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Introduction

A driving force in high energy theoretical physics has been the
quest for a microscopic explanation of the entropy of black holes.
Providing a derivation of the Bekenstein-Hawking formula is a
benchmark test of any theory of quantum gravity.

SBH = 1
4GN

A SBH
?
= log Ω

Sgr A*, Event Horizon Telescope 2022
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Black hole microstates as wrapped D-branes

Back in 1996, Strominger and Vafa argued that String Theory
passes this test with flying colors �, at least in the context of BPS
black holes in vacua with extended supersymmetry: at weak
coupling, BPS states are bound states of D-branes wrapped on
minimal cycles of the internal Calabi-Yau manifold.

Calabi-Yau black hole, courtesy F. Le Guen
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Trous noirs, Cordes et Maths
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BPS black hole entropy from modularity

D-brane bound states can often be understood as excitations of
an effective black string, supporting a (0,4) superconformal field
theory. BPS indices counting such states are encoded in the
elliptic genus, and their asymptotic growth at large charge is
governed by modularity.

Recall that f (τ) =
∑

n≥0 c(n)qn−∆ (with q = e2πiτ , Imτ > 0) is a

modular form of weight k if ∀
(

a b
c d

)
∈ SL(2,Z),

f
(

aτ + b
cτ + d

)
= (cτ + d)k f (τ) ⇒ c(n) ∼ exp

(
4π
√

∆n
)
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BPS indices and Donaldson-Thomas invariants

In the context of type IIA strings compactified on a Calabi-Yau
three-fold Y, bound states of D6-D4-D2-D0-branes are best
understood as stable objects in the derived category C = DbCohY.
The problem becomes a question in enumerative geometry: for
fixed electromagnetic charge γ = (ch0, ch1, ch2, ch3), compute the
Donaldson-Thomas invariant Ωz(γ) counting stable objects in C,
with respect to a stability condition z ∈ Stab C, and determine its
growth as |γ| → ∞.
Physical reasoning allows to make very non-trivial predictions
about properties of DT invariants. In particular, the modular
invariance of suitable generating series remains mysterious from
mathematics viewpoint, and can only be verified a posteriori.
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Precision counting of N = 8 BPS black holes

For Y = T 6, the index Ω(γ) counting 1/8-BPS states depends only
on a certain quartic polynomial n = I4(γ) in the charges, and is
moduli independent. It is given by the Fourier coefficient c(n) of a
weak modular form,

θ3(2τ)

η6(4τ)
=
∑

n≥−1

c(n) qn =
1
q

+ 2 + 8q3 + 12q4 + 39q7 + 56q8 + . . .

Moore Maldacena Strominger 1999, BP 2005, Shih Strominger Yin 2005

Bryan Oberdieck Pandharipande Yin’15

The Harder-Ramanujan-Hardy formula gives c(n) ∼ eπ
√

n as
n→∞, in agreement with SBH(γ) = 1

4A(γ) ,

The full Rademacher expansion can now be derived by
localization in supergravity ,,,[Dabholkar Gomes Murthy’10, Iliesiu Turiaci

Murthy’22]
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Precision counting of N = 4 BPS black holes

For Y = K3 × T2 (and orbifolds thereof preserving N = 4 SUSY),
the BPS index counting 1/4-BPS states with charge γ = (Q,P) is
a Fourier coefficient of a meromorphic Siegel modular form,

Ωz(γ) =

∮
C(γ,z)

eπi(ρQ2+σP2+2vP·Q)

Φk−2(τ)
,

(
ρ v
v σ

)
∈ H2

Dijkgraaf Verlinde Verlinde ’96; David Jatkar Sen ’05-06; . . .

The integration contour C(γ, z) depends on γ and on moduli
z ∈M4 = SL(2)

U(1) ×
O(6,2k−2)

O(6)×O(2k−2) . For large |γ|, a saddle-point
computation gives log Ωz ∼ 1

4A(γ) ,
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Wall-crossing for N = 4 BPS black holes

When z crosses real codimension-1 walls

W (γ1, γ2) = {z ∈M4,M(γ1 + γ2) = M(γ1) + M(γ2)}

where γ1, γ2 are 1/2-BPS charge vectors, the contour C(γ, z)
crosses a pole of 1/Φk−2(τ), so that the index Ωz(γ) jumps
according to the primitive wall-crossing formula

∆Ω(γ1 + γ2) = (−1)〈γ1,γ2〉+1|〈γ1, γ2〉|Ω(γ1) Ω(γ2)

Denef Moore ’07; Cheng, Verlinde ’07; Sen ’07-08

corresponding to contributions of bound states of two 1/2-BPS
black holes.
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Attractor indices and mock modular forms

One may extract the contributions of single-centered black holes
by evaluating Ω(γ, z) at the attractor point zγ , where two-centered
bound states are not allowed to form.

r2 dza

dr = gab∂bM2(γ, z)

In this simple case, this fixes Imρ, Imv , Imσ in terms of Q,P.
The attractor indices Ω∗(γ) = Ωzγ (γ) turn out to be Fourier
coefficients of a (vector-valued) mock modular form.

Dabholkar Murthy Zagier ’12
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Mock modular forms

A (depth one) mock modular form of weight w transforms
inhomogeneously under SL(2,Z),

f
(

aτ+b
cτ+d

)
= (cτ + d)k

[
f (τ)−

∫ i∞

−d/c
g(−ρ̄)(τ + ρ)−w dρ

]
where g(τ) is an ordinary modular form of weight 2−w , known as
the shadow. Equivalently, the non-holomorphic completion

f̂ (τ, τ̄) := f (τ) +

∫ i∞

−τ̄
g(−ρ̄)(τ + ρ)−w dρ

transforms like a modular form of weight w ,
and satisfies the holomorphic anomaly equa-
tion

τw
2 ∂τ̄ f̂ (τ, τ̄) ∝ g(τ)

Ramanujan’1920, Hirzebruch-Zagier’1973, Zwegers’02
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Precision counting of Calabi-Yau black holes

When Y is a CY threefold of generic SU(3) holonomy, life is more
complicated. For one, the moduli spaceM4 is no longer a
symmetric space. Instead, it factorizes into a product
M4 =MV ×MH

1 MV parametrizes the Kähler structure of Y, and receives
worldsheet instanton corrections weighted by GW/GV invariants

2 MH parametrizes the dilaton + complex structure of Y+ Ramond
gauge fields, and receives D-instanton corrections (largely
irrelevant for this talk)

The BPS indices Ωz(γ) are independent ofMH , but have a
complicated chamber structure onMV , due to the possibility of
BPS bound states with an arbitrary number of constituents. The
full wall-crossing formula for ∆Ω(N1γ1 + N2γ2) is needed [Kontsevich

Soibelman’08, Joyce Song’08].
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Instanton corrections from Euclidean black holes

Upon reducing on a circle,MH goes along for the ride butMV
extends to a larger quaternion-Kähler space M̃V parametrizing
the radius R, Kähler moduli and Ramond gauge fields along S1.
At large R, M̃V is a flat torus bundle over R+ ×MV , but it
receives O(e−RM(γ)) corrections from Euclidean black holes
winding around S1, weighted by the same DT invariants Ωz(γ)
counting black holes in D = 4.
Since type IIA/S1 is the same as M-theory on T 2, M̃V must have
an isometric action of SL(2,Z). This enforces modularity
constraints on DT invariants. [Alexandrov, Banerjee, Manschot, BP,

Robles-Llana, Rocek, Saueressig, Theis, Vandoren ’06-19]

By mirror symmetry, M̃V is also the hypermultiplet moduli space
in type IIB on Ŷ, invariant under usual SL(2,Z) S-duality.
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S-duality constraints on BPS indices

Requiring that M̃V admits an isometric action of SL(2,Z) near large
volume, one can show that DT invariants Ωz(ch0, ch1, ch2, ch3) satisfy

For n D0-branes, Ωz(0,0,0,n) = −χY (independent of n)
For D2-branes supported on a curve of class
qaγ

a ∈ Λ∗ = H2(Y,Z), Ωz(0,0,qa,n) = N(0)
qa is given by the

genus-zero GV invariant (independent of n)
For D4-branes supported on an ample divisor D of class
paγa ∈ Λ = H4(Y,Z), the generating series

hpa,qa(τ) :=
∑

n

Ω?(0,pa,qa,n) qn− 1
2 qaκabqb

should be a vector-valued weakly holomorphic modular form of
weight w = −1

2b2(Y)− 1 and prescribed multiplier system.
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S-duality constraints on D4-D2-D0 indices

hpa,qa(τ) =
∑

n

Ω?(0,pa,qa,n) qn− 1
2 qaκabqb

Here, κab is the inverse of the quadratic form κab = κabcpc with
Lorentzian signature (1,b2(Y)− 1), and Ω?(γ) is the index in the
large volume attractor chamber

Ω∗(γ) = lim
λ→+∞

Ω(−κabqb+iλpa)(γ)

In particular, Ω?(0,pa,qa,n) is invariant under spectral flow
(tensoring with a line bundle on the divisor D)

qa → qa − κabε
b , n 7→ n − εaqa +

1
2
κabε

aεb

Thus, the D2-brane charge qa can be restricted to the finite set
Λ∗/Λ, of cardinal |det(κab)|.
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D4-D2-D0 indices from elliptic genus

Summing over all D2-brane charges and using spectral flow
invariance, one gets

Zp(τ, v) :=
∑

q∈Λ,n

Ω?(0,pa,qa,n) qn− 1
2 qaκabqbe2πiqava

=
∑

q∈Λ∗/Λ

hp,q(τ)Θq(τ, v)

where Θq(τ, v) is the (non-holomorphic) Siegel theta series for the
indefinite lattice (Λ, κab). S-duality then requires that Zp should
transform as a (non-holomorphic) Jacobi form.
The Jacobi form Zp can be interpreted as the elliptic genus of the
(0,4) superconformal field theory obtained by wrapping an
M5-brane on the divisor D [Maldacena Strominger Witten ’98].
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D4-D2-D0 indices from polar coefficients

A weak modular form h(τ) =
∑

n≥0 c(n)qn−∆ of weight w < 0 is
uniquely determined by polar terms with n−∆ < 0. The existence
of cusp forms in dual weight 2− w may impose constraints on
polar coefficients [Bantay Gannon’07, Manschot Moore’07]

Provided the leading polar coefficient is non-zero, the
Hardy-Ramanujan-Cardy formula gives

log Ω?(γ) ∼ 4π
√
|∆|n ∼ 2π

√
n
6
κabcpapbpc

in precise agreement with the Bekenstein-Hawking entropy. ,
I will discuss later how to compute polar indices in some simple
CY3 manifolds. For now, let me continue with the general story.
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Mock modularity constraints on D4-D2-D0 indices

For γ supported on a reducible divisor D =
∑n≥2

i=1 Di , the
generating series hp (omitting q index for simplicity) is no longer
expected to be modular. Rather, it should be a vector-valued mock
modular form of depth n − 1 and same weight/multiplier system.

Alexandrov Banerjee Manschot BP ’16-19

There exists explicit non-holomorphic theta series such that

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

transforms as a modular form of weight −1
2b2(Y)− 1. Moreover

the completion satisfies an explicit holomorphic anomaly equation,

∂τ̄ ĥp(τ, τ̄) =
∑

p=
∑n≥2

i=1 pi

Θ̂n({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)
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Crash course on Indefinite theta series

Θn and Θ̂n belongs to the class of indefinite theta series

ϑΦ,q(τ, τ̄) = τ−λ2

∑
k∈Λ+q

Φ
(√

2τ2k
)

e−iπτQ(k)

where (Λ,Q) is an even lattice of signature (r ,d − r), q ∈ Λ∗/Λ,
λ ∈ R. The series converges if f (x) ≡ Φ(x)e

π
2 Q(x) ∈ L1(Λ⊗ R).

Theorem (Vignéras, 1978): {ϑΦ,q,q ∈ Λ∗/Λ} transforms as a
vector-valued modular form of weight (λ+ d

2 ,0) provided
R(x)f ,R(∂x )f ∈ L2(Λ⊗ R) for any polynomial R(x) of degree ≤ 2[
∂2

x + 2π(x∂x − λ)
]

Φ = 0 [*]

The relevant lattice Λ = H2(Y,Z)⊕n−1 has signature
(r ,d − r) = (n − 1)(1,b2(Y)− 1).
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Indefinite theta series

Example 1 (Siegel): Φ = eπQ(x+), where x+ is the projection of x
on a fixed plane of dimension r , satisfies [*] with λ = −n. ϑΦ is
then the usual (non-holomorphic) Siegel-Narain theta series.
Example 2 (Zwegers): In signature (1,d − 1), choose C,C′ two
vectors such that Q(C),Q(C′), (C,C′) > 0, then

Φ̂(x) = Erf
(

(C,x)
√
π√

Q(C)

)
− Erf

(
(C′,x)

√
π√

Q(C′)

)
satisfies [*] with λ = 0. As |x | → ∞, or if Q(C) = Q(C′) = 0,

Φ̂(x)→ Φ(x) := sgn(C, x)− sgn(C′, x)

The theta series Θ2({p1,p2}), Θ̂2({p1,p2}) fall in this class. The
generalization to n > 2 involves generalized error functions.

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016
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Modularity for one-modulus compact CY

We now specialize to compact CY threefolds with b2(Y) = 1 and
p = N[D] where D is an ample divisor with [D]3 := κ.
We focus on smooth complete intersections in weighted projective
space (CICY), Y = Xdi (wj) with

∑
di =

∑
wj . There are 13 such

models, with Kähler moduli space P1\{0,1,∞}, with a large
volume point at z = 0 and a conifold singularity at z = 1.
The central charge Zz(γ) is expressed in terms of hypergeometric
functions, and GV invariants N(g)

q are known up to high genus
[Huang Klemm Quackenbush’06]

I will concentrate on N = 1, and discuss N = 2 if time permits.
Gaiotto Strominger Yin ’06-07; Alexandrov Gaddam Manschot BP’22

B. Pioline (LPTHE, Paris) Modular bootstrap on CY threefolds DESY, 1/12/2022 22 / 39



Modularity for one-modulus compact CY

CICY χ(Y) κ c2(TY) χ(OD) n1 C1
X5(15) −200 5 50 5 7 0
X6(14,2) −204 3 42 4 4 0
X8(14,4) −296 2 44 4 4 0
X10(13,2,5) −288 1 34 3 2 0
X4,3(15,2) −156 6 48 5 9 0
X4,4(14,22) −144 4 40 4 6 1
X6,2(15,3) −256 4 52 5 7 0
X6,4(13,22,3) −156 2 32 3 3 0
X6,6(12,22,32) −120 1 22 2 1 0
X3,3(16) −144 9 54 6 14 1
X4,2(16) −176 8 56 6 15 1
X3,2,2(17) −144 12 60 7 21 1
X2,2,2,2(18) −128 16 64 8 33 3
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Computing the polar terms

For N = 1, the generating series

h1,q =
∑
n∈Z

Ω(0,1,q,n) qn+ q2

2κ+ q
2−

χ(D)
24

should transform as a vector-valued modular form of weight −3
2 in

the Weil representation of (Z,m 7→ κm2). In particular q ∈ Z/κZ.
An overcomplete basis is given for κ even by

Ea
4 Eb

6
η4κ+c2

D`(ϑ
(κ)
q ) with ϑ

(κ)
q =

∑
k∈Z+ q

κ
+ 1

2

q
1
2κk2

where D = q∂q − w
12E2, is the Serre derivative (Alternatively, one

may use Rankin-Cohen brackets).
For κ odd, the same works with an extra insertion of (−1)κk k2.
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Computing the polar terms

h1,q is uniquely determined by the polar terms n < χ(D)
24 −

q2

2κ −
q
2 ,

but the dimension d1 = n1 − C1 of the space of modular forms
may be smaller than the number n1 of polar terms !
Physically, we expect that polar coefficients arise as bound states
of D6-brane and anti D6-branes.
For the most polar terms, only states with [D6] = ±1 ought to
contribute [Denef Moore’07].
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Computing the polar terms

For a single D6-brane, the DT-invariant DT (q,n) = Ω(1,0,q,n) at
large volume can be computed via the GV/DT relation

Ψtop =M(−p)χY/2
∑
q,n

DT (q,n) pnvq

=M(−p)χY
∏
q,g,`

(
1− (−p)g−`−1vq

)(−1)g+`

(
2g − 2
`

)
N(g)

q

Maulik Nekrasov Okounkov Pandharipande’06

Pandharipande-Thomas invariants PT (q,n) satisfy the same
relation without Mac-Mahon factor M(−p) =

∏
n≥1(1− (−p)n)−n.
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A naive Ansatz for the polar terms

Earlier studies [Gaiotto Strominger Yin’06] suggest that only bound states
of the form (D6− qD2− nD0,D6(−1)) contribute. If so:

Ω(0,1,q,n) = (−1)] (χ(OD)− q − n) DT (q,n) PT (0,0)

with PT (0,0) = 1 [Alexandrov Gaddam Manschot BP’22]

Remarkably, there exists a modular form with integer Fourier
coefficients matching these polar terms for all models ,
– except X4,2,X3,2,2,X2,2,2,2 /

In particular, the Ansatz above satisfies the modular constraints
on polar terms for X3,3 and X4,4, and reproduces earlier results by
[Gaiotto Yin] for X5,X6,X8,X10 and X3,3 ,
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Modular predictions for D4-D2-D0 indices (naive)

X5 (Quintic in P4):

h1,0 = q−
55
24

(
5− 800q + 58500q2 + 5817125q3 + . . .

)
h1,±1 = q−

55
24 + 3

5

(
0 + 8625q − 1138500q2 + 3777474000q3 + . . .

)
h1,±2 = q−

55
24 + 2

5

(
0 + 0q − 1218500q2 + 441969250q3 + . . .

)
X10 (Decantic in WP5,2,1,1,1):

h1,0
?
=

541E4
4 +1187E4E2

6
576 η35

=q−
35
24

(
3− 576q + 271704q2 + 206401533q3 + · · ·

)
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Rank 0 DT invariants from GV invariants

Our Ansatz for polar terms was just an educated guess.
Fortunately, recent progress in Donaldson-Thomas theory allows
to compute D4-D2-D0 indices in a rigorous fashion, and compare
with modular predictions.

Bayer Macri Toda’11; Toda’11; Feyzbakhsh Thomas’20-22

The key idea is to consider a (non-physical) slice in the space
Stab C of Bridgeland stability conditions, called tilt stability, with
degenerate central charge

Zb,t (E) =
i
6

t3 ch0(E)− 1
2

t2 chb
1(E)− it chb

2(E) + 0 chb
3(E)

with chb
k =

∫
Y H3−ke−bH ch. The heart A is given by length-two

complexes E → F with chb
1(E) ≤ 0, chb

1(F) > 0.
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Rank 0 DT invariants from GV invariants

Tilt stability agrees with physical stability at large volume, but the
chamber structure is much simpler: walls are nested half-circles in
the Poincaré upper half-plane spanned by z = b + i t√

3
.

Most importantly, for any tilt-stable object E there is a conjectural
inequality on Chern classes Ci :=

∫
H3−i chi(E) [Bayer Macri Toda’11;

Bayer Macri Stellari’16]

(C2
1 − 2C0C2)|z|2 + (3C0C3 − C1C2)b + (2C2

2 − 3C1C3) ≥ 0

The BMT bound is known to hold for X5,X6,X8,X4,2 [Li’19,Koseki’20].
By studying wall-crossing between the empty chamber provided
by BMT bound and large volume, [Feyzbakhsh Thomas] show that
D4-D2-D0 indices can be computed from rank 1 DT or PT
invariants, which are in turn related to GV invariants.
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Rank 0 DT invariants from GV invariants

In particular for γ = (0,1,q,n) and (q,n) large enough, the PT
invariant counting states with charge (−1,0,q,n) is given by

PT (q,n) = (−1)〈D6(1),γ〉+1〈D6(1), γ〉Ω(γ)

Using spectral flow invariance, one obtains for m large enough

Ω(γ) = (−1)〈D6(1−m),γ〉+1
〈D6(1−m),γ〉

PT (q′,n′)

{
q′ = q + κm
n′ = n −mq − κ

2 m(m + 1)

PT invariants can be computed from GV invariants via

∑
q,n

PT (q,n) pnvq =
∏
q,g,`

(
1− (−p)g−`−1vq

)(−1)g+`

(
2g − 2
`

)
N(g)

q
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Modular predictions for D4-D2-D0 (rigorous)

Using this idea, we have computed most of the polar terms (and
many non-polar ones) for all models except X3,2,2,X2,2,2,2 – for
those the required GV invariants are currently out of reach.

Alexandrov, Feyzbakhsh, Klemm„ BP, Schimannek, to appear

We find that our educated guess is correct for X5,X6,X8,X3,3,X4,4,
X6,6 , , but (as anticipated by [van Herck Wyder’09]) misses some O(1)
contributions for X10,X6,2,X6,4,X4,3 / E.g. for X10,

h1,0 =
203E4

4 + 445E4E2
6

216 η35 = q−
35
24

(
3− 575q + 271955q2 + · · ·

)
In all cases, modularity holds with flying colors ! ☼ � ,
Note that [Toda’13, Feyzbakhsh’22] also prove a version of our D6− D6
ansatz, but under very restrictive conditions which are only
satisfied by the most polar terms.
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Mock modularity for non-Abelian D4-D2-D0 indices

Finally, let us discuss D4-D2-D0 indices with N = 2 units of
D4-brane charge. In that case, {h2,q,q ∈ Z/(2κZ)} should
transform as a vv mock modular form with modular completion

ĥ2,q(τ, τ̄) = h2,q(τ) +
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−q Θ

(κ)
q2−q1+κ h1,q1 h1,q2

where
Θ

(κ)
q = (−1)q

8π

∑
k∈2κZ+q

|k |β
(
τ2k2

κ

)
e−

πiτ
2κ k2

,

and β(x2) = 2|x |−1e−πx2 − 2πErfc(
√
π|x |).

For κ = 1, the series Θ
(1)
q is the one appearing in the modular

completion of rank 2 Vafa-Witten invariants on P2 !
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Mock modularity for non-Abelian D4-D2-D0 indices

The series Θ
(κ)
q is convergent but not modular invariant. Suppose

there exists a holomorphic function g(κ)
q such that Θ

(κ)
q + g(κ)

q
transforms as a vv modular form. Then

h̃2,q(τ, τ̄) = h2,q(τ)−
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−q g(κ)

q2−q1+κ h1,q1 h1,q2

will be an ordinary weakly holomorphic vv modular form, hence
uniquely determined by its polar part.

To construct g(κ)
q , notice that for κ prime, Θ

(κ)
q is obtained from

Θ
(1)
q by acting with the Hecke-type operator [Bouchard Creutzig

Diaconescu Doran Quigley Sheshmani’16]

(Tκ[φ])q(τ) =
1
κ

∑
a,d>0
ad=κ

(
κ
d

)w+ 1
2 δκ(q,d)

d−1∑
b=0

e−πi b
a q2

φdq
(aτ+b

d

)
,

with q ∈ Λ∗/Λ(κ) and δκ(q,d) = 1 if q ∈ Λ∗/Λ(d) and 0 otherwise.
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Mock modularity for non-Abelian D4-D2-D0 indices

For κ = 1, a candidate for g(1)
q is well-known: the generating

series of Hurwitz class numbers [Hirzebruch Zagier 1973]

H0(τ) =− 1
12

+
1
2

q + q2 +
4
3

q3 +
3
2

q4 + . . .

H1(τ) = q
3
4

(
1
3

+ q + q2 + 2q3 + q4 + . . .

)
For any κ, we can thus choose g(κ)

q = Tκ(H)q.

The vv modular form h̃2,q is uniquely specified by its polar terms
but those must satisfy constraints for such a form to exist, and
integrality is not guaranteed !
Mathematical results by Feyzbakhsh in principle allow to compute
polar terms from DT/PT invariants, hence GV invariants, but the
required degree and genus is prohibitive so far.
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Mock modularity for non-Abelian D4-D2-D0 indices

CICY χ κ c2 χ(O2D) n2 C2
X5(15) −200 5 50 15 36 1
X6(14,2) −204 3 42 11 19 1
X8(14,4) −296 2 44 10 14 1
X10(13,2,5) −288 1 34 7 7 0
X4,3(15,2) −156 6 48 16 42 0
X4,4(14,22) −144 4 40 12 25 1
X6,2(15,3) −256 4 52 14 30 1
X6,4(13,22,3) −156 2 32 8 11 1
X6,6(12,22,32) −120 1 5 2 5 0
X3,3(16) −144 9 54 21 78 3
X4,2(16) −176 8 56 20 69 3
X3,2,2(17) −144 12 60 26 117 0
X2,2,2,2(18) −128 16 64 32 185 4
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Quantum geometry from stability and modularity

Conversely, we can use our knowledge of Abelian D4-D2-D0
invariants to compute GV invariants and push the direct
integration method to higher genus !

CICY χ κ type ρ ginteg gavail

X5(15) −200 5 F 5 53 51
X6(14,2) −204 3 F 6 48 31
X8(14,4) −296 2 F 8 60 32
X10(13,2,5) −288 1 F 10 50 32
X4,3(15,2) −156 6 F 3 20 24
X6,4(13,22,3) −156 2 F 4 14 17
X6,6(12,22,32) −120 1 K 6 18 22
X4,4(14,22) −144 4 K 4 26 33
X3,3(16) −144 9 K 3 29 33
X4,2(16) −176 8 C 4 50 43
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Conclusion

The existence of an isometric action of S-duality on the
vector-multiplet moduli space in D = 3, leads to strong modularity
constraints on rank 0 DT invariants in the large volume limit.
For p =

∑n
i=1 pi the sum of n irreducible divisors, the generating

function hp is a mock modular form of depth n − 1 with an explicit
shadow, thus it is uniquely determined by its polar coefficients.
While modularity is clear physically, its mathematical origin is
mysterious. Perhaps Noether-Lefschetz theory or VOAs can help
[Bouchard Creutzig Diaconescu Doran Quigley Sheshmani’16]

Using modularity and GV/DT/PT relations, we can not only
compute D4D2-D0 indices, but also push Ψtop to higher genus !
Mock modularity affects the growth of Fourier coefficients, hence
the microscopic entropy of supersymmetric black holes. It should
have an imprint on the macroscopic side as well...
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Thanks for your attention !
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