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From math to physics and back

Given a compact Calabi-Yau threefold X , one associates an
infinite set of rational numbers nβ, called (genus zero)
Gromov-Witten invariants, which count rational curves in
homology class β ∈ H2(X ). They are invariant under complex
deformations of X , computable using mirror symmetry, and
provide a deformation of the usual intersection product on H2(X ).

In physical context of type IIA strings on R3,1 × X , genus zero GW
invariants govern worldsheet instanton corrections to the metric
Gab(z) on the complexified Kähler moduli spaceMK (X ).
The metric Gab(z) determines the low-energy effective action

S[g, z, . . . ] =

∫
R3,1

√
−det g d4x

[
R(g) + Gab(z)gµν∂µza∂νzb + . . .

]
where gµν is a Lorentzian metric on R3,1, and z : R3,1 →MK .
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From math to physics and back

The (genus zero) Gopakumar-Vafa invariants defined by the
multi-cover formula Nβ =

∑
m|β

1
m3 nβ/m are conjecturally integer.

In string theory, they count BPS states originating from D2-branes
wrapped on curves in homology class β.

More generally, BPS states in string theory arise by wrapping
D0/D2/D4/ D6-branes on a point/curve/divisor/X. Mathematically,
they correspond to stable objects E in the derived category of
coherent sheaves D(X ), and are counted by the generalized
Donaldson-Thomas invariants Ωz(γ).
Ωz(γ) depends on the Chern character γ = ch(E) ∈ K (X ) and on
the central charge function Z ∈ Hom(K (X ),C), which is itself
determined by the Kähler moduli z ∈MK . For sheaves supported
on curves, Ωz(β) = Nβ. For skyscraper sheaves, Ωz(δ) = −χX .
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From math to physics and back

While physicists can hardly compete with mathematicians in
defining/computing Ωz(γ) rigorously, they can use physics intuition
to conjecture new properties of these invariants.

For example, they expect that for large |γ|, stable objects in D(X )
correspond to BPS black hole solutions to N = 2 supergravity.
Moreover, log |Ωzγ (γ)| ∼ 1

4A where A is the BH horizon area
(measured in Planck units), and zγ is the attractor point, which
extremizes |Zγ(z)| locally inMK .
Indeed, in a spherically symmetric black hole, the Kähler moduli
have a non-trivial radial profile which interpolates from z at r =∞
to zγ at the horizon:

r2 dza

dr
= 2eUGab∂zb |Zγ(z)|

r2 dU
dr

= eU |Zγ(z)|
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From math to physics and back

In general, for z 6= zγ , there are also multi-centered black hole
solutions, which appear/disappear across codimension-one walls
in Kähler moduli space. The location of these walls is exactly
where stable objects in D(X ) become unstable.

The wall-crossing formulae of Kontsevich-Soibelman and
Joyce-Song (or formulae equivalent to those) can be derived by
solving the quantum mechanics of n BPS black holes [Manschot BP

Sen 2010].
Since multi-centered solutions are ruled out for z = zγ (with the
exception of scaling solutions), the attractor DT invariants defined
by Ω?(γ) := Ωzγ (γ) are expected to be simpler than the DT
invariants for generic z.

B. Pioline (LPTHE, Paris) Attractor invariants for local CY3 IMJ-PRG, 25/06/2021 5 / 39



From math to physics and back

In general, for z 6= zγ , there are also multi-centered black hole
solutions, which appear/disappear across codimension-one walls
in Kähler moduli space. The location of these walls is exactly
where stable objects in D(X ) become unstable.
The wall-crossing formulae of Kontsevich-Soibelman and
Joyce-Song (or formulae equivalent to those) can be derived by
solving the quantum mechanics of n BPS black holes [Manschot BP

Sen 2010].

Since multi-centered solutions are ruled out for z = zγ (with the
exception of scaling solutions), the attractor DT invariants defined
by Ω?(γ) := Ωzγ (γ) are expected to be simpler than the DT
invariants for generic z.

B. Pioline (LPTHE, Paris) Attractor invariants for local CY3 IMJ-PRG, 25/06/2021 5 / 39



From math to physics and back

In general, for z 6= zγ , there are also multi-centered black hole
solutions, which appear/disappear across codimension-one walls
in Kähler moduli space. The location of these walls is exactly
where stable objects in D(X ) become unstable.
The wall-crossing formulae of Kontsevich-Soibelman and
Joyce-Song (or formulae equivalent to those) can be derived by
solving the quantum mechanics of n BPS black holes [Manschot BP

Sen 2010].
Since multi-centered solutions are ruled out for z = zγ (with the
exception of scaling solutions), the attractor DT invariants defined
by Ω?(γ) := Ωzγ (γ) are expected to be simpler than the DT
invariants for generic z.

B. Pioline (LPTHE, Paris) Attractor invariants for local CY3 IMJ-PRG, 25/06/2021 5 / 39



From math to physics and back

Multi-centered solutions turn out to have a hierarchical structure
labelled by attractor trees:

5

γ1

γ

γ

γ4

γ
3

2

This physical picture leads to ‘attractor flow formulae’ expressing
Ωz(γ) as a sum of products of attractor indices Ω?(γi).

Denef ’00, Denef Moore ’07, Manschot’10, Alexandrov BP ’18; Argüz Bousseau ’21

Thus, an interesting goal is to compute attractor DT invariants for
the category D(X ) of coherent sheaves on a CY threefold.
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Executive summary

In this talk, I will focus on the case where X is a crepant resolution
of toric CY3 singularity. The category D(X ) is equivalent to the
category of representations of a certain quiver with potential
D(Q,W ), associated to a brane tiling.

The role of (γ, z) is now played by (d , θ), where d ∈ NQ0 is the
dimension vector and θ ∈ RQ0 is the stability parameter.
I will present a conjectural determination of all attractor DT
invariants Ω?(d) := Ωθ=〈−,d〉(d), where 〈−,−〉 is the skew-sym-
metrized Euler form. In short, they are as simple as they possibly
could !
If true, this conjecture determines the entire set of DT invariants
Ωθ(d) via the attractor flow tree formulae, which are now theorems
due to Argüz, Bousseau and Mozgovoy.
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Executive summary

Evidence comes from many directions, including

1 computation of framed DT invariants for non-commutative crepant
resolutions using toric localization

2 computation of DT invariants for trivial stability using dimensional
reduction

3 comparison with Vafa-Witten invariants of a Fano surface S for
X = KS

The last item (historically the first) suggests that the generating
series of anti-attractor invariants of the form

hd ,δ(τ) =
∞∑

n=0

Ωθ=〈d ,−〉(d + nδ) qn+∆ , q = e2πiτ

for 〈δ,−〉 = 0, d ∈ NQ0/(Nδ) and suitable ∆ ∈ Q should have
mock modular properties...
A natural question is whether this can be understood from the
action of some VOA on the cohomology of quiver moduli...
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Definitions and notations [slide courtesy of S. Mozgovoy]

Let Q = (Q0,Q1, s, t) be a quiver (finite directed graph), where
s, t : Q1 → Q0 are source and target maps. Let CQ be its path
algebra.

A cycle is a path p = an . . . a1 such that t(an) = s(a1).
A potential W for the quiver Q is a linear combination of cycles.
We use derivatives of W to generate relations in the path algebra.
For any cycle p = an . . . a1 and for any arrow a ∈ Q1, define the
(cyclic) derivation ∂p

∂a =
∑

i:ai =a ai+1 . . . ana1 . . . ai−1.

Define the Jacobian algebra J(Q,W ) = CQ/(∂W/∂a : a ∈ Q1).

Define a cut to be a subset I ⊂ Q1 such that every term of W
contains exactly one arrow in I. Setting Q′ = Q\I, let
JI(Q,W ) = CQ′/(∂W/∂a : a ∈ I).
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Brane tilings

The quiver (Q,W ) associated to a singular toric CY3 X is
conveniently encoded in a brane tiling, i.e. a bipartite graph G
embedded in a 2-dimensional (real) torus T . Each vertex is black
or white, edges connect only vertices of different colors.

The quiver Q is the dual graph of G:

1 Vertices i ∈ Q0 correspond to faces of G (i.e.
the connected components of T \G).

2 Arrows a : i → j ∈ Q1 correspond to edges of
G common to faces i and j , oriented so that
they go clockwise around white vertices of G
and go anti-clockwise around black vertices.

For every i ∈ Q0, as many arrows come in as come out.
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Brane tilings II

1 Let Q2 = Q+
2 ∪Q−2 be the set of white and

black vertices of G, or equivalently the set
of faces of Q

2 For any face F ∈ Q2, let wF be the cycle
obtained by going along the arrows of F
(defined up to a cyclic shift).

3 The potential is
W =

∑
F∈Q+

2
wF −

∑
F∈Q−2

wF

The quiver (Q,W ) can be derived from a tilting sequence on X .
Conversely, the toric diagram of X can be read off from zig-zag
paths on the brane tiling. X arises as the moduli space of
representations of (Q,W ) with dimension vector δ = (1,1, . . . ).
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Example 1: C3

Consider the brane tiling, with red dots identified,

The quiver Q has a single vertex 1, three arrows x , y , z : 1→ 1,
and potential W = xyz − xzy .
Since ∂W/∂z = [x , y ] and similarly for other arrows, the Jacobian
algebra is J(Q,W ) = C[x , y , z], which is the coordinate ring of C3.
For I = {z}, JI(Q,W ) = C[x , y ] is the coordinate ring of C2.
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Example 2: C3/Z3 ∼ KP2
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For I = {Φ1
31,Φ

2
31,Φ

3
31}, the quiver Q′ = Q\I with relations∑

j,k εijk Φj
12Φk

23 = 0 is the familiar Beilinson quiver describing the
category of coherent sheaves on P2 [Drézet Le Potier ’85]
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Moduli spaces

Let (Q,W ) be a quiver with potential (induced by a brane tiling).

For any dimension vector d ∈ NQ0 , consider the space of
representations R(Q,d) =

⊕
a:i→j Hom(Cdi ,Cdj ).

For J = J(Q,W ),let R(J,d) ⊂ R(Q,d) be the closed subset of
representations satisfying relations ∂W/∂a = 0.
They are equipped with an action of the group Gd =

∏
i GLdi (C).

Consider a central charge Z = −θ + iρ : ZQ0 → C with ρ(ei) > 0.
For any representation M, define the dimension vector
d = (dim Mi)i ∈ NQ0 and slope µZ(M) = θ(d)/ρ(d).
A representation M of Q (or J) is called semistable if
µZ(N) ≤ µZ(M) for any N ⊂ M.
Let RZ(J,d) ⊂ R(J,d) be the subspace of semistable
representations and MZ (J,d) = RZ(J,d)//Gd the GIT quotient.
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Stacky invariants

Given a cut I ⊂ Q1, we define the generating series of stacky DT
invariants by

A(x) =
∑

d∈NQ0

(−y)χQ(d ,d)+2γI(d) [R(JI ,d)]

[Gd ]
xd

where [X ] =
∑

n dim Hn(X )(−y)n for smooth projective X ,

χQ(d ,d ′) =
∑
i∈Q0

did ′i −
∑
a∈Q1

ds(a)d ′t(a), γI(d) =
∑
a∈I

ds(a)dt(a),

Here χQ is the Euler form. A is independent of the choice of cut.

For any stability function Z and ray ` ⊂ C, define

AZ,`(x) =
∑

d :Z(d)∈`

(−y)χQ(d ,d)+2γI(d) [RZ(JI ,d)]

[Gd ]
xd .
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Rational and integer DT invariants

Assume that Z is generic, i.e. µZ(d) = µZ(d ′)⇒ d ‖ d ′.

The rational DT invariants Ω̄Z(d , y) and integer DT invariants
ΩZ(d , y) are defined by

AZ,`(x) = exp
(∑

Z(d)∈` Ω̄Z(d ,y)xd

y−1−y

)
= Exp

(∑
Z(d)∈` ΩZ(d ,y)xd

y−1−y

)
where Exp is the plethystic exponential,

Exp (f (xi , y)) = exp

( ∞∑
k=1

1
k

f (xk
i , y

k )

)
Rational and integer DT invariants are related by

Ω̄Z(d , y) =
∑
m|d

1
m

y − 1/y
ym − 1/ym ΩZ(d/m, ym)

ΩZ(d , y) is expected to be a Laurent polynomial with integer
coefficients.

B. Pioline (LPTHE, Paris) Attractor invariants for local CY3 IMJ-PRG, 25/06/2021 16 / 39



Rational and integer DT invariants

Assume that Z is generic, i.e. µZ(d) = µZ(d ′)⇒ d ‖ d ′.
The rational DT invariants Ω̄Z(d , y) and integer DT invariants
ΩZ(d , y) are defined by

AZ,`(x) = exp
(∑

Z(d)∈` Ω̄Z(d ,y)xd

y−1−y

)
= Exp

(∑
Z(d)∈` ΩZ(d ,y)xd

y−1−y

)
where Exp is the plethystic exponential,

Exp (f (xi , y)) = exp

( ∞∑
k=1

1
k

f (xk
i , y

k )

)

Rational and integer DT invariants are related by

Ω̄Z(d , y) =
∑
m|d

1
m

y − 1/y
ym − 1/ym ΩZ(d/m, ym)

ΩZ(d , y) is expected to be a Laurent polynomial with integer
coefficients.

B. Pioline (LPTHE, Paris) Attractor invariants for local CY3 IMJ-PRG, 25/06/2021 16 / 39



Rational and integer DT invariants

Assume that Z is generic, i.e. µZ(d) = µZ(d ′)⇒ d ‖ d ′.
The rational DT invariants Ω̄Z(d , y) and integer DT invariants
ΩZ(d , y) are defined by

AZ,`(x) = exp
(∑

Z(d)∈` Ω̄Z(d ,y)xd

y−1−y

)
= Exp

(∑
Z(d)∈` ΩZ(d ,y)xd

y−1−y

)
where Exp is the plethystic exponential,

Exp (f (xi , y)) = exp

( ∞∑
k=1

1
k

f (xk
i , y

k )

)
Rational and integer DT invariants are related by

Ω̄Z(d , y) =
∑
m|d

1
m

y − 1/y
ym − 1/ym ΩZ(d/m, ym)

ΩZ(d , y) is expected to be a Laurent polynomial with integer
coefficients.

B. Pioline (LPTHE, Paris) Attractor invariants for local CY3 IMJ-PRG, 25/06/2021 16 / 39



Rational and integer DT invariants

Assume that Z is generic, i.e. µZ(d) = µZ(d ′)⇒ d ‖ d ′.
The rational DT invariants Ω̄Z(d , y) and integer DT invariants
ΩZ(d , y) are defined by

AZ,`(x) = exp
(∑

Z(d)∈` Ω̄Z(d ,y)xd

y−1−y

)
= Exp

(∑
Z(d)∈` ΩZ(d ,y)xd

y−1−y

)
where Exp is the plethystic exponential,

Exp (f (xi , y)) = exp

( ∞∑
k=1

1
k

f (xk
i , y

k )

)
Rational and integer DT invariants are related by

Ω̄Z(d , y) =
∑
m|d

1
m

y − 1/y
ym − 1/ym ΩZ(d/m, ym)

ΩZ(d , y) is expected to be a Laurent polynomial with integer
coefficients.
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Wall-crossing

Define the quantum torus

A =
⊕

d∈NQ0

Q(y)xd , xd ◦ xd ′ = (−y)〈d ,d
′〉xd+d ′

where 〈d ,d ′〉 = χQ(d ,d ′)− χQ(d ′,d) is the skew-symmetrized
Euler form, or Dirac-Schwinger-Zwanziger pairing in physics.

Wall-crossing formula (Kontsevich-Soibelman 2008): for any
stability function Z,

A(x) =
y∏
`

AZ,`(x)

where the product runs over rays ` in the upper half-plane ordered
clockwise. In particular, the right hand side is independent of Z.
Joyce has given a formula expressing Ω̄Z(d , y) in terms of
Ω̄Z′(d ′, y) for all 0 < d ′ ≤ d .
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Symmetric quivers

For symmetric quivers, the quantum torus becomes commutative,
and therefore DT indices are independent of Z .

This occurs for singular toric CY3 which have small crepant
resolutions, admitting no compact divisor: C3, conifold,
[C2/Γ]× C, . . . . In such cases, the full set of DT invariants is
known, using toric localization methods.
For example, for X = C3

A(x) = Exp

(
−y3∑

n≥1 xn

y−1 − y

)
⇒ Ω(n, y) = −y3
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No wall-crossing

More generally, when 〈d ,−〉 = 0, xd belongs to the center of the
quantum torus and therefore ΩZ(d , y) is independent of Z.

A special case is the dimension vector δ = (1,1, . . . ,1)
corresponding to the skyscraper sheaf on X , or D0-brane.
For d = nδ, MZ (J,d) is the Hilbert scheme of n points on X , and
one has [Behrend-Bryan-Szendroï(2009)]

Ω(nδ, y) = (−y)−3[X ]

Similarly, for dimension vectors d associated to coherent sheaves
supported on curves C which do not intersect the compact
divisors, ΩZ(d , y) is independent of Z, and coincides (in unrefined
limit y → 1) with the genus-zero Gopakumar-Vafa invariant Nβ.
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Attractor invariants

Given a dimension vector d ∈ NQ0 , consider θ = 〈−,d〉 : ZQ0 → R
and let θ′ be a generic perturbation. Theorem [MP 2020, Gross Hackinng

Keel Konstevich 2014]: Ω̄θ′(d , y) is independent of the perturbation.

Define the attractor DT invariant as Ω̄?(d , y) = Ω̄θ′(d , y) and
similarly for Ω?(d , y) and A?(d , y). The latter coincide with the
notion of initial data for scattering diagrams.
Theorem (easy): If Q is acyclic, then Ω?(d) = 1 for d = ei and
zero otherwise. More generally, if the support of d is not strongly
connected, then Ω?(d) = 0.
Using the wall-crossing formulas, the DT invariants Ω̄Z(d , y) for
any stability parameter Z can be recursively expressed in terms of
attractor invariants.
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Attractor flow tree formulae

More directly, the attractor tree formula allows to express Ω̄θ(γ, y)
in terms of the attractor indices Ω̄?(αi , y):

Ω̄θ(γ, y) =
∑

γ=
∑
αi

gθ({αi}, y)

|Aut({αi})|
∏

i

Ω̄?(αi , y)

Manschot’10, Alexandrov BP ’18; Argüz Bousseau ’21

where

gθ({αi}, y) =
∑

T∈Tθ

∏
v∈VT

(−1)γLR
yγLR − y−γLR

y − 1/y

Here T runs over all θ-stable flow trees ending on the leaves
α1, . . . , αn, v runs over all vertices and γLR = 〈γL(v), γR(v)〉.
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Attractor flow and attractor indices

To define stability, decorate each vertex v with a dimension vector
γv and stability parameter θv , such that γv = αi for the i-th leaf,
θv0 = θ for the root vertex, and for any v distinct from the root and
the leaves, with parent p(v) and descendants L(v),R(v),

γv = γL(v) + γR(v)

θv = θp(v) + 〈γv ,−〉
〈γL(v),γv 〉θp(v)(γL(v))

The flow tree is θ-stable if 〈γL(v), γR(v)〉 × θv (γL(v)) > 0 for all v
(after perturbing 〈−,−〉 or θ).
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Attractor flow and attractor indices

There is a different formula called flow tree formula which does not
require any perturbations. It involves a sum over rooted plane
trees with vertices of arbitrary valency, produces numerous
cancellations and its physical interpretation is obscure. [Alexandrov

BP Manschot ’19, Mozgovoy BP ’20; Mozgovoy ’20]
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Attractor flow and attractor indices

For example for Kronecker quiver Km, d = (1,3),

γ1γ2γ2γ2

a : −1
4(−y)3m

γ1γ2γ2γ2

b : 1
4(−y)3m

γ1γ2γ2γ2

c : 1
12(−y)3m

γ1γ2γ2γ2

d : −1
4(−y)3m

γ2γ1γ2γ2

e : 1
4(−y)m

γ2γ1γ2γ2

f : −1
4(−y)m

γ2γ1γ2γ2

g : −1
4(−y)m

γ2γ1γ2γ2

h : 1
4(−y)m

γ2γ1γ2γ2

i : 1
4(−y)m

γ2γ1γ2γ2

j : 1
4(−y)m

+(y → 1
y ) = −1

6 ((−y)m − (−y)−m)
3
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Attractor conjecture

Let X̃ be the crepant resolution of an isolated toric CY3 singularity
X with i > 0 compact divisors, and (Q,W ) the associated the
quiver with potential. Then Ω?(d , y) = 0 unless d = ei or d = nδ
where δ = (1,1, . . . ,1), in which case

Ω?(ei , y) = 1 , Ω?(nδ, y) = (−y)3[X̃ ] = −y3 − (i + b− 3)y − iy−1

where i (resp. b) are the number of internal (resp. boundary)
lattice points on the toric diagram. [Mozgovoy BP ’20]

If X is a non-isolated singularity toric CY3 with i > 0, then
Ω?(d , y) = 0 unless d = ei or 〈d ,−〉 = −0. The value of Ω?(nδ, y)
is as above, but there are other trajectories of the form d = d0 + nδ
with 〈d0,−〉 = −0 such that Ω?(d , y) = −y [Descombes ’21]
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Time for a pause !

Note the workshop on Sep 6-10 at Institut Henri Poincaré:
https://indico.in2p3.fr/event/24629/

Tentative list of speakers:
Pierrick Bousseau (Orsay and ETH Zurich), Ben Davison (Edinburgh),
Michele del Zotto (Uppsala), Soheyla Feyzbakhsh (Imperial), Albra
Grassi (Geneva)*, Amihay Hanany (Imperial College), Dominic Joyce
(Oxford), Albrecht Klemm (Bonn)*, Maxim Kontsevich (IHES), Wei Li
(CAS Beijing), Pietro Longhi (ETH Zurich), Sergey Mozgovoy (Trinity
College Dublin), Markus Reineke (Bochum), Sakura Schaefer-Nameki
(Oxford), Hendrik Suess (Manchester), Alessandro Tanzini (SISSA),
Alessandro Tomasiello (Milano Biccoca)
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Attractor indices from stacky invariants

One way to determine the attractor invariants Ω?(d , y) is to
compute the stacky invariants for trivial stability A(d , y) and apply
the wall-crossing formula.

For quivers associated to brane tilings, A(d , y) can be computed
using double dimensional reduction. Let I and I′ be two disjoint
cuts, and let Q′ = Q\I,Q′′ = Q\(I ∪ I′). There is a forgetful map
π : R(JI ,d)→ R(Q′′,d) with linear fibers. Thus A(d , y) can be
deduced from the set of indecomposable representations R of Q′′:

A(x) =
∑

m:R→N

(−y)−
∑

M,N∈RmM mNσ(M,N)∏
M∈R[GL(mM)]

x
∑

m∈RmM dim M

σ(M,N) =2 dim Hom(M,N)− φ(M,N)− χQ(M,N)− 2γI(M,N)

where φ(M,N) is the quad. form such that φ(M,M) = dimπ−1(M).
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Attractor indices from stacky invariants

Consider KP2 :

Q Q′ Q′′

This suggests the conjecture

Ω∗(ei , y) = 1, Ω∗(nδ, y) = −y3 − y − y−1

and all other invariants vanish.
The same type of computation for KF0 ,KF1 , KdP2 , C3/Z5,
. . . support the conjecture for isolated toric CY3 singularities:

Ω?(nδ, y) = (−y)3[X ] = −y3 − (i + b − 3)y − iy−1

where i (resp. b) are the number of internal (resp. boundary)
lattice points on the toric diagram.
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Attractor indices from stacky invariants

For non-isolated toric singularities, such that the boundary of the
toric diagram contains lattice points beyond the corners, we find
Ω?(d + nδ, y) = −y for some d in the kernel of 〈−,−〉. See
[Descombes (2021)] for a precise conjecture covering all brane tilings.

C3/Z5 F2 PdP2 C3/Z6(1,2,3)
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Attractor invariants from NCDT invariants

One can also compute Ω?(d , y) from framed DT invariants in the
non-commutative chamber, counting D4-D2-D0 branes bound to
an infinitely heavy D6-brane

For any framing vector f ∈ NQ0 , let Qf be the quiver obtained from
Q by adding a new vertex∞ and fi arrows∞→ i , for i ∈ Q0.
Let J f = J(Qf,W ), d f = (d ,1) and Rf(J,d) = R(J f,d f). Let
Rf,NC(J,d) ⊂ Rf(J,d) to be the subspace of cyclic representations
M (i.e. satisfying N ⊂ M,N∞ 6= 0⇒ N = M).
We define the generating function of unrefined NCDT invariants

Zf,NC(x) =
∑

d∈NQ0

(−1)χQ(d ,d)−f·de
(

Rf,NC(J,d)/Gd

)
xd
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Let J f = J(Qf,W ), d f = (d ,1) and Rf(J,d) = R(J f,d f). Let
Rf,NC(J,d) ⊂ Rf(J,d) to be the subspace of cyclic representations
M (i.e. satisfying N ⊂ M,N∞ 6= 0⇒ N = M).

We define the generating function of unrefined NCDT invariants

Zf,NC(x) =
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d∈NQ0
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Rf,NC(J,d)/Gd

)
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Attractor invariants from NCDT invariants

NCDT invariants are related to (unframed, unrefined) DT
invariants by wall-crossing. The formula is simplest for symmetric
quivers,

Zf,NC(x) = S̄f Exp

− ∑
d∈NQ0

(f · d)Ω(d ,1)xd

 , Sf(xd ) = (−1)f·dxd

NCDT invariants can be computed using toric localization, which
amounts to counting molten crystals.
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Attractor invariants from NCDT invariants

Let ∆i denote the set of paths starting at i up to equivalence,
where two paths are equivalent if they are equal in J.

There is a partial order on ∆i , where u ≤ v if v ∼ wu for some
path w . An ideal is a (finite) subset I ⊂ ∆i such that
(u ≤ v and v ∈ I)⇒ u ∈ I.
Theorem [Mozgovoy Reineke (2008)]:

Zei ,NC(x) =
∑

I⊂∆i ,d=dim I
(−1)χQ(d ,d)+di xd

where dim I =
∑

u∈I et(u) ∈ ZQ0 .

Zf for other framing vectors f ∈ NQ0 follows from Zf+f′ = ZfZf′ .
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Attractor invariants from molten ctrystals

Example: For X = C3, with Jacobian algebra
J(Q,W ) = C[x , y , z], one can identify the poset
∆1 with N3, and ideals with plane partitions.

The generating function of NCDT invariants is [MacMahon 1916]

Z1(−x) =
∞∏

k=1

(1−xk )−k = 1+x+3x2+6x3+13x4+24x5+48x6+. . .

consistent with the unrefined indices Ω(n, y = 1) = −1 for all
n > 0.

Using this approach we have confirmed the Attractor Conjecture
for all brane tilings in the unrefined limit. The computation of
refined NCDT invariants by toric localization is much harder, but
confirms the conjecture. [Descombes (2021)]
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Attractor invariants from Vafa-Witten invariants

Historically, the first indication of the Attractor Conjecture came
from the study of Vafa-Witten invariants on complex surfaces. For
a Fano surface S, they coincide with the motivic DT invariants for
the category of coherent torsion-free sheaves D(S).

Since D(S) ⊂ D(X ) with X = KS, they also coincide with the
motivic DT invariants of for sheaves supported on S ⊂ KS, hence
with motivic invariants of the quiver (Q,W ).
Denoting by ei = ch Ei the Chern character of the exceptional
sheaf corresponding to the node i ∈ Q0, the dimension vector for
coherent sheaves with Chern character γ is d =

∑
i∈Q0

diei . The
stability parameters follow as usual from

θ(ei) ∝ ImZγi Z γ , Zγ =

∫
X

e−Jγ

Remarkably, for the canonical polarization J ∝ c1(S), θ ∝ 〈d ,−〉
corresponds to the anti-attractor stability condition !
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Attractor invariants from Vafa-Witten invariants

The VW invariants cS
J ([N, µ,n]) for any rational surface S,

polarization J, rank N, first Chern class µ and second Chern class
n can be computed by combining blow up and wall-crossing
formulae [Yoshioka (1996), Goettsche (1999), Manschot (2011-14)].

For this purpose, it is convenient to define the generating series of
VW invariants (with q = e2πiτ , y = e2πiw )

hS
N,µ,J(τ,w) =

∑
n∈Z

cJ([N, µ,n], y)

y − y−1 qn−N−1
2N µ2−N χ(S)

24

Comparing the first few coefficients for J = c1(S) with the
anti-attractor indices for the quiver (Q,W ) computed by assuming
the Attractor conjecture, we find perfect agreement for toric Fano
surfaces P2,F0,dP1≤n≤3, for a variety of brane tilings.
Agreement persists for non-toric Fano surfaces dP4≤n≤8.
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Anti-attractor invariants and modularity

For fixed rank N and first Chern class µ, the generating series
hS

N,µ,J(τ, z) is expected to be quasi-invariant under SL(2,Z)

transformations: τ → aτ+b
cτ+d , z →

z
cτ+d . This follows from

Montonen-Olive S-duality of N = 4 super Yang-Mills theory.

For N = 1, hS
1 (τ,w) = [θ1(τ,2w)η(τ)b2(S)−1 is indeed a weak

Jacobi form. [Goettsche (1990)]

For N > 1, hS
N,µ,J(τ, z)is expected to transform as a vector-valued

mock Jacobi form of weight −1
2b2(S), index −1

6K 2
S(N3 − N)− 2N,

and depth N − 1 [Alexandrov Banerjee Manschot BP 2016-19]

This anomalous transformation properties can be repaired at the
cost of adding non-holomorphic corrections, determined in terms
of mock Jacobi forms of lower depth.
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Anti-attractor invariants and modularity

Translating into the language of quivers, this suggests that the
generating function of anti-attractor DT invariants

hd ,δ(τ) =
∞∑

n=0

Ω〈d ,−〉(d + nδ) qn+∆ , q = e2πiτ

for δ a primitive vector such that 〈δ,−〉 = 0 and a suitable ∆ ∈ Q,
should be a vector-valued mock modular form.

Can one construct some VOA acting on cohomology of quiver
moduli which would explain such modular invariance ?
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Another occurence of modularity

Recall the generating series A(x , y) =
∑

d∈NQ0 Ad (y) xd of stacky
invariants. Define A(x , y) =

∑
d∈NQ0 Ad (y) x−d . Let

T (τ, z) = (q)r
∞Tr

[
A(x , y)A(x , y)

]
, y2 = e2πiτ , x = e2πiz

where Tr(xd ) = 0 whenever 〈d ,−〉 6= 0 and r = Rank(〈−,−〉).

Conjecture (Cordova Shao 2015): T is a character of a VOA

Examples: for K1, T (τ) =
∑

n≥0
qn2+n

(q)n) is the Rogers-Ramanujan

function. For K2, T (τ) =
∑

n≥0 q4k2+2k is an ordinary theta series.
False theta functions also occur...
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Thank you for your attention, and mind the wall !
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