) e^{\frac{\pi}{2} Q(x)} \in L_{1}\left(\mathbb{R}^{d}\right)$.

- Theorem (Vignéras, 1978): $\left\{\vartheta_{\Phi, q}, q \in \Lambda^{*} / \Lambda\right\}$ transforms as a vector-valued modular form of weight $\left(\lambda+\frac{d}{2}, 0\right)$ provided
- $R(x) f, R\left(\partial_{x}\right) f \in L_{2}\left(\mathbb{R}^{d}\right)$ for any polynomial $R(x)$ of degree $\leq 2$


## Indefinite theta series

- $\Theta_{n}$ and $\widehat{\Theta}_{n}$ belongs to the class of indefinite theta series

$$
\vartheta_{\Phi, q}(\tau, \bar{\tau})=\tau_{2}^{-\lambda} \sum_{k \in \Lambda+q} \Phi\left(\sqrt{2 \tau_{2}} k\right) e^{-\mathrm{i} \pi \tau Q(k)}
$$

where $(\Lambda, Q)$ is an even lattice of signature $(r, d-r), q \in \Lambda^{*} / \Lambda$, $\lambda \in \mathbb{R}$. The series converges if $f(x) \equiv \Phi(x) e^{\frac{\pi}{2} Q(x)} \in L_{1}\left(\mathbb{R}^{d}\right)$.

- Theorem (Vignéras, 1978): $\left\{\vartheta_{\Phi, q}, q \in \Lambda^{*} / \Lambda\right\}$ transforms as a vector-valued modular form of weight $\left(\lambda+\frac{d}{2}, 0\right)$ provided
- $R(x) f, R\left(\partial_{x}\right) f \in L_{2}\left(\mathbb{R}^{d}\right)$ for any polynomial $R(x)$ of degree $\leq 2$
- $\left[\partial_{x}^{2}+2 \pi(x \partial x-\lambda)\right] \Phi=0\left[{ }^{*}\right]$


## Indefinite theta series

- $\Theta_{n}$ and $\widehat{\Theta}_{n}$ belongs to the class of indefinite theta series

$$
\vartheta_{\Phi, q}(\tau, \bar{\tau})=\tau_{2}^{-\lambda} \sum_{k \in \Lambda+q} \Phi\left(\sqrt{2 \tau_{2}} k\right) e^{-\mathrm{i} \pi \tau Q(k)}
$$

where $(\Lambda, Q)$ is an even lattice of signature $(r, d-r), q \in \Lambda^{*} / \Lambda$, $\lambda \in \mathbb{R}$. The series converges if $f(x) \equiv \Phi(x) e^{\frac{\pi}{2} Q(x)} \in L_{1}\left(\mathbb{R}^{d}\right)$.

- Theorem (Vignéras, 1978): $\left\{\vartheta_{\Phi, q}, q \in \Lambda^{*} / \Lambda\right\}$ transforms as a vector-valued modular form of weight $\left(\lambda+\frac{d}{2}, 0\right)$ provided
- $R(x) f, R\left(\partial_{x}\right) f \in L_{2}\left(\mathbb{R}^{d}\right)$ for any polynomial $R(x)$ of degree $\leq 2$
- $\left[\partial_{x}^{2}+2 \pi(x \partial x-\lambda)\right] \Phi=0\left[{ }^{*}\right]$
- The operator $\partial_{\bar{\tau}}$ acts by sending $\Phi \rightarrow\left(x \partial_{x}-\lambda\right) \Phi$. Thus $\vartheta$ is holomorphic if $\Phi$ is homogeneous. But unless $r=0, f(x)$ will fail to be integrable!


## Indefinite theta series

- Example 1 (Siegel): $\Phi=e^{\pi Q\left(x_{+}\right)}$, where $x_{+}$is the projection of $x$ on a fixed plane of dimension $r$, satisfies [*] with $\lambda=-n$. $\vartheta_{\Phi}$ is then the usual (non-holomorphic) Siegel-Narain theta series.


## Indefinite theta series

- Example 1 (Siegel): $\Phi=e^{\pi Q\left(x_{+}\right)}$, where $x_{+}$is the projection of $x$ on a fixed plane of dimension $r$, satisfies [*] with $\lambda=-n$. $\vartheta_{\Phi}$ is then the usual (non-holomorphic) Siegel-Narain theta series.
- Example 2 (Zwegers): In signature ( $1, d-1$ ), choose $C, C^{\prime}$ two vectors such that $Q(C), Q\left(C^{\prime}\right), B\left(C, C^{\prime}\right)>0$, then

$$
\widehat{\Phi}(x)=\operatorname{Erf}\left(\frac{B(C, x) \sqrt{\pi}}{\sqrt{Q(C)}}\right)-\operatorname{Erf}\left(\frac{B\left(C^{\prime}, x\right) \sqrt{\pi}}{\sqrt{Q\left(C^{\prime}\right)}}\right)
$$

satisfies [*] with $\lambda=0$. As $|x| \rightarrow \infty$,

$$
\widehat{\Phi}(x) \rightarrow \operatorname{sgn} B(C, x)-\operatorname{sgn} B\left(C^{\prime}, x\right)
$$

The holomorphic theta series $\vartheta_{\Phi}$ and its modular completion $\vartheta_{\widehat{\Phi}}$ are key for understanding Ramanujan mock theta functions.

## Indefinite theta series

- For $r>1$, one can construct solutions of $[*]$ which asymptote to $\prod_{i} \operatorname{sgn}\left[B\left(C_{i}, x\right)\right]$ as $|x| \rightarrow \infty$ : the generalized error functions

$$
E_{r}\left(C_{1}, \ldots C_{r} ; x\right)=\int_{\left\langle C_{1}, \ldots, C_{r}\right\rangle} \mathrm{d} x^{\prime} e^{-\pi Q\left(x_{+}-x^{\prime}\right)} \prod_{i} \operatorname{sgn}\left[B\left(C_{i}, x^{\prime}\right)\right]
$$

where $x_{+}$is the projection of $x$ on the positive plane $\left\langle C_{1}, \ldots, C_{r}\right\rangle$.

## Indefinite theta series

- For $r>1$, one can construct solutions of [*] which asymptote to $\prod_{i} \operatorname{sgn}\left[B\left(C_{i}, x\right)\right]$ as $|x| \rightarrow \infty$ : the generalized error functions

$$
E_{r}\left(C_{1}, \ldots C_{r} ; x\right)=\int_{\left\langle C_{1}, \ldots, C_{r}\right\rangle} \mathrm{d} x^{\prime} e^{-\pi Q\left(x_{+}-x^{\prime}\right)} \prod_{i} \operatorname{sgn}\left[B\left(C_{i}, x^{\prime}\right)\right]
$$

where $x_{+}$is the projection of $x$ on the positive plane $\left\langle C_{1}, \ldots, C_{r}\right\rangle$.

- Taking suitable linear combinations of $E_{r}\left(C_{1}, \ldots C_{r} ; x\right)$, one can construct a kernel $\Phi$ which leads to a convergent, modular (but non-holomorphic) theta series $\vartheta$.

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016

## Indefinite theta series

- For $r>1$, one can construct solutions of $[*]$ which asymptote to $\prod_{i} \operatorname{sgn}\left[B\left(C_{i}, x\right)\right]$ as $|x| \rightarrow \infty$ : the generalized error functions

$$
E_{r}\left(C_{1}, \ldots C_{r} ; x\right)=\int_{\left\langle C_{1}, \ldots, C_{r}\right\rangle} \mathrm{d} x^{\prime} e^{-\pi Q\left(x_{+}-x^{\prime}\right)} \prod_{i} \operatorname{sgn}\left[B\left(C_{i}, x^{\prime}\right)\right]
$$

where $x_{+}$is the projection of $x$ on the positive plane $\left\langle C_{1}, \ldots, C_{r}\right\rangle$.

- Taking suitable linear combinations of $E_{r}\left(C_{1}, \ldots C_{r} ; x\right)$, one can construct a kernel $\Phi$ which leads to a convergent, modular (but non-holomorphic) theta series $\vartheta$.


## Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016

- More geometrically, $\vartheta$ arises by integrating the form-valued Kudla-Milsson theta series on a suitable polyhedron in $\operatorname{Gr}(r, d-r)$

Kudla Funke 2016-17

## Indefinite theta series

- For $r>1$, one can construct solutions of [ $*$ ] which asymptote to $\prod_{i} \operatorname{sgn}\left[B\left(C_{i}, x\right)\right]$ as $|x| \rightarrow \infty$ : the generalized error functions

$$
E_{r}\left(C_{1}, \ldots C_{r} ; x\right)=\int_{\left\langle C_{1}, \ldots, C_{r}\right\rangle} \mathrm{d} x^{\prime} e^{-\pi Q\left(x_{+}-x^{\prime}\right)} \prod_{i} \operatorname{sgn}\left[B\left(C_{i}, x^{\prime}\right)\right]
$$

where $x_{+}$is the projection of $x$ on the positive plane $\left\langle C_{1}, \ldots, C_{r}\right\rangle$.

- Taking suitable linear combinations of $E_{r}\left(C_{1}, \ldots C_{r} ; x\right)$, one can construct a kernel $\Phi$ which leads to a convergent, modular (but non-holomorphic) theta series $\vartheta$.


## Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016

- More geometrically, $\vartheta$ arises by integrating the form-valued Kudla-Milsson theta series on a suitable polyhedron in $\operatorname{Gr}(r, d-r)$

Kudla Funke 2016-17

- For applications to BPS indices, $(r, d-r)=(n-1)\left(1, b_{2}(X)-1\right)$.


## Explicity modular completions

- The series $\hat{\Theta}_{n}$ appearing in the holomorphic anomaly are exactly of that type, with kernel given by a sum over planar trees,

$$
\widehat{\Phi}_{n}=\operatorname{Sym} \sum_{T \in \mathbb{T}_{n}^{S}}(-1)^{n_{T}-1} \mathcal{E}_{V_{0}} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{V}
$$



## Explicity modular completions

- The series $\hat{\Theta}_{n}$ appearing in the holomorphic anomaly are exactly of that type, with kernel given by a sum over planar trees,

$$
\widehat{\Phi}_{n}=\operatorname{Sym} \sum_{T \in \mathbb{T}_{n}^{S}}(-1)^{n_{T}-1} \mathcal{E}_{V_{0}} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{V}
$$



- The series $\Theta_{n}$ appearing in the modular completion are not modular, but their anomaly cancels against the anomaly of $h_{p}$ :

$$
\Phi_{n}=\operatorname{Sym} \sum_{T \in \mathbb{T}_{n}^{S}}(-1)^{n_{T}-1} \mathcal{E}_{V_{0}}^{(+)} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{V}^{(0)}
$$

where $\mathcal{E}_{v}=\mathcal{E}_{v}^{(0)}+\mathcal{E}_{v}^{(+)}$with $\mathcal{E}_{v}^{(0)}(x)=\lim _{\lambda \rightarrow \infty} \mathcal{E}_{v}(\lambda x)$.

## Explicity modular completions

- The series $\hat{\Theta}_{n}$ appearing in the holomorphic anomaly are exactly of that type, with kernel given by a sum over planar trees,

$$
\widehat{\Phi}_{n}=\operatorname{Sym} \sum_{T \in \mathbb{T}_{n}^{S}}(-1)^{n_{T}-1} \mathcal{E}_{V_{0}} \prod_{v \in V_{T} \backslash\left\{V_{0}\right\}} \mathcal{E}_{v}
$$



- The series $\Theta_{n}$ appearing in the modular completion are not modular, but their anomaly cancels against the anomaly of $h_{p}$ :

$$
\Phi_{n}=\operatorname{Sym} \sum_{T \in \mathbb{T}_{n}^{S}}(-1)^{n_{T}-1} \mathcal{E}_{v_{0}}^{(+)} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{v}^{(0)}
$$

where $\mathcal{E}_{v}=\mathcal{E}_{v}^{(0)}+\mathcal{E}_{v}^{(+)}$with $\mathcal{E}_{v}^{(0)}(x)=\lim _{\lambda \rightarrow \infty} \mathcal{E}_{v}(\lambda x)$.

- NB: these formulae hold for generating series of refined invariants, otherwise derivatives of error functions appear.


## Simplifications in one-divisor case

- On a threefold with $b_{4}(X)=1$, the D4-brane charge $p^{a}=N p_{0}^{a}$ is a multiple of the class $p_{0}$ of the primitive divisor $\mathcal{D}$, which we assume to be ample, with self-intersection $\kappa:=[\mathcal{D}]^{3}=\left|\Lambda^{*} / \Lambda\right|$. The modular completion involves a sum over partitions $N=\sum_{i=1}^{n} N_{i}$.


## Simplifications in one-divisor case

- On a threefold with $b_{4}(X)=1$, the D4-brane charge $p^{a}=N p_{0}^{a}$ is a multiple of the class $p_{0}$ of the primitive divisor $\mathcal{D}$, which we assume to be ample, with self-intersection $\kappa:=[\mathcal{D}]^{3}=\left|\Lambda^{*} / \Lambda\right|$. The modular completion involves a sum over partitions $N=\sum_{i=1}^{n} N_{i}$.
- Remarkably, only partitions of length two contribute to the holomorphic anomaly. In terms of the 'elliptic genus' $Z_{N}=\sqrt{\frac{\kappa}{N}} \sum_{q} \widehat{h}_{N, q}(\tau, \bar{\tau}) \Theta_{q}(\bar{\tau}, v)$, this reduces to

$$
\mathcal{D}_{\bar{\tau}} Z_{N}=\frac{\sqrt{2 \tau_{2}}}{32 \pi \mathrm{i}} \sum_{N=N_{1}+N_{2}} N_{1} N_{2} Z_{N_{1}} Z_{N_{2}}
$$

Minahan Nemeschansky Vafa Warner'98; Alexandrov Manschot BP'19

## Simplifications in one-divisor case

- On a threefold with $b_{4}(X)=1$, the D4-brane charge $p^{a}=N p_{0}^{a}$ is a multiple of the class $p_{0}$ of the primitive divisor $\mathcal{D}$, which we assume to be ample, with self-intersection $\kappa:=[\mathcal{D}]^{3}=\left|\Lambda^{*} / \Lambda\right|$. The modular completion involves a sum over partitions $N=\sum_{i=1}^{n} N_{i}$.
- Remarkably, only partitions of length two contribute to the holomorphic anomaly. In terms of the 'elliptic genus' $Z_{N}=\sqrt{\frac{\kappa}{N}} \sum_{q} \widehat{h}_{N, q}(\tau, \bar{\tau}) \Theta_{q}(\bar{\tau}, v)$, this reduces to

$$
\mathcal{D}_{\bar{\tau}} Z_{N}=\frac{\sqrt{2 \tau_{2}}}{32 \pi \mathrm{i}} \sum_{N=N_{1}+N_{2}} N_{1} N_{2} Z_{N_{1}} Z_{N_{2}}
$$

Minahan Nemeschansky Vafa Warner'98; Alexandrov Manschot BP'19

- In contrast, the modular completion involves a sum over partitions of arbitrary length.


## Outline

(1) Introduction
(2) Modular constraints on BPS indices
(3) Mock modularity for Vafa-Witten invariants on del Pezzo surfaces

## 4 Modularity for one-modulus compact CY 3

## Mock modularity for local CY I

- A class of (non-compact) CY threefolds with $b_{4}(X)=1$ is obtained by taking the total space $X=K_{S}$ of the canonical bundle over a complex Fano surface $S$.
- The BPS index $\Omega_{z}(\gamma)$ for $\gamma=(0, N, \mu, n)$ coincides with the Vafa-Witten invariant, given by (up to sign) by the Euler number of the moduli space $\mathcal{M}_{N, \mu, n}$ of semi-stable sheaves of rank $N$ on $S$.
- Since $b_{2}^{+}(S)=1$, the Vafa-Witten invariants depend on the Kähler form $J$ on $S$. The large volume attractor point corresponds to the canonical polarization $J \propto c_{1}(S)$.
- The generating series

$$
h_{N, \mu}=\sum_{n} \bar{\Omega}_{\star}(0, N, \mu, n) q^{n-\frac{N-1}{2 N} \mu^{2}-N \frac{\chi(S)}{24}}
$$

is invariant under $\mu \mapsto^{n} \mu+N$, and should transform as a vv mock modular form of weight $w=-1-\frac{b_{2}(S)}{2}$ and depth $N-1$.

## Mock modularity for local CY II

- Similarly, the generating series $h_{N, \mu}(\tau, z)$ of refined Vafa-Witten invariants

$$
\Omega_{\star}(\gamma, y)=\sum_{p}(-y)^{p-\operatorname{dim}_{\mathbb{C}} \mathcal{M}} b_{p}(\mathcal{M})
$$

with $y=e^{2 \pi \mathrm{i} z}$ (or rather its rational counterpart) is expected to transform as a vector-valued mock Jacobi form of weight $w=-\frac{b_{2}(S)}{2}$, index $m=-\frac{1}{6} K_{S}^{2}\left(N^{3}-N\right)$ and depth $N-1$

Goettsche Kool 18; Alexandrov BP Manschot 19

- For $N=1$, the generating series is manifestly modular [Goettsche'90],

$$
h_{1, \mu}(\tau, z)=\frac{\mathrm{i}}{\theta_{1}(\tau, 2 z) \eta^{b_{2}(S)-1}} \stackrel{z \rightarrow 0}{\rightarrow} \frac{1}{4 \pi \mathrm{i} z} \frac{1}{\eta^{b_{2}(S)+2}}
$$

## Mock modularity for local CY III

- For $S=\mathbb{P}^{2}$, rank 2 Vafa-Witten invariants are related to Hurwitz class numbers [Klyachko'91, Yoshioka'94]

$$
h_{2, \mu}(\tau)=\frac{3 H_{\alpha}(\tau)}{\eta^{6}}\left\{\begin{array}{l}
H_{0}(\tau)=-\frac{1}{12}+\frac{1}{2} q+q^{2}+\frac{4}{3} q^{3}+\frac{3}{2} q^{4}+\ldots \\
H_{1}(\tau)=q^{\frac{3}{4}}\left(\frac{1}{3}+q+q^{2}+2 q^{3}+q^{4}+\ldots\right)
\end{array}\right.
$$

which is probably the simplest example of depth 1 mock modular form, with completion [Hirzebruch Zagier'75-76]

$$
\widehat{h}_{0,2}(\tau)=h_{0,2}(\tau)-\frac{3 \mathrm{i}}{4 \sqrt{2 \pi} \eta^{6}} \int_{-\bar{\tau}}^{\mathrm{i} \infty} \frac{\sum_{m \in \mathbb{Z}} e^{2 \mathrm{i} \pi m^{2} u} \mathrm{~d} u}{[-\mathrm{i}(\tau+u)]^{3 / 2}}
$$

consistent with our general prescription.

- From the point of view of twisted $\mathcal{N}=4$ Yang-Mills theory on $S$, the non-holomorphic contribution arises from the boundary of the space of flat connections where the holonomy becomes reducible

Vafa Witten 94; Dabholkar Putrov Witten '20

## Mock modularity for local CY IV

- For $S=\mathbb{P}^{2}, \mathbb{F}_{0}$ or any other del Pezzo surface, the VW invariants can be obtained in principle for any rank $N$ by a sequence of blow ups and wall-crossings. Alternatively, one can relate them to DT invariants for a suitable quiver associated to an exceptional collection on $S$.
- Using our general prescription, one can easily obtain the modular completion of the generating series. Moreover, with some ingenuity one can produce explicit solutions for all $N$, which (conjecturally) provide VW invariants for any del Pezzo surface and any rank [Alexandrov'20].
- Having the modular completion, one can apply Rademacher's circle method to extract the asymptotics of VW invariants as the instanton number $n$ goes to infinity [Bringmann Manschot'13, Bringmann Nazaroglu'18]


## Outline

## (1) Introduction

## (2) Modular constraints on BPS indices

## (3) Mock modularity for Vafa-Witten invariants on del Pezzo surfaces

4 Modularity for one-modulus compact CY3

## Modularity for one-modulus compact CY

- We now return to the case of D4-D2-D0 indices on compact CY3, and specialize to one-parameter models, $b_{2}(X)=b_{4}(X)=1$ with $p=N[\mathcal{D}]$ where $\mathcal{D}$ is an ample divisor with $[\mathcal{D}]^{3}=\kappa$.


## Modularity for one-modulus compact CY

- We now return to the case of D4-D2-D0 indices on compact CY3, and specialize to one-parameter models, $b_{2}(X)=b_{4}(X)=1$ with $p=N[\mathcal{D}]$ where $\mathcal{D}$ is an ample divisor with $[\mathcal{D}]^{3}=\kappa$.
- For $N=1$, the generating series

$$
h_{1, \mu}=\sum_{n \in \mathbb{Z}} \Omega(0,1, \mu, n) q^{n+\frac{\mu^{2}}{2 \kappa}+\frac{\mu}{2}-\frac{\chi(\mathcal{D})}{24}}
$$

with $\mu \in \mathbb{Z} / \kappa \mathbb{Z}$ should transform as a vector-valued modular form of weight $-\frac{3}{2}$ (in a suitable Weil representation).

## Modularity for one-modulus compact CY

- We now return to the case of D4-D2-D0 indices on compact CY3, and specialize to one-parameter models, $b_{2}(X)=b_{4}(X)=1$ with $p=N[\mathcal{D}]$ where $\mathcal{D}$ is an ample divisor with $[\mathcal{D}]^{3}=\kappa$.
- For $N=1$, the generating series

$$
h_{1, \mu}=\sum_{n \in \mathbb{Z}} \Omega(0,1, \mu, n) q^{n+\frac{\mu^{2}}{2 \kappa}+\frac{\mu}{2}-\frac{\chi(\mathcal{D})}{24}}
$$

with $\mu \in \mathbb{Z} / \kappa \mathbb{Z}$ should transform as a vector-valued modular form of weight $-\frac{3}{2}$ (in a suitable Weil representation).

- Thus $h_{1, \mu}$ is uniquely determined by the polar coefficients $\Omega\left(0,1, \mu, n<\frac{\chi(\mathcal{D})}{24}-\frac{\mu^{2}}{2 \kappa}-\frac{\mu}{2}\right.$. However, the dimension $d_{1}=n_{1}-C_{1}$ of the space of modular forms may be smaller than the number $n_{1}$ of polar coefficients! [Gaiotto Strominger Yin '06-07; Manschot Moore'07]


## Modularity for one-modulus compact CY

| CICY | $\chi(X)$ | $\kappa$ | $C_{2}(T X)$ | $\chi\left(\mathcal{O}_{\mathcal{D}}\right)$ | $n_{1}$ | $C_{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $X_{5}\left(1^{5}\right)$ | -200 | 5 | 50 | 5 | 7 | 0 |
| $X_{6}\left(1^{4}, 2\right)$ | -204 | 3 | 42 | 4 | 4 | 0 |
| $X_{8}\left(1^{4}, 4\right)$ | -296 | 2 | 44 | 4 | 4 | 0 |
| $X_{10}\left(1^{3}, 2,5\right)$ | -288 | 1 | 34 | 3 | 2 | 0 |
| $X_{4,3}\left(1^{5}, 2\right)$ | -156 | 6 | 48 | 5 | 9 | 0 |
| $X_{4,4}\left(1^{4}, 2^{2}\right)$ | -144 | 4 | 40 | 4 | 6 | 1 |
| $X_{6,2}\left(1^{5}, 3\right)$ | -256 | 4 | 52 | 5 | 7 | 0 |
| $X_{6,4}\left(1^{3}, 2^{2}, 3\right)$ | -156 | 2 | 32 | 3 | 3 | 0 |
| $X_{6,6}\left(1^{2}, 2^{2}, 3^{2}\right)$ | -120 | 1 | 22 | 2 | 1 | 0 |
| $X_{3,3}\left(1^{6}\right)$ | -144 | 9 | 54 | 6 | 14 | 1 |
| $X_{4,2}\left(1^{6}\right)$ | -176 | 8 | 56 | 6 | 15 | 1 |
| $X_{3,2,2}\left(1^{7}\right)$ | -144 | 12 | 60 | 7 | 21 | 1 |
| $X_{2,2,2,2}\left(1^{8}\right)$ | -128 | 16 | 64 | 8 | 33 | 3 |

## Modularity for one-modulus compact CY

- Physically, we expect that polar coefficients arise as bound states of D6-brane and anti D6-branes [Denef Moore'07]. For a single D6-brane, the rank 1 DT-invariant $D T\left(q_{a}, n\right)=\Omega\left(1,0, q_{a}, n\right)$ can be computed from Gopakumar-Vafa invariants via the GV/DT relation

$$
\begin{aligned}
\Psi_{\text {top }}\left(X^{\prime}\right)=\left[M\left(-e^{2 \pi \mathrm{i} X^{0}}\right)\right]^{\chi / 2} & \sum_{q_{a}, n} D T\left(q_{a}, n\right) e^{2 \pi \mathrm{i}\left(q_{a} X^{a}+n X^{0}\right)} \\
& \text { Maulik Nekrasov Okounkov Pandharipande'06 }
\end{aligned}
$$

## Modularity for one-modulus compact CY

- Physically, we expect that polar coefficients arise as bound states of D6-brane and anti D6-branes [Denef Moore'07]. For a single D6-brane, the rank 1 DT-invariant $D T\left(q_{a}, n\right)=\Omega\left(1,0, q_{a}, n\right)$ can be computed from Gopakumar-Vafa invariants via the GV/DT relation

$$
\Psi_{\text {top }}\left(X^{\prime}\right)=\left[M\left(-e^{2 \pi i X^{0}}\right)\right]^{\chi / 2} \sum_{q_{a}, n} D T\left(q_{a}, n\right) e^{2 \pi \mathrm{i}\left(q_{a} X^{a}+n X^{0}\right)}
$$

Maulik Nekrasov Okounkov Pandharipande'06

- Assuming that all polar coefficients come from two-centered bound states of a $D 6-q D 2-n D 0$ and $\overline{D 6}$ with -1 unit of flux, we predict [Alexandrov Gaddam Manschot BP'22, Collinucci Wyder'09]

$$
\Omega(0,1, q, n)=(-1)^{\chi\left(\mathcal{O}_{\mathcal{D}}\right)-q-n+1}\left(\chi\left(\mathcal{O}_{\mathcal{D}}\right)-q-n\right) D T(q, n)
$$

with $D T(0,0)=1\left(\right.$ Recall $\left.\Delta \Omega=(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle+1}\left|\left\langle\gamma_{1}, \gamma_{2}\right\rangle\right| \Omega\left(\gamma_{1}\right) \Omega\left(\gamma_{2}\right)\right)$

## Modularity for one-modulus compact CY

- An overcomplete basis of vector-valued weakly holomorphic modular forms with desired multiplier system for any $N$ is given by $E_{4}^{a} E_{6}^{b} D^{\ell}\left(\vartheta^{(N, \kappa)}\right)_{q} / \eta^{4 \kappa r^{3}+r c_{2}}$ with $4 a+6 b+2 l-2 \kappa N^{3}-\frac{1}{2} N c_{2}=-2$, where $D=q \partial_{q}-\frac{w}{12} E_{2}$ is the Serre derivative, and

$$
\vartheta_{q}^{(N, \kappa)}(\tau)=\left.\sum_{k \in \mathbb{Z}+\frac{q}{\kappa N}+\frac{N}{2}}(-1)^{\kappa N^{2} k} e^{\mathrm{i} \pi \kappa k^{2} \tau+2 \pi \mathrm{i} \kappa N k z}\right|_{z=0}
$$

for $\kappa$ even, or its $z$-derivative at $z=0$ for $\kappa$ odd.

## Modularity for one-modulus compact CY

- An overcomplete basis of vector-valued weakly holomorphic modular forms with desired multiplier system for any $N$ is given by $E_{4}^{a} E_{6}^{b} D^{\ell}\left(\vartheta^{(N, \kappa)}\right)_{q} / \eta^{4 \kappa r^{3}+r c_{2}}$ with $4 a+6 b+2 l-2 \kappa N^{3}-\frac{1}{2} N c_{2}=-2$, where $D=q \partial_{q}-\frac{w}{12} E_{2}$ is the Serre derivative, and

$$
\vartheta_{q}^{(N, \kappa)}(\tau)=\left.\sum_{k \in \mathbb{Z}+\frac{q}{k N}+\frac{N}{2}}(-1)^{\kappa N^{2} k} e^{\mathrm{i} \pi \kappa k^{2} \tau+2 \pi \mathrm{i} \kappa N k z}\right|_{z=0}
$$

for $\kappa$ even, or its $z$-derivative at $z=0$ for $\kappa$ odd.

- Remarkably, there exists a modular form with integer Fourier coefficients matching these polar terms for all models - except $X_{4,2}, X_{3,2,2}, X_{2,2,2,2}$ :-(


## Modularity for one-modulus compact CY

- An overcomplete basis of vector-valued weakly holomorphic modular forms with desired multiplier system for any $N$ is given by $E_{4}^{a} E_{6}^{b} D^{\ell}\left(\vartheta^{(N, \kappa)}\right)_{q} / \eta^{4 \kappa r^{3}+r c_{2}}$ with $4 a+6 b+2 l-2 \kappa N^{3}-\frac{1}{2} N c_{2}=-2$, where $D=q \partial_{q}-\frac{w}{12} E_{2}$ is the Serre derivative, and

$$
\vartheta_{q}^{(N, \kappa)}(\tau)=\left.\sum_{k \in \mathbb{Z}+\frac{q}{\kappa N}+\frac{N}{2}}(-1)^{\kappa N^{2} k} e^{\mathrm{i} \pi \kappa k^{2} \tau+2 \pi \mathrm{i} \kappa N k z}\right|_{z=0}
$$

for $\kappa$ even, or its $z$-derivative at $z=0$ for $\kappa$ odd.

- Remarkably, there exists a modular form with integer Fourier coefficients matching these polar terms for all models - except $X_{4,2}, X_{3,2,2}, X_{2,2,2,2}$ :-(
- In particular, it satisfies the modular constraint for $X_{3,3}$ and $X_{4,4}$, and reproduces earlier results by Gaiotto and Yin for $X_{5}, X_{6}, X_{8}, X_{10}$ and $\left.X_{3,3}:-\right)$


## Modularity for one-modulus compact CY

- $X_{5}$ :

$$
\begin{aligned}
& h_{1,0}=q^{-\frac{55}{24}}\left(\underline{5-800 q+58500 q^{2}}+5817125 q^{3}+\ldots\right) \\
& h_{1,1}=q^{-\frac{55}{24}+\frac{3}{5}}\left(\underline{0+8625 q}-1138500 q^{2}+3777474000 q^{3}+\ldots\right) \\
& h_{1,2}=q^{-\frac{55}{24}+\frac{2}{5}}\left(\underline{0+0 q}-1218500 q^{2}+441969250 q^{3}+\ldots\right)
\end{aligned}
$$

## Modularity for one-modulus compact CY

- $X_{5}$ :

$$
\begin{aligned}
& h_{1,0}=q^{-\frac{55}{24}}\left(\underline{5-800 q+58500 q^{2}}+5817125 q^{3}+\ldots\right) \\
& h_{1,1}=q^{-\frac{55}{24}+\frac{3}{5}}\left(\underline{0+8625 q}-1138500 q^{2}+3777474000 q^{3}+\ldots\right) \\
& h_{1,2}=q^{-\frac{55}{24}+\frac{2}{5}}\left(\underline{0+0 q}-1218500 q^{2}+441969250 q^{3}+\ldots\right)
\end{aligned}
$$

- $X_{6}$ :

$$
\begin{aligned}
& h_{1,0}=q^{-\frac{15}{8}}\left(\underline{-4+612 q}-40392 q^{2}+146464860 q^{3}+\ldots\right) \\
& h_{1,1}=q^{-\frac{15}{8}+\frac{2}{3}}\left(\underline{0-15768 q}+7621020 q^{2}+10739279916 q^{3}+\ldots\right)
\end{aligned}
$$

## Modularity for one-modulus compact CY

- $X_{8}$ :
$h_{1,0}=q^{-\frac{46}{24}}\left(\underline{-4+888 q}-86140 q^{2}+132940136 q^{3}+\ldots\right)$, $h_{1,1}=q^{-\frac{46}{24}+\frac{3}{4}}\left(\underline{0-59008 q}+8615168 q^{2}+21430302976 q^{3}+\ldots\right)$.


## Modularity for one-modulus compact CY

- $X_{8}$ :

$$
\begin{aligned}
& h_{1,0}=q^{-\frac{46}{24}}\left(\underline{-4+888 q}-86140 q^{2}+132940136 q^{3}+\ldots\right) \\
& h_{1,1}=q^{-\frac{46}{24}+\frac{3}{4}}\left(\underline{0-59008 q}+8615168 q^{2}+21430302976 q^{3}+\ldots\right)
\end{aligned}
$$

- $X_{10}$ :

$$
h_{1,0} \stackrel{?}{=} q^{-\frac{35}{24}}\left(\underline{3-576 q}+271704 q^{2}+206401533 q^{3}+\cdots\right)
$$

Alas, mathematical results [Feyzbakhsh and Thomas'21-22] give instead

$$
\begin{aligned}
h_{1,0} & \stackrel{!}{=} q^{-\frac{35}{24}}\left(\underline{3-575 q}+271955 q^{2}+206406410 q^{3}+\cdots\right) \\
& =\frac{203 E_{4}^{4}+445 E_{4} E_{6}^{2}}{216 \eta^{35}}
\end{aligned}
$$

off by one from our Ansatz, as suggested by [van Herck Wyder'09]

## Rank 0 DT invariants from GV invariants I

- By exploiting wall-crossing and vanishing theorems (in particular a Bogomolov-Gieseker-type inequality on Chern classes of stable coherent sheaves), [Feyzbakhsh Thomas'20-22] show that rank 0 DT invariants (counting D4-D2-D0 bound states) can be expressed in terms of rank 1 DT/PT invariants, in turn related to GV invariants.
- Specifically, for $\gamma=(0,1, q, n)$ and ( $q, n$ ) 'large enough',

$$
\operatorname{PT}(q, n)=(-1)^{\chi\left(\mathcal{O}_{x}(H), \gamma\right)+1} \chi\left(\mathcal{O}_{x}(H), \gamma\right) \Omega(\gamma)
$$

Using spectral flow invariance, one obtains for $m$ large enough

$$
\Omega(\gamma)=\frac{(-1)^{1+\chi\left(\mathcal{O}_{X}(1-m), \gamma\right)}}{\chi\left(\mathcal{O}_{X}(1-m), \gamma\right)} P T\left(\mu^{\prime}, n^{\prime}\right) \quad\left\{\begin{array}{l}
q^{\prime}=q+\kappa m \\
n^{\prime}=n-m q-\frac{\kappa}{2} m(m+1)
\end{array}\right.
$$

## Rank 0 DT invariants from GV invariants

- For polar degeneracies, $\left(q^{\prime}, n^{\prime}\right)$ lies close to Castelnuovo bound $n^{\prime} \geq-\frac{\left(q^{\prime}\right)^{2}}{2 \kappa}-\frac{q^{\prime}}{2}$, so $P T\left(q^{\prime}, n^{\prime}\right)$ is a linear combination of GV invariants $N_{q^{\prime}}^{(g)}$ and near-maximal genus. The latter can be computed recursively by integrating the holomorphic anomaly equations for $\Psi_{\text {top }}$ [Huang Klemm Quackenbush'06]


## Rank 0 DT invariants from GV invariants

- For polar degeneracies, $\left(q^{\prime}, n^{\prime}\right)$ lies close to Castelnuovo bound $n^{\prime} \geq-\frac{\left(q^{\prime}\right)^{2}}{2 \kappa}-\frac{q^{\prime}}{2}$, so $P T\left(q^{\prime}, n^{\prime}\right)$ is a linear combination of GV invariants $N_{q^{\prime}}^{(g)}$ and near-maximal genus. The latter can be computed recursively by integrating the holomorphic anomaly equations for $\Psi_{\text {top }}$ [Huang Klemm Quackenbush'06]
- Using this idea (and some improvements), we have computed most of the polar terms (and some non-polar ones) for all models except $X_{4,2}, X_{4,3}, X_{3,2,2}, X_{2,2,2,2}$ - for those the required degree is currently out of reach.


## Rank 0 DT invariants from GV invariants

- For polar degeneracies, $\left(q^{\prime}, n^{\prime}\right)$ lies close to Castelnuovo bound $n^{\prime} \geq-\frac{\left(q^{\prime}\right)^{2}}{2 \kappa}-\frac{q^{\prime}}{2}$, so $P T\left(q^{\prime}, n^{\prime}\right)$ is a linear combination of GV invariants $N_{q^{\prime}}^{(g)}$ and near-maximal genus. The latter can be computed recursively by integrating the holomorphic anomaly equations for $\Psi_{\text {top }}$ [Huang Klemm Quackenbush'06]
- Using this idea (and some improvements), we have computed most of the polar terms (and some non-polar ones) for all models except $X_{4,2}, X_{4,3}, X_{3,2,2}, X_{2,2,2,2}$ - for those the required degree is currently out of reach.
- We find that our $D 6-\overline{D 6}$ ansatz is correct for $X_{5}, X_{6}, X_{8}, X_{3,3}, X_{4,4}$, $X_{6,6}$ but misses some $\mathcal{O}(1)$ contributions for $X_{10}, X_{6,2}, X_{6,4}$. Their physical interpretation is currently unknown.


## Rank 0 DT invariants from GV invariants

- For polar degeneracies, $\left(q^{\prime}, n^{\prime}\right)$ lies close to Castelnuovo bound $n^{\prime} \geq-\frac{\left(q^{\prime}\right)^{2}}{2 \kappa}-\frac{q^{\prime}}{2}$, so $P T\left(q^{\prime}, n^{\prime}\right)$ is a linear combination of GV invariants $N_{q^{\prime}}^{(g)}$ and near-maximal genus. The latter can be computed recursively by integrating the holomorphic anomaly equations for $\Psi_{\text {top }}$ [Huang Klemm Quackenbush'06]
- Using this idea (and some improvements), we have computed most of the polar terms (and some non-polar ones) for all models except $X_{4,2}, X_{4,3}, X_{3,2,2}, X_{2,2,2,2}$ - for those the required degree is currently out of reach.
- We find that our $D 6-\overline{D 6}$ ansatz is correct for $X_{5}, X_{6}, X_{8}, X_{3,3}, X_{4,4}$, $X_{6,6}$ but misses some $\mathcal{O}(1)$ contributions for $X_{10}, X_{6,2}, X_{6,4}$. Their physical interpretation is currently unknown.
- Note that [Feyzbakhsh'22] also proves an analogue of our $D 6-\overline{D 6}$ ansatz, but under very restrictive conditions satisfied only by the most polar terms.


## Mock modularity for one-modulus compact CY

- Finally, let us discuss D4-D2-D0 indices with $N=2$ units of D4-brane charge. In that case, the generating series $\left\{h_{2, q}, q \in \mathbb{Z} /(2 \kappa \mathbb{Z})\right\}$ should transform as a vector-valued modular form of weight $-\frac{3}{2}$, with modular completion

$$
\widehat{h}_{2, q}(\tau, \bar{\tau})=h_{2, q}(\tau)+\sum_{q_{1}, q_{2}=0}^{\kappa-1} \delta_{q_{1}+q_{2}-q}^{(\kappa)} \Theta_{q_{2}-q_{1}+\kappa}^{(\kappa)} h_{1, q_{1}} h_{1, q_{2}}
$$

where

$$
\Theta_{q}^{(\kappa)}=\frac{(-1)^{q}}{8 \pi} \sum_{k \in 2 \kappa \mathbb{Z}+q}|k| \beta_{\frac{3}{2}}\left(\frac{\tau_{2} k^{2}}{\kappa}\right) e^{-\frac{\pi i \tau}{2 \kappa} k^{2}},
$$

with $\beta_{\frac{3}{2}}\left(x^{2}\right)=2|x|^{-1} e^{-\pi x^{2}}-2 \pi \operatorname{Erfc}(\sqrt{\pi}|x|)$, such that

$$
\partial_{\bar{\tau}} \Theta_{q}^{(\kappa)}=\frac{(-1)^{q} \sqrt{\kappa}}{16 \pi \mathrm{i} \tau_{2}^{3 / 2}} \sum_{k \in 2 \kappa \mathbb{Z}+q} e^{\frac{\pi \mathrm{i} \bar{\tau}}{2 \kappa} k^{2}}
$$

## Mock modularity for one-modulus compact CY

- The series $\Theta_{q}^{(\kappa)}$ is convergent but not modular invariant. Suppose there exists a holomorphic function $g_{q}^{(\kappa)}$ such that $\Theta_{q}^{(\kappa)}+g_{q}^{(\kappa)}$ transforms as a vv modular form. Then

$$
\tilde{h}_{2, q}(\tau, \bar{\tau})=h_{2, q}(\tau)-\sum_{q_{1}, q_{2}=0}^{\kappa-1} \delta_{q_{1}+q_{2}-q}^{(\kappa)} g_{q_{2}-q_{1}+\kappa}^{(\kappa)} h_{1, q_{1}} h_{1, q_{2}}
$$

will be an ordinary weakly holomorphic vv modular form, uniquely determined by its polar part.

## Mock modularity for one-modulus compact CY

- The series $\Theta_{q}^{(\kappa)}$ is convergent but not modular invariant. Suppose there exists a holomorphic function $g_{q}^{(\kappa)}$ such that $\Theta_{q}^{(\kappa)}+g_{q}^{(\kappa)}$ transforms as a vv modular form. Then

$$
\widetilde{h}_{2, q}(\tau, \bar{\tau})=h_{2, q}(\tau)-\sum_{q_{1}, q_{2}=0}^{\kappa-1} \delta_{q_{1}+q_{2}-q}^{(\kappa)} g_{q_{2}-q_{1}+\kappa}^{(\kappa)} h_{1, q_{1}} h_{1, q_{2}}
$$

will be an ordinary weakly holomorphic vv modular form, uniquely determined by its polar part.

- To construct $g_{q}^{(\kappa)}$, notice that for $\kappa$ prime, $\Theta_{q}^{(\kappa)}$ is obtained from $\Theta_{q}^{(1)}$ by acting with the Hecke-type operator [Bouchard Creutzig Diaconescu Doran Quigley Sheshmani'16]

$$
\left(\mathcal{T}_{\kappa}[\phi]\right)_{q}(\tau)=\frac{1}{\kappa} \sum_{\substack{a, d>0 \\ a d=\kappa}}\left(\frac{\kappa}{d}\right)^{w+\frac{1}{2} D} \delta_{\kappa}(q, d) \sum_{b=0}^{d-1} e^{-\pi \mathrm{i} \frac{b}{a} q^{2}} \phi_{d q}\left(\frac{a \tau+b}{d}\right),
$$

with $q \in \Lambda^{*} / \Lambda(\kappa)$ and $\delta_{\kappa}(q, d)=1$ if $q \in \Lambda^{*} / \Lambda(d)$ and 0 otherwise.

## Mock modularity for one-modulus compact CY

- For $\kappa=1$, the series $\Theta_{q}^{(1)}$ is the one appearing in the modular completion of rank 2 VW invariants on $\mathbb{P}^{2}$ ! Thus $g_{q}^{(1)}$ can be chosen to be the generating series of Hurwitz class numbers $H_{q}$, and upgraded to $g_{q}^{(\kappa)}=\mathcal{T}_{\kappa}(H)_{q}$.


## Mock modularity for one-modulus compact CY

- For $\kappa=1$, the series $\Theta_{q}^{(1)}$ is the one appearing in the modular completion of rank 2 VW invariants on $\mathbb{P}^{2}$ ! Thus $g_{q}^{(1)}$ can be chosen to be the generating series of Hurwitz class numbers $H_{q}$, and upgraded to $g_{q}^{(\kappa)}=\mathcal{T}_{\kappa}(H)_{q}$.
- For $\kappa$ not prime, the action of $\mathcal{T}_{\kappa}$ on $\Theta_{q}^{(1)}$ is more complicated, e.g.

$$
\begin{aligned}
& \left(\mathcal{T}_{4}\left[\Theta^{(1)}\right]\right)_{q}=2 \Theta_{q}^{(4)}+\delta_{q}^{(2)}\left(\Theta_{q}^{(4)}+\Theta_{q+4}^{(4)}\right) \\
& \left(\mathcal{T}_{6}\left[\Theta^{(1)}\right]\right)_{q}=4 \Theta_{q}^{(6)}-2 \delta_{q+1}^{(2)}\left(\Theta_{q}^{(6)}-\Theta_{q+6}^{(6)}\right)
\end{aligned}
$$

When $\kappa$ is a prime power, one can disentangle these terms, but the cases $\kappa=6$ or 12 remain to be understood.

## Mock modularity for one-modulus compact CY

- For $\kappa=1$, the series $\Theta_{q}^{(1)}$ is the one appearing in the modular completion of rank 2 VW invariants on $\mathbb{P}^{2}$ ! Thus $g_{q}^{(1)}$ can be chosen to be the generating series of Hurwitz class numbers $H_{q}$, and upgraded to $g_{q}^{(\kappa)}=\mathcal{T}_{\kappa}(H)_{q}$.
- For $\kappa$ not prime, the action of $\mathcal{T}_{\kappa}$ on $\Theta_{q}^{(1)}$ is more complicated, e.g.

$$
\begin{aligned}
& \left(\mathcal{T}_{4}\left[\Theta^{(1)}\right]\right)_{q}=2 \Theta_{q}^{(4)}+\delta_{q}^{(2)}\left(\Theta_{q}^{(4)}+\Theta_{q+4}^{(4)}\right) \\
& \left(\mathcal{T}_{6}\left[\Theta^{(1)}\right]\right)_{q}=4 \Theta_{q}^{(6)}-2 \delta_{q+1}^{(2)}\left(\Theta_{q}^{(6)}-\Theta_{q+6}^{(6)}\right)
\end{aligned}
$$

When $\kappa$ is a prime power, one can disentangle these terms, but the cases $\kappa=6$ or 12 remain to be understood.

- The vv modular form $\widetilde{h}_{2, q}$ is uniquely specified by its polar terms ( $n_{2}$ of them in the table below), but those must satisfy constraints for such a form to exist ( $C_{2}$ of them), and integrality is not guaranteed!


## Mock modularity for one-modulus compact CY

| CICY | $\chi$ | $\kappa$ | $C_{2}$ | $\chi\left(\mathcal{O}_{2 \mathcal{D}}\right)$ | $n_{2}$ | $C_{2}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $X_{5}\left(1^{5}\right)$ | -200 | 5 | 50 | 15 | 36 | 1 |
| $X_{6}\left(1^{4}, 2\right)$ | -204 | 3 | 42 | 11 | 19 | 1 |
| $X_{8}\left(1^{4}, 4\right)$ | -296 | 2 | 44 | 10 | 14 | 1 |
| $X_{10}\left(1^{3}, 2,5\right)$ | -288 | 1 | 34 | 7 | 7 | 0 |
| $X_{4,3}\left(1^{5}, 2\right)$ | -156 | 6 | 48 | 16 | 42 | 0 |
| $X_{4,4}\left(1^{4}, 2^{2}\right)$ | -144 | 4 | 40 | 12 | 25 | 1 |
| $X_{6,2}\left(1^{5}, 3\right)$ | -256 | 4 | 52 | 14 | 30 | 1 |
| $X_{6,4}\left(1^{3}, 2^{2}, 3\right)$ | -156 | 2 | 32 | 8 | 11 | 1 |
| $X_{6,6}\left(1^{2}, 2^{2}, 3^{2}\right)$ | -120 | 1 | 5 | 2 | 5 | 0 |
| $X_{3,3}\left(1^{6}\right)$ | -144 | 9 | 54 | 21 | 78 | 3 |
| $X_{4,2}\left(1^{6}\right)$ | -176 | 8 | 56 | 20 | 69 | 3 |
| $X_{3,2,2}\left(1^{7}\right)$ | -144 | 12 | 60 | 26 | 117 | 0 |
| $X_{2,2,2,2}\left(1^{8}\right)$ | -128 | 16 | 64 | 32 | 185 | 4 |

## Mock modularity for one-modulus compact CY

- Mathematical results by Feyzbakhsh in principle allow to compute polar terms from DT/PT invariants, hence GV invariants, but the required degree and genus is prohibitive so far.


## Mock modularity for one-modulus compact CY

- Mathematical results by Feyzbakhsh in principle allow to compute polar terms from DT/PT invariants, hence GV invariants, but the required degree and genus is prohibitive so far.
- Our $D 6-\overline{D 6}$ ansatz has a natural generalization for any D4-brane charge, allowing $N$ units of flux on the $\overline{D 6}$-brane:

$$
\Omega(0, N, q, n) \stackrel{?}{=}(-1)^{\chi\left(\mathcal{O}_{N D}\right)-N q-n+1}\left(\chi\left(\mathcal{O}_{N D}\right)-N q-n\right) D T(q, n)
$$

but the resulting polar terms are not compatible with mock-modularity or integrality...

## Conclusion I

- The existence of an isometric action of S-duality on the vector-multiplet moduli space in $D=3$, leads to strong modularity constraints on rank 0 DT invariants in the large volume limit.
- For $p=\sum_{i=1}^{n} p_{i}$ the sum of $n$ irreducible divisors, the generating function $h_{p}$ is a mock modular form of depth $n-1$, with an explicit shadow. From the knowledge of polar coefficients, one can in principle reconstruct all invariants. But computing those is hard !
- A mathematical understanding of the origin of modularity and a better understanding of the physical origin of the non-holomorphic contributions, would be highly desirable.
- Mock modularity affects the growth of Fourier coefficients, hence the microscopic entropy of supersymmetric black holes. It should have an imprint on the macroscopic side as well...


## Thanks for your attention !



