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Precision counting of BPS black holes I

Since Strominger and Vafa’s seminal 1995 work, a lot of work has
gone into performing precision counting of BPS black hole
micro-states in various string vacua with extended SUSY, and
detailed comparison with macroscopic supergravity predictions.
For string vacua with 16 or 32 supercharges, the exact BPS
degeneracies are given by Fourier coefficients of (classical, or
Jacobi, or Siegel) modular forms. This gives access to their large
charge behavior, and enables detailed comparison with the
Bekenstein-Hawking formula and and quantum corrections to it.
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Precision counting of BPS black holes II

In string vacua with 8 supercharges, such as type II strings on
Calabi-Yau threefolds, precision counting is much more difficult,
since generalized Donaldson-Thomas invariants depends on the
details properties of the internal manifold. Constrains from
modularity are not fully understood.

Maldacena Strominger Witten 1998; Gaiotto Strominger Yin 2005; Cheng et al 2006;

Denef Moore 2007; . . . ; Alexandrov Banerjee Manschot BP 2016-17

An important complication in N ≤ 4 string vacua in D = 4 is that
the spectrum of BPS states is subject to wall-crossing, due to the
(dis)appearance of multi-centered black hole bound states.

Denef 2000; Denef Moore 2007; Manschot BP Sen 2011

Interesting challenges are a) to compute the exact BPS index
Ω(γ, z) at an arbitrary point in moduli space, and b) determine
what part comes from single centered black holes.
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Black hole counting from BPS couplings I

For some years, I have advocated to approach the problem of
precision counting of BPS states in D + 1-dimensional string vacua
by considering protected couplings in the low energy effective
action in D dimensions after compactifying on a circle of radius R.

Gunaydin Neitzke BP Waldron 2005

Indeed, a finite energy stationary solution in dimension D + 1
descends to a finite action solution in D Euclidean dimensions. A
famous example are t Hooft-Polyakov monopoles in D = 4, are
responsible for confinement in 3D QED.

Polyakov 1977
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Black hole counting from BPS couplings II
In supersymmetric theories, states which break k out of N
supercharges in dimension D + 1 descend to instantons which
carry k fermionic zero-modes. Hence they contribute to only to
fermionic vertices in the low energy effective action in dimension D
with at least k fermions (or bosonic vertices with k/2 derivatives)
BPS couplings are vertices with k < N fermions, which only get
corrections from instantons preserving some fraction of SUSY:

N (N − k)/N k/2 BPS couplings
32 1/2 8 R4

32 1/4 12 ∇4R4

32 1/8 14 ∇6R4

16 1/2 4 F 4,R2

16 1/4 6 ∇2F 4,F 2R2

8 1/2 2 (∇φ)2

B. Pioline (LPTHE) Exact BPS couplings Kings, 9/4/2018 5 / 27



Black hole counting from BPS couplings III
The coefficients of these couplings are functions f (D)(R, z, φI) of
the radius R, moduli z in dimension D + 1, and holonomies φI of
the D + 1-dimensional gauge fields along the circle:

MD = R+ ×MD+1 × T

When D = 3, the torus is doubled and there also the NUT potential
σ dual to the KK gauge field, parametrizing a circle bundle over T .
In the large radius limit R →∞, f (D)(R, z, φI) is expected to
behave schematically as

f (D)(R, z, ϕI) = f0(R, z) +
∑
Q∈Λ

Ωk (Q, z) e−2πRM(Q,z)+2πi〈Q,φ〉 + . . .

where f0 is a power-growing term, independent of ϕ,M(Q, z) is
the BPS mass, and Ωk (Q, z) is a suitable helicity supertrace
counting BPS states with charge Q and k fermionic zero-modes.
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Black hole counting from BPS couplings IV
The power-growing term reproduces the same BPS coupling in
dimension D + 1, along with with lower order couplings in the
derivative expansion due to threshold effects.
The dots include subleading corrections to the exponential
behavior, and possibly multi-instanton contributions which
smoothen the jumps of Ωk (Q, z) across walls of marginal stability.
For D = 4 contributions there are also from Taub-NUT instantons
of order O(e−πkR2+2πikσ), which resolve the ambiguity of the
divergent sum

∑
Q eSBH (Q)−RM(Q) [BP Vandoren (2009)]

The main message is that f (D)(R, z, ϕ) provides a well-defined
BPS black hole partition function at temperature T = 1/R,
chemical potentials ϕI , and fixed values z ∈MD+1 of the moduli
at spatial infinity. Fourier coefficients of f (D) encode BPS indices in
dimension D + 1.
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Black hole counting from BPS couplings V

For vacua with N ≥ 4 supersymmetries, the moduli space is a
symmetric spaceMD = GD/KD, exact at tree-level. The
low-energy effective action is expected to be invariant under the
U-duality group, an arithmetic subgroup GD(Z) ⊂ GD.

Hull Townsend 1994; Witten 1995

BPS indices in dimension D + 1 thus arise as Fourier coefficients
of an automorphic form f (D) under GD(Z). They are invariant
under the U-duality group GD+1(Z) in dimension D + 1, acting
linearly on the charge Q, but further constrained by invariance
under the larger group GD(Z).
In the remainder of this talk, I will focus on 1/4-BPS couplings in
D = 3 string vacua with 16 supercharges, and their relationship to
1/4-BPS black holes in D = 4.
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Four-dimensional string vacua with 16 supercharges I

In heterotic string compactified on T 6, the moduli space is

M4 =
SL(2)

U(1)
× O(22,6)

O(22)×O(6)

where the first factor is the heterotic axiodilaton S = a + i/g2
4 , and

the second are the Narain moduli. The same theory arises by
compactifying type II on K 3× T 2.
A wider class of N = 4 models with r < 22 multiplets can be
obtained by freely acting orbifolds [Chaudhury Hockney Lykken 1995], but
for brevity we shall focus on the maximal rank case.
These 4D models are believed to be invariant under G4(Z), an
arithmetic subgroup of SL(2)×O(22,6) preserving the charge
lattice Λe ⊕ Λm. [Font Ibanez Lüst Quevedo 1990; Sen 1994]
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Black hole counting and Siegel modular forms I

Degeneracies of 1/4-BPS dyons are given by Fourier coefficients
of a meromorphic Siegel modular form:

Ω6(Q,P; z) = (−1)Q·P
∫
C

d3Ω
eiπ(ρQ2+σP2+2vQ·P)

Φ10(Ω)

where Ω =
(
ρ v
v σ

)
∈ H2, and Φ10 is the Igusa cusp form of weight

10 under Sp(4,Z). [Dijkgraaf Verlinde Verlinde 1996; David Jatkar Sen 2005-06]

The integration contour is chosen as C = [0,1]3 + iΩ∗2 with

Ω?
2 = Λ

[
1

S2

(
1 S1

S1 |S|2
)

+ 1
|PR∧QR |

(
|PR|2 −PR ·QR
−PR ·QR |QR|2

) ]
with Λ� 1. This ensures that C crosses a zero of Φk whenever z
crosses a wall of marginal stability. [Cheng Verlinde 2007]
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Black hole counting and Siegel modular forms II
By virtue of

1
Φ10(Ω)

v→0∼ 1
v2 ×

1
∆(ρ)

× 1
∆(σ)

where 1/∆ =
∑

N≥−1 c(N) qN is the generating function of the
BPS indices Ω4(Q,P) counting 1/2-BPS states, the jump in
Ω6(Q,P; z) matches the contribution of bound states of two
1/2-BPS dyons:

∆Ω6(Q,P) = ±(P1Q2 − P2Q1) Ω4(Q1,P1) Ω4(Q2,P2)

where P1 ‖ Q1,P2 ‖ Q2, (Q,P) = (Q1,P1) + (Q2,P2).
Denef Moore 2007
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Black hole counting and Siegel modular forms III

Invariance under G4(Z) = SL(2,Z)×O(22,6) is manifest, thanks
to SL(2,Z) ⊂ Sp(4,Z), but the physical origin of the Sp(4,Z)
symmetry and contour prescriptions are obscure.
Gaiotto (2005) proposed that 1/4-BPS dyons can be interpreted
as M5-branes wrapped on K 3× Σ2 where Σ2 is a genus-two
Riemann surface embedded in T 4; equivalently, as heterotic
strings wrapped on Σ2.

Gaiotto 2005; Dabholkar Gaiotto 2006

Our aim will be to flesh out this picture, by computing exact
six-derivative couplings in D = 3, and extracting the Fourier
coefficients in the limit R →∞.
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Exact BPS couplings in D = 3 I

After compactification on a circle, the moduli space extends to

M3 =
O(24,8)

O(24)×O(8)
⊃

{
R+

R ×M4 × R56+1

R+
1/g2

3
× O(23,7)

O(23)×O(7) × R23+7

Markus Schwarz 1983

Accordingly, the U-duality group enhances to an arithmetic
subgroup G3(Z) ⊂ O(24,8), which is the automorphism group of
the ‘non-perturbative Narain lattice’ Λ24,8 = Λ23,7 ⊕ Λ1,1.

Sen 1994

The loci of enhanced gauge symmetry occur in codimension 6 in
D = 4, but are expected to occur only in codimension 8 in D = 3.
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Exact BPS couplings in D = 3 II

The 4-derivative and 6-derivative couplings in the LEEA

Fabcd (Φ)∇Φa∇Φb∇Φc∇Φd + Gab,cd (Φ)∇(∇Φa∇Φb)∇(∇Φc∇Φd )

are expected to get contributions from 1/2-BPS and 1/4-BPS
instantons, respectively.
SUSY requires that the coefficients satisfy various differential
constraints. Among them, and very schematically,

D2
ef Fabcd =0 , D2

ef Gab,cd = Fabk(e F k
f )cd

where D2
ef is a second order differential operator onM3. These

constraints imply that Fabcd is perturbatively exact at one-loop,
while Gab,cd is perturbatively exact at two-loop on the heterotic
side.

Bossard, Cosnier-Horeau, BP, 2016
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Exact (∇Φ)4 coupling in D = 3 I

The coupling (∇Φ)4 is a 3D version of the F 4 coupling analyzed
long ago. Up to non-perturbative effects,

g2
3 Fabcd =

c0

g2
3
δ(abδcd) + RN

∫
F1

dρ1dρ2

ρ2
2

ΓΛ23,7 [Pabcd ]

∆(ρ)
+O(e−1/g2

3 )

where ΓΛ23,7 is the partition function of the perturbative Narain
lattice with polynomial insertion,

ΓΛp,q [Pabcd ] = ρ
q/2
2

∑
QΛ

Pabcd (QL)eiπQ2
Lρ−iπQ2

R ρ̄

Lerche Nilsson Schellekens Warner 1988

F1 is the standard fundamental domain of SL(2,Z) on H1, and RN
indicates a specific regularization of infrared divergences.
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Exact (∇Φ)4 coupling in D = 3 II
Requiring invariance under U-duality, it is natural to conjecture
that the exact coefficient of the (∇Φ)4 in D = 3 is [Obers BP 2000]

Fabcd = RN
∫
F1(N)

dρ1dρ2

ρ2
2

ΓΛ24,8 [Pabcd ]

∆

This satisfies D2
ef Fabcd = 0. The limit g3 → 0 can be extracted

using the orbit method, and reproduces the tree-level and
one-loop terms, plus instantons from NS5 and KK5-branes.
In the large radius limit, one finds (schematically)

F (r−4,8)

αβγδ =R2
(

fR2(S) δ(αβδγδ) + F (22,6)

αβγδ

)
+

′∑
Q̃∈Λ22,6

′∑
m,n

ck
(
− |Q̃|

2

2

)
PαβγδKν

(
2πR|mS+n|√

S2
|Q̃R|)

)
e−2πi(ma1+na2)·Q̃ +O(e−R2

)
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Exact (∇Φ)4 coupling in D = 3 III

The power-like terms (from the trivial orbit and zero-mode of the
rank one orbit) reproduce the exact R2 and F 4 couplings in D = 4.

Harvey Moore, Kiritsis Obers BP, 2000

The O(e−R) terms (from the rank one orbit) correspond to
1/2-BPS dyons with charge (Q,P) = (j ,p)Q̃, with weight
c
(
− Q̃2)

2

)
= Ω4(Q,P) (assuming that (Q,P) is a primitive).

The O(e−R2
) terms (from the rank two orbit) have the expected

form of Taub-NUT instantons.
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Exact ∇2(∇Φ)4 coupling in D = 3 I
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Exact ∇2(∇Φ)4 coupling in D = 3 II

The ∇2(∇Φ)4 coupling is a 3D version of the D2F 4 coupling.
Perturbatively, it receives up to two-loop corrections,

g6
3 Gαβ,γδ =

c′0
g 2

3
δαβδγδ + δαβG(23,7)

γδ + g2
3 G(23,7)

αβ,γδ +O(e−1/g2
3 )

where the one-loop correction is given by [Sakai Tanii 1987]

G(23,7)

ab = RN
∫
F1

dρ1dρ2

ρ 2
2

Ê2 ΓΛ23,7 [Pab]

∆k
,

while the two-loop correction is [d’Hoker Phong 2005],

G(23,7)

ab,cd = RN
∫
F2

d3Ω1d3Ω2

|Ω2|3
Γ

(2)
Λ23,7

[Rab,cd ]

Φk
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Exact ∇2(∇Φ)4 coupling in D = 3 III
Here, Γ (2)

Λp,q
[Rab,cd ] is the genus-two Siegel-Narain theta series

Γ
(2)
Λp,q

[Rab,cd ] = |Ω2|q/2
∑

Qi∈Λ⊗2
p,q

Rab,cd (QL) eiπ(Qi
LΩij Q

j
L−Qi

RΩ̄ij Q
j
R)

and Rab,cd is a polynomial in Qi
L.

F2 is a fundamental domain for the action of Γ
(2)
0 (N) on the Siegel

upper-half plane H2.
RN denotes a regularization procedure which removes infrared
divergences, both primitive and one-loop subdivergences.
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Exact ∇2(∇Φ)4 coupling in D = 3 IV

It is natural to conjecture that the exact coefficient of the ∇2(∇Φ)4

coupling in D = 3 is given by

Gab,cd =

∫
F2

d3Ω1d3Ω2

|Ω2|3
Γ

(2)
Λ24,8

[Rab,cd ]

Φk

This ansatz satisfies the differential constraint D2G = F 2, where
the source term originates from the pole of 1/Φk in the separating
degeneration.

The limit g3 → 0 can be extracted using the orbit method
(extended to genus two), and reproduces the known perturbative
terms, plus an infinite series of NS5/KK5-brane instantons.
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Exact ∇2(∇Φ)4 coupling in D = 3 V
In the large radius limit, we find, schematically,

Gαβ,γδ =R4
[
G(22,6)

αβ,γδ − fR2(S)δαβG(22,6)

γδ + [fR2(S)]2δαβδγδ

]
+ G(1/2)

αβ,γδ + G(1/4)
αβ,γδ + G(TN)

αβ,γδ

The O(R4) term (from trivial orbit and zero-mode of rank one
orbits0 predicts the exact ∇2F 4 and R2F 2 couplings in D = 4.
The terms G(1/2) and G(1/4) (from the Abelian rank 1 and 2 orbits)
come from 1/2-BPS and 1/4-BPS black holes in D = 4. and are
both O(e−RM(Q,P)).

The term G(TN) (from the non-Abelian rank 2 orbit) is O(e−R2
) and

can be ascribed to Taub-NUT instantons.
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Exact ∇2(∇Φ)4 coupling in D = 3 VI

In G(1/4), the fundamental domain F2 can be unfolded to P2 × T 3,
where P2 is the space of positive definite matrices Ω2. The
integral over Ω1 extracts the Fourier coefficient

C
[(
− 1

2 |Q1|2 −Q1 · Q2
−Q1 · Q2 − 1

2 |Q2|2

)
; Ω2

]
=

∫
[0,1]3

dρ1dσ1dv1
eiπ(ρQ2

1+σQ2
2+2vQ1·Q2)

Φk (ρ, σ, v)

which is a locally constant function of Ω2.
For large R, the integral over Ω2 is dominated by a saddle point at

Ω?
2 =

R
M(Q,P)

Aᵀ
[

1
S2

(
1 S1

S1 |S|2
)

+ 1
|PR∧QR |

(
|PR|2 −PR ·QR
−PR ·QR |QR|2

) ]
A .

where (Q
P ) = A(Q1

Q2
), A ∈ M2(Z)/GL(2,Z).
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Exact ∇2(∇Φ)4 coupling in D = 3 VII
Approximating C [M; Ω2] by its saddle point value, we find
(schematically)

G(2)
αβ,γδ =R7

∑
Q,P∈Λ′22,6

Pαβ,γδ e−2πi(a1Q+a2P)

× µ(Q,P)

|2PR ∧QR|
4−`

2
Bν
[

2R2

S2

(
1 S1
0 S2

)(
|QR|2 PR ·QR

PR ·QR |PR|2
)(

1 0
S1 S2

)]
where Bν is the "matrix variate Bessel function"

Bν(Z ) =

∫ ∞
0

dt
t3/2 e−πt−πTrZ

t Kν
(

2π
t

√
det Z

)
and

µ(Q,P) =
∑

A∈M2(Z)/GL(2,Z)

A−1( Q
P )∈Λ⊗2

22,6

|A|C
[
A−1

(
− 1

2 |Q|
2 −Q · P

−Q · P − 1
2 |P|

2

)
A−ᵀ; Ω?

2

]
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Exact ∇2(∇Φ)4 coupling in D = 3 VIII

In the limit R →∞, using Bν,δ(Z ) ∼ e−2π
√

TrZ+2
√
|Z |, one finds

that the contributions are suppressed as e−2πRM(Q,P).
In ‘primitive’ cases where only A = 1 contributes, µ(Q,P) agrees
with the helicity supertrace Ω6(Q,P; za), evaluated with the
correct contour prescription. It also refines earlier proposals for
counting dyons with ‘non-primitive’ charges.

Cheng Verlinde 2007; Banerjee Sen Srivastava 2008; Dabholkar Gomes Murthy 2008
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Exact ∇2(∇Φ)4 coupling in D = 3 IX

Corrections come from the difference between C [M; Ω2] and
C
[
M; Ω∗2

]
at large Ω2, due to wall-crossing. These corrections are

of order e−2πR(M(Q1,P1)+M(Q2,P2)) and are exponentially
suppressed away from the wall. They are required by the source
term in the differential constraint and ensure the smoothness
across the wall.
In addition, there are also contributions from the region where
det(Ω2) < 1 due to deep poles at

m2 −m1ρ+ n1σ + n2(ρσ − v2) + jv = 0 with n2 6= 0

While the integral over Ω1 is no longer well-defined, one can
estimate that these corrections are of order e−2πkR2

and resolve
the ambiguities of the sum over 1/4-BPS charges.
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Conclusion I

∇2(∇Φ)4 couplings in D = 3 string vacua with 16 supercharges
nicely incorporate degeneracies of 1/4-BPS dyons in D = 4, and
explain their hidden modular invariance. They give a precise
implementation of Gaiotto’s idea that 1/4-BPS dyons are (U-duals
of) heterotic strings wrapped on genus-two Riemann surfaces.

A similar story presumably relates ∇6R4 couplings in N = 8 string
vacua and degeneracies of 1/8-BPS dyons, but details remain to
be worked out.

From a mathematical viewpoint, higher-genus modular integrals
are an interesting source of automorphic objects, which unlike
Eisenstein series satisfy Poisson-type equations with sources.
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