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Introduction

A driving force in high energy theoretical physics has been the
quest for a microscopic explanation of the entropy of black holes.
Providing a derivation of the Bekenstein-Hawking formula is a
benchmark test of any theory of quantum gravity.

SBH = A
4GN SBH

?
= log Ω

Sgr A*, Event Horizon Telescope 2022
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Black hole microstates as wrapped D-branes

Back in 1996, Strominger and Vafa argued that String Theory
passes this test with flying colors, at least in the context of BPS
black holes in vacua with extended SUSY: black hole micro-states
can be understood as bound states of D-branes wrapped on the
internal manifold, and sometimes can be counted efficiently.

Calabi-Yau black hole, courtesy F. Le Guen
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BPS indices and Donaldson-Thomas invariants

In the context of type IIA strings compactified on a Calabi-Yau
three-fold X, BPS states are described mathematically by stable
objects in the derived category of coherent sheaves C = DbCohX.
The Chern character γ = (ch0, ch1, ch2, ch3) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.

The problem becomes a question in enumerative geometry: for
fixed γ ∈ K (X), compute the Donaldson-Thomas invariant Ωz(γ)
counting (semi)stable objects of class γ for a Bridgeland stability
condition z ∈ Stab C, and determine its growth as |γ| → ∞.
Physical arguments predict that suitable generating series of rank
0 DT invariants (counting D4-D2-D0 bound states) should have
specific modular properties. This gives very good control on their
asymptotic growth, and allows to check whether Ωz(γ) ' eSBH (γ).
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Simplest example: Abelian three-fold

For X = T 6, Ωz(γ) depends only on a certain quartic polynomial
I4(γ) in the charges, and is moduli independent. It is given by the
Fourier coefficient c(I4(γ) + 1) of a weak modular form,

θ3(2τ)

η6(4τ)
=
∑
n≥0

c(n) qn−1 =
1
q

+ 2 + 8q3 + 12q4 + 39q7 + 56q8 + . . .

Moore Maldacena Strominger 1999, BP 2005, Shih Strominger Yin 2005

Bryan Oberdieck Pandharipande Yin’15

Recall that f (τ) :=
∑

n≥0 c(n)qn−∆ (with q = e2πiτ , Imτ > 0) is a

modular form of weight w if ∀
(

a b
c d

)
∈ Γ ⊂ SL(2,Z),

f
(

aτ+b
cτ+d

)
= (cτ + d)w f (τ) ⇒ c(n)

n→∞∼ exp
(

4π
√

∆(n −∆)
)

in agreement with SBH(γ) = 1
4A(γ).
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Wall-crossing and mock modularity

For a general CY3, the story is more involved and interesting.
First, Ωz(γ) depends on the Kähler parameters z (more generally,
on the stability condition), with a complicated chamber structure.

Second, the generating series of rank 0 DT invariants in the large
volume attractor chamber, denoted by Ω?(γ), are generally not
modular but rather mock modular of higher depth.
A (depth one) mock modular form of weight w transforms
inhomogeneously under Γ ⊂ SL(2,Z) (or Mp(2,Z) if w ∈ Z + 1

2 )

f
(

aτ+b
cτ+d

)
= (cτ + d)w

[
f (τ)−

∫ i∞

−d/c
g(−ρ̄)(τ + ρ)−w dρ

]

where g(τ) is an ordinary modular form of weight 2−w , known as
the shadow.
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Wall-crossing and mock modularity

Equivalently, the non-holomorphic completion

f̂ (τ, τ̄) := f (τ) +

∫ i∞

−τ̄
g(−ρ̄)(τ + ρ)−w dρ

transforms like a modular form of weight w , and satisfies the
holomorphic anomaly equation

τw
2 ∂τ̄ f̂ (τ, τ̄) ∝ g(τ)

Ramanujan’s mock θ-functions belong to this class, along with
indefinite theta series of Lorentzian signature (1,n − 1) [Zwegers’02]

The Fourier coefficients still grow as c(n) ∼ exp
(

4π
√

∆(n −∆)
)

but subleading corrections are markedly different.
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Outline

1 Review some background on Bridgeland stability conditions on
C = DbCohX

2 Spell out the modularity properties of rank 0 DT invariants on a
general compact CY threefold

3 Check modularity for non-compact X = KS with S a Fano surface,
where rank 0 DT invariants reduce to Vafa-Witten invariants.

4 Test modularity for compact CY threefolds with b2(X) = 1, using
recent results of S. Feyzbakhsh and R. Thomas

5 Obtain new constraints on higher genus GW/GV invariants from
modularity of rank 0 DT invariants
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Mathematical preliminaries

Let X a compact CY threefold, and C = DbCohX the bounded
derived category of coherent sheaves. Objects E ∈ C are
bounded complexes of coherent sheaves Ek on X,

E = (· · · d−2
→ E−1 d−1

→ E0 d0
→ E1 d1

→ . . . ) ,

with morphisms dk : Ek → Ek+1 such that dk+1dk = 0. Physically,
Ek describe D6-branes for k even, or anti D6-branes for k odd,
and dk are open strings .

C is graded by the Grothendieck group K (C). Let Γ ⊂ Heven(X,Q)
be the image of K (C) under E 7→ ch E =

∑
k (−1)k ch Ek . The

lattice of electromagnetic charges Γ is equipped with the
skew-symmetric (Dirac-Schwinger-Zwanziger) pairing

〈E ,E ′〉 = χ(E ′,E) =

∫
X

(ch E ′)∨ ch(E) Td(TX) ∈ Z
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Bridgeland stability conditions

Let S = Stab(C) be the space of Bridgeland stability conditions
σ = (Z ,A), where

1 Z : Γ→ C is a linear map, known as the central charge. Let
Z (E) := Z (ch(E)).

2 A ⊂ C is an Abelian subcategory (heart of bounded t-structure).
3 For any non-zero E ∈ A, (i) ImZ (E) ≥ 0 and (ii) ImZ (E) = 0⇒

ReZ (E) < 0. Relax (ii) for weak stability conditions.
4 Harder-Narasimhan filtration + support property

If S is not empty, then it is a complex manifold of dimension
rk Γ = beven(X), locally parametrized by Z (γi) with γi a basis of Γ.
Stability conditions are known to exist only for a handful of CY
threefolds, including the quintic in P4 [Li’18]. Their construction
depends on the conjectural Bayer-Macrì-Toda (BMT) inequality.
Weak stability conditions are much easier to construct.
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Physical stability conditions

Physics/Mirror symmetry conjecturally selects a subspace
Π ⊂ Stab C, known as ‘physical slice’ or slice of Π-stability
conditions, parametrized by complexified Kähler structure of X, or
complex structure of X̂. Hence dimC Π = b2(X) + 1 = b3(X̂).

Along this slice, the central charge is given by the period

Z (γ) =

∫
γ̂

Ω3,0

of the holomorphic 3-form on X̂ on a dual 3-cycle γ̂ ∈ H3(X̂,Z).
Near the large volume point inMK (X), or MUM point inMcx (X̂),

Z (E) ∼ −
∫
X

e−zaHa
√

Td(TX) ch(E)

where Ha is a basis of H2(X,Z), and za = ba + ita are the
complexified Kähler moduli.
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conditions, parametrized by complexified Kähler structure of X, or
complex structure of X̂. Hence dimC Π = b2(X) + 1 = b3(X̂).
Along this slice, the central charge is given by the period

Z (γ) =

∫
γ̂

Ω3,0

of the holomorphic 3-form on X̂ on a dual 3-cycle γ̂ ∈ H3(X̂,Z).
Near the large volume point inMK (X), or MUM point inMcx (X̂),

Z (E) ∼ −
∫
X

e−zaHa
√

Td(TX) ch(E)
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Generalized Donaldson-Thomas invariants

Given a (weak) stability condition σ = (Z ,A), an object F ∈ A is
called σ-semi-stable if arg Z (F ′) ≤ arg Z (F ) for every non-zero
subobject F ′ ⊂ F (where 0 < arg Z ≤ π).

LetMσ(γ) be the moduli stack of σ-semi-stable objects of class γ
in A. Following [Joyce-Song’08] one can associate the DT invariant
Ω̄σ(γ) ∈ Q. When γ is primitive andMσ(γ) is a smooth projective
variety, then Ω̄σ(γ) = (−1)dimCMσ(γ)χ(Mσ(γ)).
Conjecturally, the generalized DT invariant defined by

Ωσ(γ) =
∑
m|γ

µ(m)

m2 Ω̄σ(γ/m)

is integer for any γ, and coincides with the physical BPS index
along the slice Π ⊂ Stab C.
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Wall-crossing

The invariants Ω̄σ(γ) are locally constant on S, but jump across
walls of instability (or marginal stability), where the central charge
Z (γ) aligns with Z (γ′) where γ′ = ch E ′ for a subobject E ′ ⊂ E .
The jump is governed by a universal wall-crossing formula.

Joyce Song’08; Kontsevich Soibelman’08

Physically, the jump corresponds to the (dis)appearance of
multi-centered black hole bound states. In the simplest case,

∆Ω̄(γ1 + γ2) = (−1)〈γ1,γ2〉+1|〈γ1, γ2〉| Ω̄(γ1) Ω̄(γ2)
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S-duality constraints on DT invariants

Constraints on DT invariants can be derived by studying instanton
corrections to the moduli space in IIA/X× S1(R)=M/X× T 2(τ).

The moduli spaceM3 factorizes intoMH × M̃V where

1 MH parametrizes the complex structure of X+ dilaton φ + Ramond
gauge fields in Hodd(X)

2 M̃V parametrizes the Kähler structure of X + radius R + Ramond
gauge fields in Hodd(X)

Both factors carry a quaternion-Käler metric. MH is largely
irrelevant for this talk, but note thatMH and M̃V get exchanged
under mirror symmetry.
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S-duality constraints on DT invariants

Near R →∞, M̃V is a torus bundle over R+ ×MK with semi-flat
QK metric, but the QK metric receives O(e−R|Z (γ)|) corrections
from Euclidean black holes winding around S1.

These corrections are determined from the DT invariants Ωz(γ) by
a twistorial construction à la Gaiotto-Moore-Neitzke [Alexandrov BP

Saueressig Vandoren’08]

Since type IIA/S1(R) is the same as M-theory on T 2(τ), M̃V must
have an isometric action of SL(2,Z). This strongly constrains the
DT invariants in the large volume limit [Alexandrov, Banerjee, Manschot, BP,

Robles-Llana, Persson, Rocek, Saueressig, Theis, Vandoren ’06-19]

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds KIPMU, 14/2/2023 16 / 50



S-duality constraints on DT invariants

Near R →∞, M̃V is a torus bundle over R+ ×MK with semi-flat
QK metric, but the QK metric receives O(e−R|Z (γ)|) corrections
from Euclidean black holes winding around S1.
These corrections are determined from the DT invariants Ωz(γ) by
a twistorial construction à la Gaiotto-Moore-Neitzke [Alexandrov BP

Saueressig Vandoren’08]

Since type IIA/S1(R) is the same as M-theory on T 2(τ), M̃V must
have an isometric action of SL(2,Z). This strongly constrains the
DT invariants in the large volume limit [Alexandrov, Banerjee, Manschot, BP,

Robles-Llana, Persson, Rocek, Saueressig, Theis, Vandoren ’06-19]

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds KIPMU, 14/2/2023 16 / 50



S-duality constraints on DT invariants

Near R →∞, M̃V is a torus bundle over R+ ×MK with semi-flat
QK metric, but the QK metric receives O(e−R|Z (γ)|) corrections
from Euclidean black holes winding around S1.
These corrections are determined from the DT invariants Ωz(γ) by
a twistorial construction à la Gaiotto-Moore-Neitzke [Alexandrov BP

Saueressig Vandoren’08]

Since type IIA/S1(R) is the same as M-theory on T 2(τ), M̃V must
have an isometric action of SL(2,Z). This strongly constrains the
DT invariants in the large volume limit [Alexandrov, Banerjee, Manschot, BP,

Robles-Llana, Persson, Rocek, Saueressig, Theis, Vandoren ’06-19]

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds KIPMU, 14/2/2023 16 / 50



S-duality constraints on BPS indices

Requiring that M̃V admits an isometric action of SL(2,Z) near large
volume, one can show that DT invariants Ωz(ch0, ch1, ch2, ch3) satisfy

For skyscraper sheaves (or D0-branes), Ωz(0,0,0,n) = −χX

For classes supported on a curve of class qaγ
a ∈ Λ∗ = H2(X,Z),

Ωz(0,0,qa,n) = GV(0)
qa is given by the genus-zero GV invariant

For classes supported on an irreducible divisor D of class
paγa ∈ Λ = H4(X,Z), the generating series of rank 0 DT invariants

hpa,qa(τ) :=
∑

n

Ω̄?(0,pa,qa,n) qn+ 1
2 qaκabqb− 1

2 paqa−χ(D)
24

should be a vector-valued, weakly holomorphic modular form of
weight w = −1

2b2(X)− 1 and prescribed multiplier system.
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S-duality constraints on D4-D2-D0 indices

hpa,qa(τ) =
∑

n

Ω̄?(0,pa,qa,n) qn+ 1
2 qaκabqb+ 1

2 paqa−χ(D)
24

Here, Ω̄?(0,pa,qa,n) is the index in the large volume attractor
chamber

Ω̄?(γ) = lim
λ→+∞

Ω̄−κabqb+iλpa(γ)

where κab is the inverse of the quadratic form κab = κabcpc with
Lorentzian signature (1,b2(X)− 1).

At least for CY threefolds with b2(X) = 1, Ω̄?(γ) coincides with the
DT invariant counting Gieseker semi-stable sheaves.
The classical Bogolomov-Gieseker inequality guarantees that n is
bounded from below, n ≥ −1

2qaκ
abqb − 1

2paqa.
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S-duality constraints on D4-D2-D0 indices

By construction, Ω?(0,pa,qa,n) is invariant under tensoring with a
line bundle O(εaHa) (aka spectral flow)

qa → qa − κabε
b , n 7→ n − εaqa +

1
2
κabε

aεb

Thus, the D2-brane charge qa can be restricted to the finite set
Λ∗/Λ, of cardinal |det(κab)|.

hpa,qa transforms under the Weil representation of Mp(2,Z)
associated to the lattice Λ, e.g.

hpa,qa(−1/τ) =
∑

q′a∈Λ∗/Λ

e−2πiκabqaq′b+ iπ
4 (b2(X)+2χ(OD)−2)

τ1+ 1
2 b2(X)

√
|det(κab)|

hpa,q′a(τ)
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D4-D2-D0 indices from elliptic genus

Summing over all D2-brane charges and using spectral flow
invariance, one gets

Zp(τ, v) :=
∑

q∈Λ,n

Ω̄?(0,pa,qa,n) qn+ 1
2 qaκabqbe2πiqava

=
∑

q∈Λ∗/Λ

hp,q(τ)Θq(τ, v)

where Θq(τ, v) is the (non-holomorphic) Siegel theta series for the
indefinite lattice (Λ, κab). S-duality then requires that Zp should
transform as a (skew-holomorphic) Jacobi form.

The Jacobi form Zp can be interpreted as the elliptic genus of the
(0,4) superconformal field theory obtained by wrapping an
M5-brane on the divisor D [Maldacena Strominger Witten ’98].
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Mock modularity constraints on D4-D2-D0 indices

For γ supported on a reducible divisor D =
∑n≥2

i=1 Di , the
generating series hp (omitting q index for brevity) is no longer
expected to be modular. Rather, it should be a vector-valued mock
modular form of depth n − 1 and same weight/multiplier system.

Alexandrov Banerjee Manschot BP ’16-19

There exists explicit non-holomorphic theta series such that

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

transforms as a modular form of weight −1
2b2(X)− 1. Moreover

the completion satisfies an explicit holomorphic anomaly equation,

∂τ̄ ĥp(τ, τ̄) =
∑

p=
∑n≥2

i=1 pi

Θ̂n({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)
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Crash course on indefinite theta series

Θn and Θ̂n belongs to the class of indefinite theta series

ϑΦ,q(τ, τ̄) = τ−λ2

∑
k∈Λ+q

Φ
(√

2τ2k
)

e−iπτQ(k)

where (Λ,Q) is an even lattice of signature (r ,d − r), q ∈ Λ∗/Λ,
λ ∈ R. The series converges if f (x) ≡ Φ(x)e

π
2 Q(x) ∈ L1(Λ⊗ R).

Theorem (Vignéras, 1978): {ϑΦ,q,q ∈ Λ∗/Λ} transforms as a
vector-valued modular form of weight (λ+ d

2 ,0) provided

R(x)f ,R(∂x )f ∈ L2(Λ⊗ R) for any polynomial R(x) of degree ≤ 2[
∂2

x + 2π(x∂x − λ)
]

Φ = 0 [*]

The relevant lattice Λ = H2(X,Z)⊕(n−1) has signature
(r ,d − r) = (n − 1)(1,b2(X)− 1).
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[
∂2

x + 2π(x∂x − λ)
]

Φ = 0 [*]

The relevant lattice Λ = H2(X,Z)⊕(n−1) has signature
(r ,d − r) = (n − 1)(1,b2(X)− 1).
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Indefinite theta series

Example 1 (Siegel): Φ = eπQ(x+), where x+ is the projection of x
on a fixed plane of dimension r , satisfies [*] with λ = −n. ϑΦ is
then the usual (non-holomorphic) Siegel-Narain theta series.

Example 2 (Zwegers): In signature (1,d − 1), choose C,C′ two
vectors such that Q(C),Q(C′), (C,C′) > 0, then

Φ̂(x) = Erf
(

(C,x)
√
π√

Q(C)

)
− Erf

(
(C′,x)

√
π√

Q(C′)

)
-2 -1 1 2

x

-1.0

-0.5

0.5

1.0

Erf(x)

satisfies [*] with λ = 0. As |x | → ∞, or if Q(C) = Q(C′) = 0,

Φ̂(x)→ Φ(x) := sgn(C, x)− sgn(C′, x)

The theta series Θ2({p1,p2}), Θ̂2({p1,p2}) fall in this class. The
generalization to n ≥ 3 involves generalized error functions
En−1({Ci}, x), obtained as a convolution of eπQ(x+) with∏n−1

i=1 (Ci , x). [Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016]
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Explicity modular completions

The series Θ̂n appearing in the holomorphic anomaly equation

∂τ̄ ĥp(τ, τ̄) =
∑

p=
∑n≥2

i=1 pi

Θ̂n({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)

have a kernel given by a sum over rooted trees,

Φ̂n = Sym
∑

T∈TS
n

(−1)nT−1Ev0

∏
v∈VT \{v0}

Ev

For each vertex with n descendants, Ev = En−1({Ci}, x) with
suitable arguments.
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Explicity modular completions

The series Θn appearing in the modular completion

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

are not modular, but their anomaly cancels against that of hp:

Φn = Sym
∑

T∈TS
n

(−1)nT−1E(+)
v0

∏
v∈VT \{v0}

E(0)
v

where Ev = E(0)
v + E(+)

v with E(0)
v (x) = limλ→∞ Ev (λx).

NB: these formulae hold for generating series of refined invariants,
otherwise derivatives of error functions appear.

Alexandrov Manschot BP 18-19
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Mock modularity for Vafa-Witten invariants

In order to test these modular predictions, let us consider
X = Tot(KS) where S is a complex Fano surface.

The DT invariant Ω̄z(0,N[S], µ,n) reduces to the Vafa-Witten
invariant Ω̄J(N, µ,n) associated to the moduli stack of Gieseker
semi-stable sheaves of class (ch0, ch1, ch2) = (N, µ,n) on S.
Since b+

2 (S) = 1, Vafa-Witten invariants for rank N > 1 have
non-trivial dependence on the Kähler form J = zaHa.
The large volume attractor point corresponds to the canonical
polarization J ∝ c1(S). Denote by Ω̄?(N, µ,n) the corresponding
DT invariants.
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Mock modularity for local CY

We predict that the generating series

hN,µ(τ) =
∑

n

Ω̄?(N, µ,n) qn−N−1
2N µ2−N χ(S)

24 , µ ∈ Z/NZ

should transform as a vv mock modular form of weight
w = −1− b2(S)

2 and depth N − 1.

For N = 1, the moduli space reduces to the Hilbert scheme of n
points on S, and the generating series is manifestly modular
[Goettsche’90],

h1,µ(τ) =
1

ηb2(S)+2

For N > 1, one expects non-holomorphic contributions from the
boundary of the space of flat connections where the holonomy
becomes reducible [Vafa Witten 94; Dabholkar Putrov Witten ’20].
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Mock modularity for local CY

For S = P2, rank 2 Vafa-Witten invariants are related to Hurwitz
class numbers, counting equivalence classes of binary quadratic
forms [Klyachko’91, Yoshioka’94]

h2,µ(τ) =
3Hµ(τ)

η6

{
H0(τ) = − 1

12 + 1
2q + q2 + 4

3q3 + 3
2q4 + . . .

H1(τ) = q
3
4
(1

3 + q + q2 + 2q3 + q4 + . . .
)

This is one of the simplest examples of depth 1 mock modular
forms, with completion [Hirzebruch Zagier’75-76]

ĥ2,µ(τ, τ̄) = h2,µ(τ) +
3(1 + i)
8π(η3)2

∫ i∞

−τ̄

∑
m∈Z+µ

2
e2iπm2udu

(τ + u)3/2

consistent with our general prescription (the integral can be
expressed in terms of Erfc)
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Mock modularity for Vafa-Witten invariants

For any del Pezzo surface S and any rank N, the VW invariants
can be obtained by a sequence of blow ups and wall-crossings.
The generating series is expressed in terms of generalized
Appell-Lerch sums [Yoshioka’95-96, Manschot’10-14]∑

k∈Zr

q
1
2Q(k)∏N−1

i=1 (1− e2πiui q(Ci ,k))

Rewriting those as indefinite theta series and replacing products
of sign functions by generalized error functions, one can obtain
the modular completion and confirm our general prescription
[Alexandrov BP Manschot’19].
It would be nice to interpret hN,µ as the graded character TrqL0− c

24

for some VOA acting on the cohomology of the moduli stack of
semistable coherent sheaves on S. Mock modularity would then
follow if the VOA is quasi-lisse [Arakawa Kawasetsu’16]
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Modularity for one-modulus compact CY

Let X be a compact CY threefold with H2(X,Z) = ZH. Can we
compute rank 0 DT invariants Ω̄?(0,NH,q,n) and test modularity ?

We focus on smooth complete intersections in weighted projective
space (CICY), X = Xdi (wj) with

∑
di =

∑
wj . There are 13 such

models, with Kähler moduli spaceMK = P1\{0,1,∞}, with a
large volume point at z = 0 and a conifold singularity at z = 1.
The central charge Zz(γ) is expressed in terms of hypergeometric
functions. GV invariants GV(g)

Q can be computed up to high genus
by direct integration [Huang Klemm Quackenbush’06], and are related to
rank 1 DT invariants by [Maulik Nekrasov Okounkov Pandharipande’06].
I will concentrate on N = 1, and discuss N = 2 if time permits.

Gaiotto Strominger Yin ’06-07; Alexandrov Gaddam Manschot BP’22
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Modularity for one-modulus compact CY

X χX κ c2(TX) χ(OD) n1 C1
X5(15) −200 5 50 5 7 0
X6(14,2) −204 3 42 4 4 0
X8(14,4) −296 2 44 4 4 0
X10(13,2,5) −288 1 34 3 2 0
X4,3(15,2) −156 6 48 5 9 0
X4,4(14,22) −144 4 40 4 6 1
X6,2(15,3) −256 4 52 5 7 0
X6,4(13,22,3) −156 2 32 3 3 0
X6,6(12,22,32) −120 1 22 2 1 0
X3,3(16) −144 9 54 6 14 1
X4,2(16) −176 8 56 6 15 1
X3,2,2(17) −144 12 60 7 21 1
X2,2,2,2(18) −128 16 64 8 33 3
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Abelian D4-D2-D0 invariants

For N = 1, the generating series

h1,q =
∑
n∈Z

Ω?(0,H,q,n) qn+ q2

2κ+ q
2−

χ(D)
24 , q ∈ Z/κZ

should transform as a vector-valued modular form of weight −3
2 in

the Weil representation of Z[κ] with κ = H3.

An overcomplete basis is given for κ even by

Ea
4 Eb

6
η4κ+c2

D`(ϑ
(κ)
q ) with ϑ

(κ)
q =

∑
k∈Z+ q

κ

q
1
2κk2

where D = q∂q − w
12E2, is the Serre derivative (Alternatively, one

may use Rankin-Cohen brackets).

For κ odd, the same works with ϑ(κ)
q =

∑
k∈Z+ q

κ
+ 1

2
(−1)κk k2q

1
2κk2

.
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A naive Ansatz for the polar terms

h1,q is uniquely determined by the polar terms n < χ(D)
24 −

q2

2κ −
q
2 ,

but the dimension d1 = n1 − C1 of the space of modular forms
may be smaller than the number n1 of polar terms !

Physically, we expect that polar coefficients arise as bound states
of D6-brane and anti D6-branes [Denef Moore’07]

Earlier studies [Gaiotto Strominger Yin’06] suggest that only bound states
of the form (D6 + qD2 + nD0,D6(−1)) contribute to polar coeffs:

Ω(0,1,q,n) = (−1)χ(OD)−q−n+1 (χ(OD)− q − n) DT (q,n)

where DT (q,n) counts ideal sheaves with ch2 = q and ch3 = n
[Alexandrov Gaddam Manschot BP’22]
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GV/DT/PT relation

For a single D6-brane, the DT-invariant DT (q,n) = Ω(1,0,q,n) at
large volume can be computed via the GV/DT relation

∑
Q,n

DT (Q,n) qnvQ = M(−q)χX
∏

Q,g,`

(
1− (−q)g−`−1vQ

)(−1)g+`

(
2g − 2
`

)
GV(g)

Q

where M(q) =
∏

n≥1(1− qn)−n is the Mac-Mahon function.
Maulik Nekrasov Okounkov Pandharipande’06

Pandharipande-Thomas invariants PT (Q,n) counting stable pairs
E = (OX

s→ F ) with [F ] = Q and χ(F ) = n satisfy a similar relation
without the Mac-Mahon factor M(−q)χX .
The topological string partition function is given by

Ψtop(z, λ) = M(−q)−χX/2ZDT , q = eiλ, v = e2πiz/λ

can be computed by the direct integration method.
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Modular predictions for D4-D2-D0 indices (naive)

Remarkably, there exists a vv modular form with integer Fourier
coefficients matching these polar terms for almost all CICY
(except X4,2,X3,2,2,X2,2,2,2 ), reproducing earlier results [Gaiotto

Strominger Yin] by for X5,X6,X8,X10 and X3,3

X5 = P4[5]:

h1,0 = q−
55
24

(
5− 800q + 58500q2 + 5817125q3 + . . .

)
h1,±1 = q−

55
24 + 3

5

(
0 + 8625q− 1138500q2 + 3777474000q3 + . . .

)
h1,±2 = q−

55
24 + 2

5

(
0 + 0q− 1218500q2 + 441969250q3 + . . .

)
X10 = P4

5,2,1,1,1[10]:

h1,0
?
=

541E4
4 +1187E4E2

6
576 η35 = q−

35
24

(
3− 576q + 271704q2 + · · ·

)
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Rank 0 DT invariants from GV invariants

Our Ansatz for polar terms was just an educated guess.
Fortunately, recent progress in Donaldson-Thomas theory allows
to compute D4-D2-D0 indices in a rigorous fashion, and compare
with modular predictions.

Bayer Macri Toda’11; Toda’11; Feyzbakhsh Thomas’20-22

The key idea is to consider a family of weak stability conditions on
the boundary of Stab C, called tilt stability, with degenerate central
charge

Zb,t (E) =
i
6

t3 ch0(E)− 1
2

t2 chb
1(E)− it chb

2(E) + 0 chb
3(E)

with chb
k (E) =

∫
X H3−ke−bH ch(E). The heart Ab is generated by

length-two complexes E d→ F with chb
1(E) > 0, chb

1(F) ≤ 0.

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds KIPMU, 14/2/2023 36 / 50



Rank 0 DT invariants from GV invariants

Our Ansatz for polar terms was just an educated guess.
Fortunately, recent progress in Donaldson-Thomas theory allows
to compute D4-D2-D0 indices in a rigorous fashion, and compare
with modular predictions.

Bayer Macri Toda’11; Toda’11; Feyzbakhsh Thomas’20-22

The key idea is to consider a family of weak stability conditions on
the boundary of Stab C, called tilt stability, with degenerate central
charge

Zb,t (E) =
i
6

t3 ch0(E)− 1
2

t2 chb
1(E)− it chb

2(E) + 0 chb
3(E)

with chb
k (E) =

∫
X H3−ke−bH ch(E). The heart Ab is generated by

length-two complexes E d→ F with chb
1(E) > 0, chb

1(F) ≤ 0.

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds KIPMU, 14/2/2023 36 / 50



Rank 0 DT invariants from GV invariants

Tilt stability agrees with physical stability at large volume, but the
chamber structure is much simpler: walls are straight lines in the
plane spanned by (b,w = 1

2b2 + 1
6 t2), with w > 1

2b2.

νb,w (E) = ch2 .H−w ch0 .H3

ch1 .H2−b ch0 .H3

$(E) =
(

ch1 .H2

ch0 .H3 ,
ch2 .H
ch0 .H3

)
$̃(E) =

(
2 ch2 .H
ch1 .H2 ,

3 ch3
ch1 .H2

)

Importantly, for any νb,w -semistable object E there is a conjectural
inequality on Chern classes Ci :=

∫
X chi(E).H3−i [Bayer Macri Toda’11;

Bayer Macri Stellari’16]

(C2
1 − 2C0C2)w + (3C0C3 − C1C2)b + (2C2

2 − 3C1C3) ≥ 0
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Rank 0 DT invariants from GV invariants

By studying wall-crossing between the empty chamber provided
by BMT bound and large volume, [Feyzbakhsh Thomas] show that
D4-D2-D0 indices can be computed from rank 1 DT or PT
invariants, which are in turn related to GV invariants.

In particular for (q,n) large enough, the PT invariant counting
tilt-stable objects of class (−1,0,q,n) is given by [Feyzbakhsh’22]

PT (q,n) = (−1)〈D6(1),γ〉+1〈D6(1), γ〉Ω(γ)

with D6(1) := OX(H)[1] and γ = (0,H,q,n). Using spectral flow
invariance, one finds for all m ≥ m0(q,n)

Ω(γ) = (−1)〈D6(1−m),γ〉+1
〈D6(1−m),γ〉

PT (q′,n′)

{
q′ = q + κm
n′ = n −mq − κ

2 m(m + 1)
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Modular predictions for D4-D2-D0 (rigorous)

Using an extension of this idea, we have computed most of the
polar terms, and many non-polar ones, for all models except
X3,2,2,X2,2,2,2. In all cases, modularity holds with flying colors !

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23

E.g. for X5:

h1,0 = q−
55
24

(
5− 800q + 58500q2 + 5817125q3 + 75474060100q4

+28096675153255q5 + 3756542229485475q6

+277591744202815875q7 + 13610985014709888750q8 + . . .
)
,

h1,±1 = q−
55
24 + 3

5

(
0 + 8625q− 1138500q2 + 3777474000q3

+ 3102750380125q4 + 577727215123000q5 + . . .
)

h1,±2 = q−
55
24 + 2

5

(
0 + 0q− 1218500q2 + 441969250q3 + 953712511250q4

+ 217571250023750q5 + 22258695264509625q6 + . . .
)
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Modular predictions for D4-D2-D0 (rigorous)

We find that our educated guess is correct for X5,X6,X8,X3,3,X4,4,
X6,6 , , but fails for X10,X6,2,X6,4,X4,3 /

E.g. for X10,

h1,0 =
203E4

4 + 445E4E2
6

216 η35 = q−
35
24

(
3− 575q + 271955q2 + · · ·

)
rather than 3− 576q + . . . , as anticipated by [van Herck Wyder’09].

Note that [Toda’13, Feyzbakhsh’22] also prove a version of our D6− D6
ansatz, but under very restrictive conditions which are only
satisfied by the most polar terms.
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Mock modularity for non-Abelian D4-D2-D0 indices

Let us consider D4-D2-D0 indices with N = 2 units of D4-brane
charge. In that case, {h2,q,q ∈ Z/(2κZ)} should transform as a vv
mock modular form with modular completion

ĥ2,q(τ, τ̄) = h2,q(τ) +
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−q Θ

(κ)
q2−q1+κ h1,q1 h1,q2

where
Θ

(κ)
q = (−1)q

8π

∑
k∈2κZ+q

|k |β
(
τ2k2

κ

)
e−

πiτ
2κ k2

,

and β(x2) = 2|x |−1e−πx2 − 2πErfc(
√
π|x |).

For κ = 1, the series Θ
(1)
q is the one appearing in the modular

completion of rank 2 Vafa-Witten invariants on P2 !
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Mock modularity for non-Abelian D4-D2-D0 indices

The series Θ
(κ)
q is convergent but not modular invariant. Suppose

there exists a holomorphic function g(κ)
q such that Θ

(κ)
q + g(κ)

q
transforms as a vv modular form. Then

h̃2,q(τ, τ̄) = h2,q(τ)−
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−q g(κ)

q2−q1+κ h1,q1 h1,q2

will be an ordinary weak holomorphic vv modular form, hence
uniquely determined by its polar part.

To construct g(κ)
q , notice that for κ prime, Θ

(κ)
q is obtained from

Θ
(1)
q by acting with the Hecke-type operator [Bouchard Creutzig

Diaconescu Doran Quigley Sheshmani’16]

(Tκ[φ])q(τ) =
1
κ

∑
a,d>0
ad=κ

(
κ
d

)w+ 1
2 δκ(q,d)

d−1∑
b=0

e−πi b
a q2

φdq
(aτ+b

d

)
,

with q ∈ Λ∗/Λ(κ) and δκ(q,d) = 1 if q ∈ Λ∗/Λ(d) and 0 otherwise.
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Mock modularity for non-Abelian D4-D2-D0 indices

For κ = 1, a candidate for g(1)
q is well-known: the generating

series of Hurwitz class numbers [Hirzebruch Zagier 1973]

H0(τ) =− 1
12

+
1
2

q + q2 +
4
3

q3 +
3
2

q4 + . . .

H1(τ) = q
3
4

(
1
3

+ q + q2 + 2q3 + q4 + . . .

)
For any κ, we can thus choose g(κ)

q = Tκ(H)q.

The vv modular form h̃2,q is uniquely specified by its polar terms
but those must satisfy constraints for such a form to exist, and
integrality is not guaranteed !
Explicit formulae by S. Feyzbakhsh in principle allow to compute
polar terms from DT/PT invariants, hence GV invariants, but the
required degree and genus seem prohibitive so far.
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Mock modularity for non-Abelian D4-D2-D0 indices

X χX κ c2 χ(O2D) n2 C2
X5(15) −200 5 50 15 36 1
X6(14,2) −204 3 42 11 19 1
X8(14,4) −296 2 44 10 14 1
X10(13,2,5) −288 1 34 7 7 0
X4,3(15,2) −156 6 48 16 42 0
X4,4(14,22) −144 4 40 12 25 1
X6,2(15,3) −256 4 52 14 30 1
X6,4(13,22,3) −156 2 32 8 11 1
X6,6(12,22,32) −120 1 5 2 5 0
X3,3(16) −144 9 54 21 78 3
X4,2(16) −176 8 56 20 69 3
X3,2,2(17) −144 12 60 26 117 0
X2,2,2,2(18) −128 16 64 32 185 4
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Quantum geometry from stability and modularity

Conversely, we can use our knowledge of Abelian D4-D2-D0 invariants
to compute GV invariants and push the direct integration method to
higher genus !

Gopakumar-Vafa
invariants GV(g)

Q

Pandharipande-Thomas
invariants PT(Q,n)

Rank 0 DT-invariants
hN,q(τ)

Wall crossing

MNOP relation
new constraints on

holomorphic ambiguities

Modular
bootstrap

Direct integration

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

X χX κ type ginteg gmod gavail

X5(15) −200 5 F 53 69 60
X6(14,2) −204 3 F 48 63 48
X8(14,4) −296 2 F 60 80 48
X10(13,2,5) −288 1 F 50 70 47
X4,3(15,2) −156 6 F 20 24 24
X6,4(13,22,3) −156 2 F 14 17 17
X6,6(12,22,32) −120 1 K 18 21 21
X4,4(14,22) −144 4 K 26 34 34
X3,3(16) −144 9 K 29 33 33
X4,2(16) −176 8 C 50 64 50
X6,2(15,3) −256 4 C 63 78 42
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Conclusion

The existence of an isometric action of S-duality on the
vector-multiplet moduli space in D = 3, leads to strong modularity
constraints on rank 0 DT invariants in the large volume limit.

For p =
∑n

i=1 pi the sum of n irreducible divisors, the generating
function hp is a mock modular form of depth n − 1 with an explicit
shadow, thus it is uniquely determined by its polar coefficients.
While modularity is clear physically, its mathematical origin is
mysterious. Perhaps VOAs or Noether-Lefschetz theory can help
[Bouchard Creutzig Diaconescu Doran Quigley Sheshmani’16]

Using modularity and GV/DT/PT relations, we can not only
compute D4D2-D0 indices, but also push Ψtop to higher genus !
Mock modularity affects the growth of Fourier coefficients, hence
the microscopic entropy of supersymmetric black holes. It should
have an imprint on the macroscopic side as well...
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Thanks for your attention !
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A new explicit formula (S. Feyzbakhsh’23)

Let (X,H) be a smooth polarised CY threefold with Pic(X) = Z.H
satisfying the BMT conjecture.

Fix m ∈ Z, β ∈ H2(X,Z) and define x = β.H
H3 , α = − 3m

2β.H

f (x) :=



x + 1
2 if 0 < x < 1√

2x + 1
4 if 1 < x < 15

8
2
3x + 3

4 if 15
8 ≤ x < 9

4
1
3x + 3

2 if 9
4 ≤ x < 3

1
2x + 1 if 3 ≤ x

1

2
1

15

8

9

4
3 4

x

2

3

4

α
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A new explicit formula (S. Feyzbakhsh’23)

Theorem (wall-crossing for class (−1,0, β,−m):
If f (x) < α then the stable pair invariant PTm,β equals∑

(m′, β′)

(−1)χm′,β′χm′,β′ PTm′,β′ Ω
(

0, H, H2

2 − β
′ + β , H3

6 + m′ −m − β′.H
)
,

where χm′,β′ = β.H + β′.H + m −m′ − H3

6 −
1

12c2(X).H.

The sum runs over (m′, β′) ∈ H0(X,Z)⊕ H2(X,Z) such that

0 ≤ β′.H ≤H3

2 + 3mH3

2β.H + β.H

− (β′.H)2

2H3 − β′.H
2 ≤ m′ ≤ (β.H−β′.H)2

2H3 + β.H+β′.H
2 + m

In particular, β′.H < β.H.

Corollary (Castelnuovo bound): PTm,β = 0 unless m ≥ − (β.H)2

2H3 − β.H
2
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