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Precision counting of N = 8 BPS black holes

Many fruitful connections between string theory and automorphic
forms have emerged in trying to come to grips with
non-perturbative effects and solitonic states in string vacua with
extended supersymmetry.

The simplest case arises in type II strings compactified on a torus
T d . The manifest SL(d ,Z) symmetry is enhanced to T-duality
O(d ,d ,Z) and even U-duality Ed+1(Z), constraining the moduli
dependence of higher-derivative interactions in the low energy
effective action.
BPS states consist of D-branes, NS5-branes and KK-monopoles
wrapped on subtori, and bound states thereof. They induce
instanton corrections in one dimension lower, breaking the
continuous Ed+1(R) symmetry to an arithmetic subgroup.
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Precision counting of N = 8 BPS black holes

The index Ω(γ) counting BPS bound states with charge γ is
independent of the moduli and, for the most interesting case of
1/8-BPS states on T 6, given by the Fourier coefficient c(I4(γ)) of
a weak modular form, growing as eπ

√
n ∼ eSBH (γ) [Moore Maldacena

Strominger 1999, BP 2005, Shih Strominger Yin 2005]

θ3(2τ)

η6(4τ)
=
∑

n≥−1

c(n) qn =
1
q

+ 2 + 8q3 + 12q4 + 39q7 + 56q8 + . . .

These indices can be read off from non-perturbative corrections to
the D6R4 coupling [BP’15, Bossard Kleinschmidt BP’20].
Mathematically, the index Ω(γ) is given by a reduced
Donaldson-Thomas invariant for the category of coherent sheaves
on X = T 6. These invariants were computed rigorously for some
choices of γ, though modularity and E7(Z)-duality remains
mysterious. [Bryan Oberdieck Pandharipande Yin’15].
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Precision counting of N = 4 BPS black holes

The case of type II strings compactified on K 3× T 2 (or suitable
orbifolds thereof) is richer. The duality group is enhanced from
O(3,19,Z)× SL(2,Z) to O(6,22,Z)× SL(2,Z), or even
O(8,24,Z) after reducing on a circle.
The index Ωz(γ) counting 1/4-BPS states is given by a Fourier
coefficient of a meromorphic Siegel modular form, with a
moduli-dependent integration contour. The index jumps when the
contour crosses a pole, reflecting the (dis)appearance of
two-centered bound states [Dijkgraaf Verlinde Verlinde’96; Cheng Verlinde’07]
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Precision counting of N = 4 BPS black holes

In the attractor chamber where no bound states contribute, the
index is given by a Fourier coefficient of a mock modular form
[Dabholkar Murthy Zagier ’12]. Its modular completion gives access to the
asymptotics of Ω(γ) ∼ eSBH (γ) as |γ| → ∞.
The index and integration contour can also be read off from
non-perturbative corrections to D2F4 couplings, given by some
genus-two theta lift [Bossard Cosnier-Horeau BP’16-18].
The prediction is confirmed by rigorous computations of reduced
DT invariants for some γ [Bryan Oberdieck’18].

B. Pioline (LPTHE, Paris) BPS Modularity on Calabi-Yau threefolds Cambridge, 26/08/2022 6 / 39



Precision counting of Calabi-Yau black holes

For type IIA strings compactified on a CY threefold X of generic
SU(3) holonomy, the moduli space is no longer a symmetric
space. The duality group reduces to the monodromy group
Γ ⊂ Sp(2b2 + 2,Z)× Sp(2b3,Z).

Further reducing on a circle and viewing type IIA/S1 as M/T 2, one
expects the two-derivative action and BPS spectrum to be
constrained by SL(2,Z)× ΓnH2b2+2×H2b3 where Hn is a discrete
Heisenberg group of large gauge transformations.
The main complication is that BPS bound states can involve an
arbitrary number of constituents, leading to complicated
dependence of the BPS index / DT invariant Ωz(γ) on the Kähler
moduli. Jumps across walls of marginal stability are governed by a
universal wall-crossing formula [Kontsevich Soibelman’08].
Can one determine Ωz(γ) exactly for some range of γ and z ?
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S-duality constraints on BPS indices

By requiring that the moduli space metric admits an isometric action of
SL(2,Z) near the large volume point, one can show [Alexandrov, Banerjee,

Manschot, BP, Robles-Llana, Rocek, Saueressig, Theis, Vandoren ’06-19]:

For γ = (0,0,0,n) corresponding to n D0-branes, S-duality
requires Ωz(γ) = −χX (independent of n)

For γ = (0,0,qa,n) supported on a curve of class qaγ
a,

Ωz(γ) = N(0)
qa is equal to the genus-zero Gopakumar-Vafa

invariant (independent of n)
For γ = (0,pa,qa,n) supported on an ample divisor D of class
paγa, the generating series

hpa,qa(τ) =
∑

n

Ω?(γ)qn− 1
2 qakabqb

should be a vector-valued weakly holomorphic modular form of
weight w = −1

2b2 − 1 and prescribed multiplier system.
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Modular constraints on D4-D2-D0 indices

Here, Ω?(γ) is the index in the large volume attractor chamber

za
? (γ) = lim

λ→+∞
(−qa + iλpa) ,

{
qa = κabqb
κab = κabcpc

invariant under spectral flow (tensoring with line bundle on D)

qa → qa − κabε
b , n 7→ n − εaqa +

1
2
κabε

aεb

Thus, qa ∈ Λ∗/Λ, taking |det(κab)| possible values.

This modularity constraint also follows from the fact that
Zp =

∑
q∈Λ∗/Λ hp,q(τ)Θq(τ, v) coincides with the elliptic genus of

the (0,4) superconformal field theory obtained by wrapping an
M5-brane on D [Maldacena Strominger Witten ’98].
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Modular constraints on D4-D2-D0 indices

A vector-valued weak modular form of negative weight is uniquely
determined by the polar coefficients Ω(0,p,q,n) with
n − 1

2qaκ
abqb < 0, which are themselves constrained by

modularity.

Provided the leading polar coefficient is non-zero, the
Hardy-Ramanujan-Rademacher expansion gives

log Ω?(γ) ∼ 2π
√

n
6
κabcpapbpc +O(log n)

in precise agreement with the Bekenstein-Hawking entropy.
I will discuss later how to compute polar indices in some simple
CY3 manifolds. For now, let me continue with the general story.
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Mock modularity constraints on D4-D2-D0 indices

For γ supported on a reducible divisor D =
∑n

i=1Di , the
generating series hp (omitting q index for simplicity) is no longer
expected to be modular. Rather, it should be a vector-valued mock
modular form of depth n − 1 and same weight/multiplier system.

Alexandrov Banerjee Manschot BP ’16-19

There exists explicit non-holomorphic theta series such that

ĥp(τ, τ̄) = hp(τ) +
∞∑

n=2

∑
p=

∑n
i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

transforms as a modular form of weight −1
2b2(S)− 1. Moreover

the completion satisfies an explicit holomorphic anomaly equation,

∂τ̄ ĥp(τ, τ̄) =
∞∑

n=2

∑
p=

∑n
i=1 pî

Θn({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)
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Indefinite theta series

Θn and Θ̂n belongs to the class of indefinite theta series

ϑΦ,q(τ, τ̄) = τ−λ2

∑
k∈Λ+q

Φ
(√

2τ2k
)

e−iπτQ(k)

where (Λ,Q) is an even lattice of signature (r ,d − r), q ∈ Λ∗/Λ,
λ ∈ R. The series converges if f (x) ≡ Φ(x)e

π
2 Q(x) ∈ L1(Rd ).

Theorem (Vignéras, 1978): {ϑΦ,q,q ∈ Λ∗/Λ} transforms as a
vector-valued modular form of weight (λ+ d

2 ,0) provided

R(x)f ,R(∂x )f ∈ L2(Rd ) for any polynomial R(x) of degree ≤ 2[
∂2

x + 2π(x∂x − λ)
]

Φ = 0 [*]

The operator ∂τ̄ acts by sending Φ→ (x∂x − λ)Φ. Thus ϑ is
holomorphic if Φ is homogeneous. But unless r = 0, f (x) will fail
to be integrable !
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∂2

x + 2π(x∂x − λ)
]

Φ = 0 [*]

The operator ∂τ̄ acts by sending Φ→ (x∂x − λ)Φ. Thus ϑ is
holomorphic if Φ is homogeneous. But unless r = 0, f (x) will fail
to be integrable !
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Indefinite theta series

Example 1 (Siegel): Φ = eπQ(x+), where x+ is the projection of x
on a fixed plane of dimension r , satisfies [*] with λ = −n. ϑΦ is
then the usual (non-holomorphic) Siegel-Narain theta series.

Example 2 (Zwegers): In signature (1,d − 1), choose C,C′ two
vectors such that Q(C),Q(C′),B(C,C′) > 0, then

Φ̂(x) = Erf
(

B(C,x)
√
π√

Q(C)

)
− Erf

(
B(C′,x)

√
π√

Q(C′)

)
satisfies [*] with λ = 0. As |x | → ∞,

Φ̂(x)→ sgnB(C, x)− sgnB(C′, x)

The holomorphic theta series ϑΦ and its modular completion ϑ
Φ̂

are key for understanding Ramanujan mock theta functions.
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Indefinite theta series

For r > 1, one can construct solutions of [∗] which asymptote to∏
i sgn[B(Ci , x)] as |x | → ∞: the generalized error functions

Er (C1, . . .Cr ; x) =

∫
〈C1,...,Cr 〉

dx ′ e−πQ(x+−x ′)
∏

i

sgn[B(Ci , x ′)]

where x+ is the projection of x on the positive plane 〈C1, . . . ,Cr 〉.

Taking suitable linear combinations of Er (C1, . . .Cr ; x), one can
construct a kernel Φ which leads to a convergent, modular (but
non-holomorphic) theta series ϑ.

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016

More geometrically, ϑ arises by integrating the form-valued
Kudla-Milsson theta series on a suitable polyhedron in Gr(r ,d − r)

Kudla Funke 2016-17

For applications to BPS indices, (r ,d − r) = (n − 1)(1,b2(X )− 1).
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Explicity modular completions

The series Θ̂n appearing in the holomorphic anomaly are exactly
of that type, with kernel given by a sum over planar trees,

Φ̂n = Sym
∑

T∈TS
n

(−1)nT−1Ev0

∏
v∈VT \{v0}

Ev

The series Θn appearing in the modular completion are not
modular, but their anomaly cancels against the anomaly of hp:

Φn = Sym
∑

T∈TS
n

(−1)nT−1E(+)
v0

∏
v∈VT \{v0}

E(0)
v

where Ev = E(0)
v + E(+)

v with E(0)
v (x) = limλ→∞ Ev (λx).

NB: these formulae hold for generating series of refined invariants,
otherwise derivatives of error functions appear.
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Simplifications in one-divisor case

On a threefold with b4(X ) = 1, the D4-brane charge pa = Npa
0 is a

multiple of the class p0 of the primitive divisor D, which we
assume to be ample, with self-intersection κ := [D]3 = |Λ∗/Λ|. The
modular completion involves a sum over partitions N =

∑n
i=1 Ni .

Remarkably, only partitions of length two contribute to the
holomorphic anomaly. In terms of the ‘elliptic genus’
ZN =

√
κ
N
∑

q ĥN,q(τ, τ̄)Θq(τ̄ , v), this reduces to

Dτ̄ZN =

√
2τ2

32πi

∑
N=N1+N2

N1N2ZN1ZN2

Minahan Nemeschansky Vafa Warner’98; Alexandrov Manschot BP’19

In contrast, the modular completion involves a sum over partitions
of arbitrary length.
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Mock modularity for local CY I

A class of (non-compact) CY threefolds with b4(X ) = 1 is obtained
by taking the total space X = KS of the canonical bundle over a
complex Fano surface S.
The BPS index Ωz(γ) for γ = (0,N, µ,n) coincides with the
Vafa-Witten invariant, given by (up to sign) by the Euler number of
the moduli spaceMN,µ,n of semi-stable sheaves of rank N on S.
Since b+

2 (S) = 1, the Vafa-Witten invariants depend on the Kähler
form J on S. The large volume attractor point corresponds to the
canonical polarization J ∝ c1(S).
The generating series

hN,µ =
∑

n

Ω̄?(0,N, µ,n) qn−N−1
2N µ2−N χ(S)

24

is invariant under µ 7→ µ+ N, and should transform as a vv mock
modular form of weight w = −1− b2(S)

2 and depth N − 1.
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Mock modularity for local CY II
Similarly, the generating series hN,µ(τ, z) of refined Vafa-Witten
invariants

Ω?(γ, y) =
∑

p

(−y)p−dimCMbp(M)

with y = e2πiz (or rather its rational counterpart) is expected to
transform as a vector-valued mock Jacobi form of weight
w = −b2(S)

2 , index m = −1
6K 2

S(N3 − N) and depth N − 1
Goettsche Kool 18; Alexandrov BP Manschot 19

For N = 1, the generating series is manifestly modular [Goettsche’90],

h1,µ(τ, z) =
i

θ1(τ,2z)ηb2(S)−1
z→0→ 1

4πiz
1

ηb2(S)+2
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Mock modularity for local CY III
For S = P2, rank 2 Vafa-Witten invariants are related to Hurwitz
class numbers [Klyachko’91, Yoshioka’94]

h2,µ(τ) =
3Hα(τ)

η6

{
H0(τ) = − 1

12 + 1
2q + q2 + 4

3q3 + 3
2q4 + . . .

H1(τ) = q
3
4
(1

3 + q + q2 + 2q3 + q4 + . . .
)

which is probably the simplest example of depth 1 mock modular
form, with completion [Hirzebruch Zagier’75-76]

ĥ0,2(τ) = h0,2(τ)− 3i

4
√

2πη6

∫ i∞

−τ̄

∑
m∈Z e2iπm2udu

[−i(τ + u)]3/2

consistent with our general prescription.
From the point of view of twisted N = 4 Yang-Mills theory on S,
the non-holomorphic contribution arises from the boundary of the
space of flat connections where the holonomy becomes reducible

Vafa Witten 94; Dabholkar Putrov Witten ’20

.
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Mock modularity for local CY IV

For S = P2, F0 or any other del Pezzo surface, the VW invariants
can be obtained in principle for any rank N by a sequence of blow
ups and wall-crossings. Alternatively, one can relate them to DT
invariants for a suitable quiver associated to an exceptional
collection on S.
Using our general prescription, one can easily obtain the modular
completion of the generating series. Moreover, with some
ingenuity one can produce explicit solutions for all N, which
(conjecturally) provide VW invariants for any del Pezzo surface
and any rank [Alexandrov’20].
Having the modular completion, one can apply Rademacher’s
circle method to extract the asymptotics of VW invariants as the
instanton number n goes to infinity [Bringmann Manschot’13, Bringmann

Nazaroglu’18]
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Modularity for one-modulus compact CY

We now return to the case of D4-D2-D0 indices on compact CY3,
and specialize to one-parameter models, b2(X ) = b4(X ) = 1 with
p = N[D] where D is an ample divisor with [D]3 = κ.

For N = 1, the generating series

h1,µ =
∑
n∈Z

Ω(0,1, µ,n) qn+µ2

2κ+µ
2−

χ(D)
24

with µ ∈ Z/κZ should transform as a vector-valued modular form
of weight −3

2 (in a suitable Weil representation).
Thus h1,µ is uniquely determined by the polar coefficients
Ω(0,1, µ,n < χ(D)

24 −
µ2

2κ −
µ
2 . However, the dimension d1 = n1 −C1

of the space of modular forms may be smaller than the number n1
of polar coefficients ! [Gaiotto Strominger Yin ’06-07; Manschot Moore’07 ]
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Modularity for one-modulus compact CY

CICY χ(X ) κ c2(TX ) χ(OD) n1 C1
X5(15) −200 5 50 5 7 0
X6(14,2) −204 3 42 4 4 0
X8(14,4) −296 2 44 4 4 0
X10(13,2,5) −288 1 34 3 2 0
X4,3(15,2) −156 6 48 5 9 0
X4,4(14,22) −144 4 40 4 6 1
X6,2(15,3) −256 4 52 5 7 0
X6,4(13,22,3) −156 2 32 3 3 0
X6,6(12,22,32) −120 1 22 2 1 0
X3,3(16) −144 9 54 6 14 1
X4,2(16) −176 8 56 6 15 1
X3,2,2(17) −144 12 60 7 21 1
X2,2,2,2(18) −128 16 64 8 33 3

B. Pioline (LPTHE, Paris) BPS Modularity on Calabi-Yau threefolds Cambridge, 26/08/2022 26 / 39



Modularity for one-modulus compact CY

Physically, we expect that polar coefficients arise as bound states
of D6-brane and anti D6-branes [Denef Moore’07]. For a single
D6-brane, the rank 1 DT-invariant DT (qa,n) = Ω(1,0,qa,n) can be
computed from Gopakumar-Vafa invariants via the GV/DT relation

Ψtop(X I) = [M(−e2πiX 0
)]χ/2

∑
qa,n

DT (qa,n) e2πi(qaX a+nX 0)

Maulik Nekrasov Okounkov Pandharipande’06

Assuming that all polar coefficients come from two-centered
bound states of a D6− qD2− nD0 and D6 with −1 unit of flux, we
predict [Alexandrov Gaddam Manschot BP’22, Collinucci Wyder’09]

Ω(0,1,q,n) = (−1)χ(OD)−q−n+1(χ(OD)− q − n) DT (q,n)

with DT (0,0) = 1 (Recall ∆Ω = (−1)〈γ1,γ2〉+1|〈γ1, γ2〉|Ω(γ1)Ω(γ2))
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Modularity for one-modulus compact CY

An overcomplete basis of vector-valued weakly holomorphic
modular forms with desired multiplier system for any N is given by
Ea

4 Eb
6 D`(ϑ(N,κ))q/η

4κr3+rc2 with 4a + 6b + 2l − 2κN3 − 1
2Nc2 = −2,

where D = q∂q − w
12E2 is the Serre derivative, and

ϑ
(N,κ)
q (τ) =

∑
k∈Z+ q

κN + N
2

(−1)κN2k eiπκk2τ+2πiκNkz |z=0

for κ even, or its z-derivative at z = 0 for κ odd.

Remarkably, there exists a modular form with integer Fourier
coefficients matching these polar terms for all models – except
X4,2,X3,2,2,X2,2,2,2 :-(
In particular, it satisfies the modular constraint for X3,3 and X4,4,
and reproduces earlier results by Gaiotto and Yin for
X5,X6,X8,X10 and X3,3 :-)
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where D = q∂q − w
12E2 is the Serre derivative, and

ϑ
(N,κ)
q (τ) =

∑
k∈Z+ q

κN + N
2

(−1)κN2k eiπκk2τ+2πiκNkz |z=0

for κ even, or its z-derivative at z = 0 for κ odd.
Remarkably, there exists a modular form with integer Fourier
coefficients matching these polar terms for all models – except
X4,2,X3,2,2,X2,2,2,2 :-(

In particular, it satisfies the modular constraint for X3,3 and X4,4,
and reproduces earlier results by Gaiotto and Yin for
X5,X6,X8,X10 and X3,3 :-)
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Modularity for one-modulus compact CY

X5:

h1,0 = q−
55
24

(
5− 800q + 58500q2 + 5817125q3 + . . .

)
h1,1 = q−

55
24 + 3

5

(
0 + 8625q − 1138500q2 + 3777474000q3 + . . .

)
h1,2 = q−

55
24 + 2

5

(
0 + 0q − 1218500q2 + 441969250q3 + . . .

)

X6:

h1,0 = q−
15
8

(
−4 + 612q − 40392q2 + 146464860q3 + . . .

)
h1,1 = q−

15
8 + 2

3

(
0− 15768q + 7621020q2 + 10739279916q3 + . . .

)
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Modularity for one-modulus compact CY

X8:
h1,0 = q−

46
24

(
−4 + 888q − 86140q2 + 132940136q3 + . . .

)
,

h1,1 = q−
46
24 + 3

4

(
0− 59008q + 8615168q2 + 21430302976q3 + . . .

)
.

X10:
h1,0

?
= q−

35
24

(
3− 576q + 271704q2 + 206401533q3 + · · ·

)
Alas, mathematical results [Feyzbakhsh and Thomas’21-22] give instead

h1,0
!

= q−
35
24

(
3− 575q + 271955q2 + 206406410q3 + · · ·

)
=

203E4
4 + 445E4E2

6
216 η35

off by one from our Ansatz, as suggested by [van Herck Wyder’09]
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Rank 0 DT invariants from GV invariants I

By exploiting wall-crossing and vanishing theorems (in particular a
Bogomolov-Gieseker-type inequality on Chern classes of stable
coherent sheaves), [Feyzbakhsh Thomas’20-22] show that rank 0 DT
invariants (counting D4-D2-D0 bound states) can be expressed in
terms of rank 1 DT/PT invariants, in turn related to GV invariants.
Specifically, for γ = (0,1,q,n) and (q,n) ‘large enough’,

PT (q,n) = (−1)χ(OX (H),γ)+1χ(OX (H), γ) Ω(γ)

Using spectral flow invariance, one obtains for m large enough

Ω(γ) = (−1)1+χ(OX (1−m),γ)

χ(OX (1−m),γ) PT (µ′,n′)

{
q′ = q + κm
n′ = n −mq − κ

2 m(m + 1)
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Rank 0 DT invariants from GV invariants

For polar degeneracies, (q′,n′) lies close to Castelnuovo bound
n′ ≥ − (q′)2

2κ −
q′
2 , so PT (q′,n′) is a linear combination of GV

invariants N(g)
q′ and near-maximal genus. The latter can be

computed recursively by integrating the holomorphic anomaly
equations for Ψtop [Huang Klemm Quackenbush’06]

Using this idea (and some improvements), we have computed
most of the polar terms (and some non-polar ones) for all models
except X4,2,X4,3,X3,2,2,X2,2,2,2 – for those the required degree is
currently out of reach.
We find that our D6−D6 ansatz is correct for X5,X6,X8,X3,3,X4,4,
X6,6 but misses some O(1) contributions for X10,X6,2,X6,4. Their
physical interpretation is currently unknown.
Note that [Feyzbakhsh’22] also proves an analogue of our D6− D6
ansatz, but under very restrictive conditions satisfied only by the
most polar terms.

B. Pioline (LPTHE, Paris) BPS Modularity on Calabi-Yau threefolds Cambridge, 26/08/2022 32 / 39



Rank 0 DT invariants from GV invariants

For polar degeneracies, (q′,n′) lies close to Castelnuovo bound
n′ ≥ − (q′)2

2κ −
q′
2 , so PT (q′,n′) is a linear combination of GV

invariants N(g)
q′ and near-maximal genus. The latter can be

computed recursively by integrating the holomorphic anomaly
equations for Ψtop [Huang Klemm Quackenbush’06]

Using this idea (and some improvements), we have computed
most of the polar terms (and some non-polar ones) for all models
except X4,2,X4,3,X3,2,2,X2,2,2,2 – for those the required degree is
currently out of reach.

We find that our D6−D6 ansatz is correct for X5,X6,X8,X3,3,X4,4,
X6,6 but misses some O(1) contributions for X10,X6,2,X6,4. Their
physical interpretation is currently unknown.
Note that [Feyzbakhsh’22] also proves an analogue of our D6− D6
ansatz, but under very restrictive conditions satisfied only by the
most polar terms.

B. Pioline (LPTHE, Paris) BPS Modularity on Calabi-Yau threefolds Cambridge, 26/08/2022 32 / 39



Rank 0 DT invariants from GV invariants

For polar degeneracies, (q′,n′) lies close to Castelnuovo bound
n′ ≥ − (q′)2

2κ −
q′
2 , so PT (q′,n′) is a linear combination of GV

invariants N(g)
q′ and near-maximal genus. The latter can be

computed recursively by integrating the holomorphic anomaly
equations for Ψtop [Huang Klemm Quackenbush’06]

Using this idea (and some improvements), we have computed
most of the polar terms (and some non-polar ones) for all models
except X4,2,X4,3,X3,2,2,X2,2,2,2 – for those the required degree is
currently out of reach.
We find that our D6−D6 ansatz is correct for X5,X6,X8,X3,3,X4,4,
X6,6 but misses some O(1) contributions for X10,X6,2,X6,4. Their
physical interpretation is currently unknown.

Note that [Feyzbakhsh’22] also proves an analogue of our D6− D6
ansatz, but under very restrictive conditions satisfied only by the
most polar terms.

B. Pioline (LPTHE, Paris) BPS Modularity on Calabi-Yau threefolds Cambridge, 26/08/2022 32 / 39



Rank 0 DT invariants from GV invariants

For polar degeneracies, (q′,n′) lies close to Castelnuovo bound
n′ ≥ − (q′)2

2κ −
q′
2 , so PT (q′,n′) is a linear combination of GV

invariants N(g)
q′ and near-maximal genus. The latter can be

computed recursively by integrating the holomorphic anomaly
equations for Ψtop [Huang Klemm Quackenbush’06]

Using this idea (and some improvements), we have computed
most of the polar terms (and some non-polar ones) for all models
except X4,2,X4,3,X3,2,2,X2,2,2,2 – for those the required degree is
currently out of reach.
We find that our D6−D6 ansatz is correct for X5,X6,X8,X3,3,X4,4,
X6,6 but misses some O(1) contributions for X10,X6,2,X6,4. Their
physical interpretation is currently unknown.
Note that [Feyzbakhsh’22] also proves an analogue of our D6− D6
ansatz, but under very restrictive conditions satisfied only by the
most polar terms.

B. Pioline (LPTHE, Paris) BPS Modularity on Calabi-Yau threefolds Cambridge, 26/08/2022 32 / 39



Mock modularity for one-modulus compact CY

Finally, let us discuss D4-D2-D0 indices with N = 2 units of
D4-brane charge. In that case, the generating series
{h2,q,q ∈ Z/(2κZ)} should transform as a vector-valued modular
form of weight −3

2 , with modular completion

ĥ2,q(τ, τ̄) = h2,q(τ) +
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−qΘ

(κ)
q2−q1+κ h1,q1 h1,q2

where
Θ

(κ)
q = (−1)q

8π

∑
k∈2κZ+q

|k |β 3
2

(
τ2k2

κ

)
e−

πiτ
2κ k2

,

with β 3
2
(x2) = 2|x |−1e−πx2 − 2πErfc(

√
π|x |), such that

∂τ̄Θ
(κ)
q = (−1)q√κ

16πiτ3/2
2

∑
k∈2κZ+q

e
πiτ̄
2κ k2
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Mock modularity for one-modulus compact CY

The series Θ
(κ)
q is convergent but not modular invariant. Suppose

there exists a holomorphic function g(κ)
q such that Θ

(κ)
q + g(κ)

q
transforms as a vv modular form. Then

h̃2,q(τ, τ̄) = h2,q(τ)−
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−q g(κ)

q2−q1+κ h1,q1 h1,q2

will be an ordinary weakly holomorphic vv modular form, uniquely
determined by its polar part.

To construct g(κ)
q , notice that for κ prime, Θ

(κ)
q is obtained from

Θ
(1)
q by acting with the Hecke-type operator [Bouchard Creutzig

Diaconescu Doran Quigley Sheshmani’16]

(Tκ[φ])q(τ) =
1
κ

∑
a,d>0
ad=κ

(
κ
d

)w+ 1
2 D
δκ(q,d)

d−1∑
b=0

e−πi b
a q2

φdq
(aτ+b

d

)
,

with q ∈ Λ∗/Λ(κ) and δκ(q,d) = 1 if q ∈ Λ∗/Λ(d) and 0 otherwise.
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Mock modularity for one-modulus compact CY

For κ = 1, the series Θ
(1)
q is the one appearing in the modular

completion of rank 2 VW invariants on P2 ! Thus g(1)
q can be

chosen to be the generating series of Hurwitz class numbers Hq,
and upgraded to g(κ)

q = Tκ(H)q.

For κ not prime, the action of Tκ on Θ
(1)
q is more complicated, e.g.

(T4[Θ(1)])q = 2Θ
(4)
q + δ

(2)
q (Θ

(4)
q + Θ

(4)
q+4)

(T6[Θ(1)])q = 4Θ
(6)
q − 2δ(2)

q+1(Θ
(6)
q −Θ

(6)
q+6)

When κ is a prime power, one can disentangle these terms, but
the cases κ = 6 or 12 remain to be understood.
The vv modular form h̃2,q is uniquely specified by its polar terms
(n2 of them in the table below), but those must satisfy constraints
for such a form to exist (C2 of them), and integrality is not
guaranteed !
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Mock modularity for one-modulus compact CY

CICY χ κ c2 χ(O2D) n2 C2
X5(15) −200 5 50 15 36 1
X6(14,2) −204 3 42 11 19 1
X8(14,4) −296 2 44 10 14 1
X10(13,2,5) −288 1 34 7 7 0
X4,3(15,2) −156 6 48 16 42 0
X4,4(14,22) −144 4 40 12 25 1
X6,2(15,3) −256 4 52 14 30 1
X6,4(13,22,3) −156 2 32 8 11 1
X6,6(12,22,32) −120 1 5 2 5 0
X3,3(16) −144 9 54 21 78 3
X4,2(16) −176 8 56 20 69 3
X3,2,2(17) −144 12 60 26 117 0
X2,2,2,2(18) −128 16 64 32 185 4
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Mock modularity for one-modulus compact CY

Mathematical results by Feyzbakhsh in principle allow to compute
polar terms from DT/PT invariants, hence GV invariants, but the
required degree and genus is prohibitive so far.

Our D6−D6 ansatz has a natural generalization for any D4-brane
charge, allowing N units of flux on the D6-brane:

Ω(0,N,q,n)
?
= (−1)χ(OND)−Nq−n+1(χ(OND)− Nq − n) DT (q,n)

but the resulting polar terms are not compatible with
mock-modularity or integrality...
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Conclusion I

The existence of an isometric action of S-duality on the
vector-multiplet moduli space in D = 3, leads to strong modularity
constraints on rank 0 DT invariants in the large volume limit.
For p =

∑n
i=1 pi the sum of n irreducible divisors, the generating

function hp is a mock modular form of depth n − 1, with an explicit
shadow. From the knowledge of polar coefficients, one can in
principle reconstruct all invariants. But computing those is hard !
A mathematical understanding of the origin of modularity and a
better understanding of the physical origin of the non-holomorphic
contributions, would be highly desirable.
Mock modularity affects the growth of Fourier coefficients, hence
the microscopic entropy of supersymmetric black holes. It should
have an imprint on the macroscopic side as well...
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Thanks for your attention !
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