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Introduction

@ A driving force in high energy theoretical physics has been the
quest for a microscopic explanation of the entropy of black holes.
Providing a derivation of the Bekenstein-Hawking formula is a
benchmark test of any theory of quantum gravity.

SBH = 4Gn SBH ; Iog Q

"‘
-~

Sgr A%, Event Horizon Telescope 2022

B. Pioline (LPTHE, Paris) Counting CY black holes Chula U, 11/08/2023 3/44



Black hole microstates as wrapped D-branes

@ Back in 1996, Strominger and Vafa argued that String Theory
passes this test with colors, at least in the context of BPS
black holes in vacua with extended SUSY: black hole micro-states
can be understood as bound states of D-branes wrapped on the
internal manifold, and sometimes can be counted efficiently.

Calabi-Yau black hole, courtesy F. Le Guen
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BPS indices and Donaldson-Thomas invariants

@ In the context of type IlA strings compactified on a Calabi-Yau

three-fold X, BPS states are described mathematically by stable
objects in the derived category of coherent sheaves C = DPCohX.
The Chern character v = (chg, chy, chy, chg) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.

The problem becomes a question in enumerative geometry: for
fixed v € K(X), compute the Donaldson-Thomas invariant Q,(~)
counting (semi)stable objects of class ~ for a Bridgeland stability
condition z € StabC, and determine its growth as |y| — oc.

Physical arguments predict that suitable generating series of rank
0 DT invariants (counting D4-D2-D0 bound states) should have
specific modular properties. This gives very good control on their
asymptotic growth, and allows to check whether Q,(v) ~ ee+(7).
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Simplest example: Abelian three-fold

@ For X = T8, Q,() depends only on a certain quartic polynomial
I4(y) in the charges, and is moduli independent. It is given by the
Fourier coefficient c(l4(y) + 1) of a weak modular form,

03(27) _

1
o)~ > e(nq" ! = q +2+8¢°+12q* +39q" +56¢% + ...
n>0

Moore Maldacena Strominger 1999, BP 2005, Shih Strominger Yin 2005
Bryan Oberdieck Pandharipande Yin'15
@ Recall that f(7) := 3"~ ¢(n)q" 2 (with ¢ = €2™7, Im7 > 0) is a
modular form of weight w if v("; Z) el c SL(2,7),

f (gjig) =(cr+d)"f(r) = c(n) "X exp (47r A(n— A))

in agreement with Sgy(7) = TA(7).
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Wall-crossing and mock modularity

@ For a general CY3, the story is more involved and interesting.
First, Q,(~) depends on the Kahler parameters z (more generally,
on the stability condition), with a complicated chamber structure.

@ Second, the generating series of rank 0 DT invariants in the large
volume attractor chamber, denoted by Q,(), are generally not
modular but rather mock modular of higher depth.

@ A (depth one) mock modular form of weight w transforms
inhomogeneously under I' ¢ SL(2,Z) (or Mp(2,Z) if w € Z + })

ico

F(258) = (or +d) [f(r) [ aER 0

—d/c

where g(7) is an ordinary modular form of weight 2 — w, known as
the shadow.

B. Pioline (LPTHE, Paris) Counting CY black holes Chula U, 11/08/2023 7/44



Wall-crossing and mock modularity

@ Equivalently, the non-holomorphic completion

ico
~

f(r,7)=1(r)+ [ g(=p)(T +p) "dp

-7

transforms like a modular form of weight w, and satisfies the
holomorphic anomaly equation

™ o:f(r,7) = g(r)

@ Ramanujan’s mock #-functions belong to this class, along with
indefinite theta series of Lorentzian signature (1, n — 1) [zwegers'o2]

@ The Fourier coefficients still grow as ¢(n) ~ exp (47r\/A(n - A))
but subleading corrections are markedly different.
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@ Review some background on BPS indices in type Il strings
compactified on a CY threefold

© Spell out the modularity properties of generating series of
D4-D2-D0 indices

© Test modularity for compact CY threefolds with bo(X) = 1, using
recent results of S. Feyzbakhsh and R. Thomas

© Obtain new constraints on higher genus GW/GV invariants from
modularity of D4-D2-D0 invariants
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Background

@ Type lIA string theory compactified on a CY threefold X is
described at low energy by A/ = 2 supergravity coupled to
ny = hy 1(X) massless vector multiplets (VM) and ny = hy »(X)
massless hypermultiplets (HM).

@ N = 2 supersymmetry implies the BPS bound M > |Z(~)| where
Z(~) is a linear function of the electromagnetic charge -, which
depends on VM scalars.

@ States which saturate the BPS bound are invariant under 4
supercharges. They are the only ones contributing to the BPS
index (or helicity supertrace) Q(7) = Tr(—1)?%(242)2.

@ Q(v) is independent of HM scalars (invariant under complex
structure deformations of X), but may have non-trivial dependence
on VM scalars (paramatrizing the Kahler structure on X).
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Background

@ N = 2 supergravity admits static, spherically symmetric BPS
black hole solutions, interpolating between R at spatial infinity
and AdS, x S? at the horizon. The VM scalars have a non-trivial
radial dependence, but the near horizon solution depends only on
the electromagnetic charge v (attractor mechanism).

@ Such solutions exist only if I4() > 0 (where l4() is homogeneous
function of degree 4 in ) and carry a Bekenstein-Hawking entropy

A
SpH = m =T /4(7)

If these were the only solutions with fixed charge ~, one would
expect Q(y) ~ e"Vh0) as || = .
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Background

@ In addition, there may exist multi-centered supersymmetric
solutions with charge v = 3~ ~; at positions 7; € R3, subject to
Denef’s conditions

z ﬂ"’” — Im [Z(v)Z()]

@ For example, twgcenter solutions exist when
(71, v2)Im[Z(v1)Z(72)] > 0, and contribute

AQ(v1 +72) = (1) 724 (39, 72) | Q1) Q(v2)

in the chamber where they exist. This follows from the
non-relativistic Hamiltonian for the relative motion of two dyons

where k= (y1,72), 9 = Im[Z(71)Z(72)] and A is a Dirac monopole
with unit charge.
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BPS black hole microstates

@ At weak string coupling, BPS black hole microstates are realized
as supersymmetric bound states of D6,D4,D2,D0-branes
wrapping holomorphic cycles with total homology class
v E I C Heven(:{7 Q)

@ More precisely, they correspond to stable objects in the derived
category of coherent sheaves C = D?CohX, with respect to a
stability condition o = (Z,.A) € Stab(C). Here Z € Hom(I',C) is
the central charge, and A a certain Abelian subcategory of C
locally determined by Z. [Douglas, Kontsevich, Bridgeland]

@ Stability conditions are known to exist only for a handful of CY
threefolds, including the quintic in P* jLig). If they exist, they form
a complex manifold S of dimension rk T = beyen(X), and the
Donaldson-Thomas invariant Q(7) := Y- 4,, 22 (7/d) satisfies
the wall-crossing formula [ Joyce Song'08; Kontsevich Soibelman’08].
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Physical stability conditions

@ Physics/Mirror symmetry selects a subspace N ¢ StabC, known
as ‘physical slice’ or slice of lN-stability conditions, parametrized by
complexified Kahler structure of X, or complex structure of X
Hence dim¢c M = bo(X) + 1 = bs(X).

@ Along this slice, the central charge is given by the period

Z(v) :[93,0

A

of the holomorphic 3-form on X on a dual 3-cycle 4 € H3(§€, 7).
@ Near the large volume point in M (X), or MUM point in Mg (%),

Z(y) ~ — | e #Ha\/Td(TX)ch(E) + Fi-instantons
x

where H, is a basis of H?(X,Z), and z2 = b? + it? are the
complexified K&hler moduli, and v = ch(E) = (chg, chy, chy, chs).
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S-duality constraints on DT invariants

@ Constraints on DT invariants can be derived by studying instanton
corrections to the moduli space in IIA/% x S'(R)=M/X x T?(r).

@ The moduli space M3 factorizes into My x m where
@ My parametrizes the complex structure of X+ dilaton ¢ + Ramond
gauge fields in H*%(X)
Q My parametrizes the Kahler structure of X + radius R + Ramond
gauge fields in H*"(X)
@ Both factors carry a quaternion-Kahler metric. My is largely
irrelevant for this talk, but note that My and M get exchanged
under mirror symmetry.
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S-duality constraints on DT invariants

@ Near R — oo, /\7\/ is a torus bundle over R™ x M with semi-flat
QK metric, but the QK metric receives O (eI corrections
from Euclidean black holes winding around S'.

@ These corrections are determined from the DT invariants Q,(v) by
a twistorial construction a la Gaiotto-Moore-Neitzke [Alexandrov BP
Saueressig Vandoren’08]

@ Since type IIA/S'(R) is the same as M-theory on T2(r), My must
have an isometric action of SL(2,7Z). This strongly constrains the
DT invariants in the large volume limit jAlexandrov, Banerjee, Manschot, BR,
Robles-Llana, Persson, Rocek, Saueressig, Theis, Vandoren '06-19]
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S-duality constraints on BPS indices

Requiring that MV admits an isometric action of SL(2,Z) near large
volume, one can show that DT invariants Q,(chg, chy, chy, ch3) satisfy
@ For skyscraper sheaves (or DO-branes), 2,(0,0,0,n) = —xx
@ For classes supported on a curve of class qa7? € A* = Ho(X, Z),
Q,(0,0,Qa, n) = GVSZ) is given by the genus-zero GV invariant

@ For classes supported on an irreducible divisor D of class
P?ya € A = Hy(X,Z), the generating series of rank 0 DT invariants

hpa,q.( ZQ (0,p% Ga, ) q" B

should be a vector-valued, weakly holomorphic modular form of
weight w = —b,(X) — 1 and prescribed multiplier system.
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S-duality constraints on D4-D2-D0 indices

D
praa(r) = 2 90.(0.9°, 0a M) 4 Jaan s+ 5pra— 5

@ Here, Q,(0, p?, ga, n) is the index in the large volume attractor
chamber ) )
Qu(v) = _lim Q—nabqb+i>\p3(7)

where 12 is the inverse of the quadratic form .z, = kapcpC With
Lorentzian signature (1, bo(X) — 1).

@ The classical Bogomolov-Gieseker inequality guarantees that n is
bounded from below. The BH entropy predicts that
Q,(0,p?, qa, ) ~ €27V 8%acP*P°P° for n > 1 s0 the sum should
converge for |q| < 1 or Im7 > 0.
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S-duality constraints on D4-D2-D0 indices

@ By construction, Q,(0, p?, qa, n) is invariant under tensoring with a
line bundle O(m?3H,) (aka spectral flow)

b a 1 amb
Qa — Qa — Kap/M™, N—= N—M"Qq+ 5KpM"M

Thus, the D2-brane charge g, can be restricted to the finite set
A*/A, of cardinal | det(kap)].

@ hpa 4, transforms under the Weil representation of Mp(2, Z)
associated to the lattice A, e.qg.

g2k qag,+ 7 (b2(X)+2x(Op)—2)

hpa,q.(—1/7) = Z 1
AN 71 120(0) V/ | det(kap)|

hpa7qé(7')
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D4-D2-D0 indices from elliptic genus

@ Summing over all D2-brane charges and using spectral flow
invariance, one gets

Zo(r,v) = ) (0,07 G, n) q+ 29ar*0b g2ridav
qeNn

= ) hpg(n)8q(r,v)

qen* /A

where ©g4(T, v) is the (non-holomorphic) Siegel theta series for the
indefinite lattice (A, kap). S-duality then requires that Z, should
transform as a (skew-holomorphic) Jacobi form.

@ The Jacobi form Z, can be interpreted as the elliptic genus of the
(0, 4) superconformal field theory obtained by wrapping an
M5-brane on the divisor D [Maldacena Strominger Witten '98].
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Mock modularity constraints on D4-D2-D0 indices

@ For ~ supported on a reducible divisor D = Y2722 Dy, the
generating series hp (omitting g index for brevity) is no longer
expected to be modular. Rather, it should be a vector-valued mock
modular form of depth n — 1 and same weight/multiplier system.

Alexandrov Banerjee Manschot BP '16-19

@ There exists explicit non-holomorphic theta series such that

ho(r.7) = hp(m) + Y ©n({pi}. 7.7 H hp (7
p=>"17Z pi
transforms as a modular form of weight — b, (X) — 1. Moreover
the completion satisfies an explicit holomorphic anomaly equation,

Ohp(r.7) = > ©n({pi},7.7) [ (. 7)
n>2 i=1

P=>_15 pi
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Crash course on indefinite theta series

@ ©,and 6, belongs to the class of indefinite theta series

o (7, 7) = 75 -X Z ® (\/%k) —inTQ(k)
keh+q
where (A, Q) is an even lattice of signature (r,d —r), g € A*/A,
X € R. The series converges if f(x) = ®(x)ezX) ¢ L{(A @ R).
@ Theorem (Vignéras, 1978): {¥s g, q € A*/A} transforms as a
vector-valued modular form of weight (A + %’, 0) provided
e R(x)f, R(0x)f € La(A @ R) for any polynomial R(x) of degree < 2
o [0 +2m(x0x — \)| ¢ =0["
e The relevant lattice for ©, and 6, is A = H2(%,Z)®("") with
signature (r,d —r) = (n—1)(1,b2(X) — 1).
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Indefinite theta series

@ Example 1 (Siegel): & = e7@*+), where x, is the projection of x
on a fixed plane of dimension r, satisfies [*] with A = —n. J¢ is
then the usual (non-holomorphic) Siegel-Narain theta series.

@ Example 2 (Zwegers): In signature (1,d — 1), choose C, C’ two
vectors such that Q(C), Q(C’),(C,C’) > 0, then

B(x) — (CXVT | _ (C' X)WV ’
500) i (1925 i (102 s
satisfies [*] with A = 0. As |x| — oo, or if Q(C) = Q(C') =0,

®(x) — d(x) := sgn(C, x) — sgn(C’, x)

@ The theta series ©2({p1, p2}), ég({p1,p2}) fall in this class. The
generalization to n > 3 involves generalized error functions
En-1({Ci}, x) = €™ A4) « T17-] sgn(C;, x) where x is the
convolution pI‘OdUC’[. [Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016]
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Modularity for one-modulus compact CY

@ Let X be a compact CY3 with H?(%,7) = ZH. Can we compute
rank 0 DT invariants Q. (0, N, g, n) and test (mock) modularity ?

@ We focus on smooth complete intersections in weighted projective
space (CICY), X = X(q,({w;}) with >~ d; = > w;. There are 13
such models, with K&hler moduli space My = P'\{0, 1, 0o}, with
a large volume point at z = 0 and a conifold singularity at z = 1.

@ The central charge Z, () is expressed in terms of hypergeometric
functions. GV invariants GV(g) are known up to high genus [Huang
Klemm Quackenbush’06].

@ | will concentrate on N = 1, and discuss N = 2 if time permits.

Gaiotto Strominger Yin '06-07, Collinucci Wyder 08, . ..
Alexandrov Gaddam Manschot BP'22, Alexandrob Feyzbakhsh Klemm BP Schimannek’23
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Modularity for one-modulus compact CY

X Xx K CQ(T%) X(OD) n C1
X5(1°) —200| 5 50 50 7] 0
Xs(14,2) —204| 3 42 41 4] 0
Xs(14,4) —296| 2 44 41 4] 0
Xi0(13,2,5) | —288 | 1 34 3| 2| 0
Xa3(1%,2) —156| 6 48 5/ 9| 0
Xa4(14,22) —144 | 4 40 4] 6| 1
Xs.2(1%,3) —256 | 4 52 5/ 7| 0
Xs4(13,22,3) | —156 | 2 32 3| 3| 0
Xs5(12,22,32) | —120 | 1 22 2/ 1] 0
X3.3(1°) —144| 9 54 614 1
X42(19) ~-176| 8 56 6[15| 1
Xz22(17) —144 | 12 60 7021 1
Xo222(18) 128 | 16 64 8(33| 3
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Abelian D4-D2-D0 invariants

@ For N =1, the generating series

h1q—ZQ 0717q> ) L+g Ta CIEZ//{Z

nez
should transform as a vector-valued modular form of weight —g in
the Weil representation of Z[x] with x = H°.

@ An overcomplete basis is given for x even by

EZ EP
GDf(ﬁ(/ﬁ)) with 19 Z qznkz

}4f€+02
kez+2

where D = qd, — 15 E», is the Serre derivative and
4a+6b+20—2k—%+3=-3

@ For » odd, the same works with 19(”) > kezid g1 (—1)%k kqz"k®.
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A naive Ansatz for the polar terms

@ hy 4 is uniquely determined by the polar terms n < % — 5 — 5
but the dimension d; = ny — Cy of the space of modular forms
may be smaller than the number n; of polar terms !

@ Physically, we expect that polar coefficients arise as bound states
of D6-brane and anti D6-branes [Denef Moore'07]

@ Earlier studies [Gaiotto Strominger Yin'06, Collinucci Wyder08] suggest that
only bound states of the form (D6 + qD2 + nDO, D6(—1))
contribute to polar coeffs:

Q(Ov 1,4, n) = (_1 )X(OD)_q_n+1 (X(OD) —q- n) DT(qa n)

where DT(q, n) counts ideal sheaves with ch, = gand chz = n
[Alexandrov Gaddam Manschot BP’22]
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GV/DT/PT relation

@ For a single D6-brane, the DT-invariant DT(q, n) = Q(1,0, g, n) at
large volume can be computed via the GV/DT relation

3" 07(Q. )" = M+ ] (1 - (~go--1v0) (%7 %) ove
Q,n Q.9.0

where M(q) = [],>4(1 —q")~" is the Mac-Mahon function.
Maulik Nekrasov Okounkov Pandharipande’06
@ The topological string partition function is given by

Wtop(z, )\) = M(—q)_Xx/ZZDT . q= ei)\’ V= eZﬂ'iZ/)\

can be computed by the direct integration method, assuming
conifold gap conditions and Castelnuovo-type bounds g < gmax(Q)
[BCOV 93, Huang Klemm Quackenbush’06].
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Modular predictions for D4-D2-D0 indices (naive)

@ Remarkably, there exists a vv modular form with integer Fourier
coefficients matching these polar terms for almost all CICY
(except X2, X322, X222 ), reproducing earlier results /Gaiotto
Strominger Yin] for Xs, X, Xg, X190 and Xz 3.

o X5 = IP)4[5]Z

55

ho=q 2% (5 — 800q + 5850092 + 5817125¢°% + .. )

hyp1=q 578 (o + 8625q — 1138500q2 + 37774740004 + . .. )
hisp—q %75 (o + 0q — 1218500¢2 + 441969250q° + . . )

® Xio =P8 14,[10]

4 2
o LEMELNOTEE q—%(s — 576q + 271704¢? + - )
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Rank 0 DT invariants from GV invariants

@ Our Ansatz for polar terms was an educated guess. Fortunately,
recent progress in Donaldson-Thomas theory allows to compute
D4-D2-D0 indices rigorously, and compare with modular
predictions.

Bayer Macri Toda’11; Toda’'11; Feyzbakhsh Thomas'20-22

@ The key idea is to consider a family of weak stability conditions on
the boundary of Stab C, called tilt stability, with central charge

. Loy contons.
Zp; =§t3chg — 512 chy —itchg +0ch}

open set
constructed by BMT

Ch? :/ HsfkefbH Ch(E) : 1-stabilty
X
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Rank 0 DT invariants from GV invariants

@ Tilt stability agrees with physical stability at large volume, but the
chamber structure is much simpler: walls are nested half-circles in
the Poincaré upper half-plane spanned by z = b + i%.

@ Importantly, there is a conjectural inequality on Chern classes
Ck = ch2 required for existence of tilt-semistable objects,

(CZ—2CoCo)(3b% + §12) +(3CoC3 — C1Co)b+ (2C5 —3C1C3) > 0

Bayer Macri Toda’11; Bayer Macri Stellari’'16
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Rank 0 DT invariants from GV invariants

@ The BMT inequality is known to hold for Xs, Xg, Xg, X4 2
[Li'19,Koseki’20], and plays a key role in the construction of Bridgeland
stability conditions.

@ The BMT inequality provides an empty chamber whenever the
discriminant at t = 0 is positive. This happens exactly when single
centered black hole solutions are ruled out !

8CyC3 +6C5C3 +9C2C2 — 3C2C2 — 18CyC1C2C3 > 0
by == g-PoG3 — 5xqo(P")® — (P°q0)* + 3(p'a1)? — 20°P" Gog < O

@ By studying wall-crossing between the empty chamber provided
by BMT bound and large volume, [Feyzbakhsh Thomas] sShow that
D4-D2-DO0 indices can be computed from rank 1 DT, which are in
turn related to GV invariants.
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Rank 0 DT invariants from GV invariants

@ More precisely, for a D4-D2-DO0 charge (0, r, g, n) close enough to
the (usual) Bogomolov-Gieseker bound, [Toda'13, Feyzbakhsh'22]

Qrg(n)= > (=)0 DT(Qy, m) PT(Qz, )

171, Qi Nj
where DT(Qy, n1), PT(Qo, nz) counts BPS states with
v1=(1,0,—Q1,—n1),72 = (—1,0, Qo, —ny), respectively
@ Similar to DT invariants, the PT/GV correspondence gives

_ 2g-2 (9
> Pr(@n)qv =] (1 ~ (—qr1v)' 0o (%0 %) v
Q.n Q9.

@ The contribution from Q> = n. = 0 reproduces our naive Ansatz
®. Unfortunately the formula only holds for the most polar term ©.
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Modular predictions for D4-D2-DO (rigorous)

@ Alternatively, one can study wall crossing for v = (—1,0, q, n). For
(g, n) large enough, there is an empty chamber and a single wall
corresponding to D6 — D6 + D4 contributes to PT(q, n):

PT(q,n) = (—1)PM091(D6(1), 7pa) A7)

with D6(1) := Ox(H)[1] and vp4 = (0,1, q, N) [Feyzbakhsh'22].
@ Conversely, using spectral flow invariance, one finds

4 \(Ds(i—m), '=qg+krm
0 _ 1)(D6(1—m),7)+1 PT(d. 1 q q
™) (D6(1—m),) (@.m) n=n—mq—4§mm+1)

for sufficiently large m > my(q, n).
@ As a spin off, we obtain rigorous Castelnuovo-type bounds
g< ;%j + % + 1 on GV invariants ! (see also [Liu Ruan'22))
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Modular predictions for D4-D2-DO (rigorous)

@ Using an extension of this idea, we have computed most of the
polar terms, and many non-polar ones, for all models except
X322, X2220. Inall cases, modularity holds with colors !

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23
@ E.g. for Xs:

hio=q % (5 — 800q + 5850092 + 5817125q° + 75474060100q*
+28096675153255¢° + 3756542229485475q°
+277591744202815875q” + 13610985014709888750¢° + . . . ) ,

hiyq =q %7 (0 + 8625q — 1138500q2 + 37774740003
+ 3102750380125q* + 577727215123000¢° + . . . )

hip=q 275 (w — 121850092 + 441969250¢° + 953712511250q*
+ 217571250023750q° + 22258695264509625q° + . . .

B. Pioline (LPTHE, Paris) Counting CY black holes Chula U, 11/08/2023 35/44



Modular predictions for D4-D2-DO (rigorous)

@ We find that our educated guess is correct for Xs, Xg, Xg, X33, X4.4,
X576 © , but fails for X10, X672, X6’4, X473 ®

@ E.g. for Xjo,

203E} + 445E,E¢
o= 2167%

—q % (3 575q +271956¢ + - - )
rather than 3 — 576q + ..., as anticipated by [van Herck Wyder09].

@ The nature of the bound state responsible for this discrepancy is
still mysterious...

B. Pioline (LPTHE, Paris) Counting CY black holes Chula U, 11/08/2023 36 /44



Mock modularity for non-Abelian D4-D2-DO0 indices

@ Let us consider D4-D2-D0 indices with N = 2 units of D4-brane
charge. Inthat case, {hy 4, q € Z/(2xZ)} should transform as a vv
mock modular form with modular completion

% (x)
ho,q(7,7) = h2,q(7 Z 6Q1+02 02 Gi+r hi.q, h1.q,
q1,q2=
where 0 , o
k) _ (=1)9 ok _ T g
@q - 8r Z ’k’ ﬁ( K ) e &,
ke2kZ+q

and B(x?) = 2|x|~'e~™* — 2xErfe(y/7|X|).
@ The series @g‘“) is convergent but not modular invariant.
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Mock modularity for non-Abelian D4-D2-DO0 indices

@ Suppose there exists a holomorphic function gé”) such that
@Ef) + gé”) transforms as a vv modular form. Then

h27q(7—’7_—) - h27q(7-) - Z 5% +q— ngIZ itk hy el h e
q1,q2=
will be an ordinary weak holomorphic vv modular form, hence

uniquely determined by its polar part.

@ For k =1, the series @g) is the one appearing in the modular
completion of rank 2 Vafa-Witten invariants on P? | Thus we can

1 , . .
choose gé ) = Hy(7), the generating series of Hurwitz class
numbers [Hirzebruch Zagier 1973]

Ho(r) = — 15 + 34+ @ + 30> + 3a* + ...
Hi(r) =q¢ (%+q+q2+2q3+q4+...)
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Mock modularity for non-Abelian D4-D2-DO0 indices

@ For Xjg, we computed the 7 polar terms + 1 non-polar and found a
unique mock modular form reproducing this data:

he  — 5397523E,2+70149738E] EZ —12112656 EQ E{ —61127530E7 E§ —2307075E8 (1 2)
o = 464380231687 100 ®
—10826123E,0 Eg—14574207 E] E3 420196255 E} EZ+5204075E, ] pDy(12)
1934917632100 K

+ (=) H g (7) by (7)?

leading to integer DT invariants

19

oy =q 7% (7 — 17284 + 203778¢% — 13717632q® — 23922034036q* + ..

) _35

i) —q~ %2 (—6 +1430q — 1086092¢° + 2080652041 + . .. )

@ The extension to other one-parameter models is in progress.
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Mock modularity for non-Abelian D4-D2-DO0 indices

X xx| K| G| x(Oxp)| | Co
Xs(15) —200| 550 151 36 1
Xs(1%,2) 204 | 3|42 1| 19 1
Xa(1%,4) 296 | 2|44 10| 14| 1
Xi0(13,2,5) | —288| 1|34 71 71 o
X43(15,2) —156 | 6|48 16| 42| 0
Xia(1%,22) | —144| 4|40 12| 25| 1
X52(15,3) _256 | 452 14| 30| 1
Xs4(1%,22,3) | ~156 | 2|32 8| 11| 1
Xso(12,22,32) | —120| 1| 5 2| 5| 0
X3.5(1°) _144| 9|54 21| 78| 3
Xa2(18) _176| 8|56 20| 69| 3
X322(17) —144 | 12| 60 26 | 117 | 0
Xo222(18) | —128| 16|64 32| 185 | 4
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Quantum geometry from stability and modularity

Conversely, we can use our knowledge of Abelian D4-D2-D0 invariants

to compute GV invariants and push the direct integration method to
higher genus !

Gopakumar-Vafa . i i
. . (9 Direct integration
invariants GV 5 -

new constraints on
MNOP relation

holomorphic ambiguities

Modular
bootstrap

Pandharipande-Thomas

Rank 0 DT-invariants
invariants PT(Q, n)

< S hn g(T
N Wall crossing T na(7)

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

X Xx | K | type | Jinteg | 9mod | Gavail
Xs(1°) —200 | 5 F 53| 69 64
X5(14,2) _204|3| F| 48| 63| 48
Xg(14,4) —296 | 2 F 60| 80 60
Xi0(1%,2,5) | -288|1| F| 50| 65| 65
Xs5(1°,2) 156 |6| F| 20| 24| 24
X674(13,22 3) | —156 | 2 F 14| 17 17
X676(12,22,32) —120 | 1 K 18| 21 21
Xsa(1%,22) | 144 |4 K| 26| 34| 34
X3’3(16) —144 | 9 K 29| 33 33
X3 2(1) _176|8| C| 50| 64| 50
Xs2(1 53) —256 | 4 C 63| 78| 42
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Conclusion

@ The existence of an isometric action of S-duality on the
vector-multiplet moduli space in D = 3, leads to specific (mock)
modularity constraints on D4-D2-D0 indices in large volume
attractor chamber.

@ While modularity is clear physically, its mathematical origin is
mysterious. For vertical D4 branes in K3-fibered CY3, it follows
from Noether-Lefschetz theory [Bouchard Creutzig Diaconescu Doran Quigley
Sheshmani’16].

@ Using modularity and GV/DT/PT relations, we can not only
compute D4-D2-DO0 indices, but also push W, to higher genus !
@ Mock modularity affects the growth of Fourier coefficients, hence

the microscopic entropy of supersymmetric black holes. It should
have an imprint on the macroscopic side as well...
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Thanks for your attention !
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