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• Higher derivative interactions and topological string amplitude

• The Ooguri-Strominger-Vafa conjecture

• Putting OSV to the test: precision counting of small black holes
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Black hole entropy beyond leading order
The success of the string theory derivation of the thermodynamic entropy of BPS black holes
has so far relied on the “thermodynamical” limit A� GN , or Q� 1, where classical gravity
can be trusted.

In order to push this beyond leading order, we require

• On the macroscopic side: to take into account quantum gravity effects, in the form of
higher derivative corrections to Einstein’s action⇒ Topological String Amplitude

• On the microscopic side: a refined understanding of the spectrum of the “black string” CFT
⇒ Rademacher formula

• An identification of the appropriate thermodynamical ensemble implicit in the macroscopic
entropy computation⇒ The OSV conjecture ?
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Higher derivative F-terms

• Higher derivative interactions are usually hard to compute in string theory. Furthermore, for
consistency all interactions related by supersymmetry at a given order must be included.

• Typically, the computation simplifies for “F-term” interactions, i.e. those described by chiral
integrals in superspace. Holomorphicity considerably restricts the kind of contributions
they can receive.

• In (the conformal approach to) N = 2 supergravity, an infinite family of such interactions
can be described using the Weyl superfield and matter superfields

De Wit Lauwers Van Proyen; Cremmer, Kounnas ,Van Proyen, Derendinger, Ferrara de Wit Girardello
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+ . . .
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+ . . .

Here Tµν is an auxiliary “graviphoton” Maxwell field; at tree-level, it can be eliminated in
terms of FI

µν appearing in the vector multiplets by T = −2i eK/2 XI=NIJFJ .
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Generalized prepotential

• From W one may construct the scalar chiral superfield

W
2
(x, θ) = TµνT

µν − 2εijθ
i
σ
µν
θ
j
RµνλρT

λρ − (θ
i
)
2
(θ
j
)
2
RµνλρR

µνλρ
+ . . .

• For any holomorphic function, homogeneous of degree two, known as the generalized
prepotential,

F (Φ,W
2
) :=

∞X
g=0

Fg(Φ)W
2g

the chiral integral is well-defined:Z
d

4
θd

4
x F (Φ,W

2
) = Stree+

+

∞X
g=1

Fg(X)
“
g R

2
T

2g−2
+ 2g(g − 1)(RT )

2
T

2g−4
”

+ ferm.

(anti-self dual parts of R and T are understood)
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Higher derivative F-terms and topological strings
Bershadsky Cecotti Ooguri Vafa;Antoniadis Gava Narain Taylor

• Consider type IIA compactified on a CY 3-fold Y . Due to the fact that the dilaton is a
hypermultiplet, Fg can only occur at genus g.

• It can be extracted from the scattering amplitude of two gravitons and 2g − 2

graviphotons, at leading order in momenta. Their vertex operators are

V
(0)
g = hµν(∂X

µ
+ ip · ψ ψµ)(∂̄Xµ

+ ip · ψ̃ ψ̃µ)eipX

V
(−1/2)
T = εµpνe

−(φ+φ̃)/2
“
SσµνS̃Σ + cc

”
e
ipX
pν

where S, S̃ are spin fields in 4D, and Σ is the element of the chiral ring of the N = (2, 2)

SCFT associated to the covariantly constant spinor on the CY: after bosonizing the U(1)

current J = i
√

3∂H,

Σ = exp

"
i

√
3

2

“
H(z)− H̃(z̄)

”#
φ is the free scalar in the bosonization of the β, γ superghost system.
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Higher derivative F-terms and topological strings

• In order to have a non-vanishing result, it is necessary to cancel the ghost charge. The
integration over supermoduli already provides 2g − 2 insertions of the picture changing
operator eφTF . By changing g − 1 of the graviphotons into the +1/2 ghost picture, we get
the correct ghost charge 3g − 3. In total, we have 3g − 3 picture changing operators:

Ag =

Z
Mg

〈ψψ ψψ
Y
i=1

2g − 2e
−φ/2

SΣ

3g−3Y
a=1

e
φ
TF × “cc”〉

Furthermore TF = G− +G+.

• Recall that the topological twist, L0 → L0 − 1
2J , is related to the spectral flow NS → R,

and is equivalent to adding a background charge for J , i.e. adding
R √

3
2 R

(2)H to the
sigma model action. This is exactly the effect of inserting 2g − 2 operators Σ.

• Similarly, the insertion of 2g− 2 spin fields S has exactly the same effect in the space-time
SCFT: all bosonic and fermionic fluctuations cancel (after summing over all spin structures)
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Higher derivative F-terms and topological strings

• Altogether,

Ag = (g!)
2
Z
Mg

〈
3g−3Y
a=1

(µaG−)(µ̃aG̃−)〈= (g!)
2
Fg

This shows that in type IIA/CY, the F-term Fg in the N = 2 SUGRA is equal to the
genus-g A-model topological string vacuum amplitude. The precise identification is

F
hol
top =

iπ

2
FSUGRA , t

A
=
XA

X0
, λ =

π

4

W

X0

where F hol
top is the holomorphic topological amplitude and FSUGRA is the generalized

prepotential of the Wilsonian action. The actual scattering amplitude does have
non-holomorphic dependence, as a result of massless singularities. Accordingly, the 1PI
effective action is usually non-local due to infrared singularities from massless particles,
and cannot be easily described with chiral superfields.

• Similarly, the same computation in type IIB shows that Fg is now given by the genus-g
B-model topological string vacuum amplitude, in accord with mirror symmetry.

• When Y is K3-fibered, type IIA/Y is equivalent to Heterotic/K3 × T 2type II duality. In the
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regime where the base of the K3 fibration is large, the F-terms can also be obtained from a
one-loop computation in the heterotic string.
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Quaternionic topological string amplitude

• Incidentally, note that a similar computation using the vertex operators of the universal
hypermultiplet rather than the gravity multiplet, shows that in type IIA, the topological B
string computes an amplitude

S̃ =

Z
d

4
x

∞X
g=1

F̃g(X)
h
g(∂∂S)

2
(∂Z)

2g−2
+ 2g(g − 1)(∂∂S∂Z)

2
(∂Z)

2g−4
i

where F̃g(X) depends on the hypermultiplets only.

• In contrast to the previous case, nothing prevents contributions from higher genus or
instantons. Little is known about this quaternionic version of the topological string.
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The attractor mechanism, to all orders

• In the presence of these F-term corrections, it was shown that the attractor mechanism still
holds, upon replacing the tree-level prepotential F0(X) by the complete topological
amplitude F (X,W 2) and imposing an additional attractor equation:

<XI
= p

I
, <FI = q

I
, W

2
= 2

8

where now, FI = ∂F (X,W )/∂XI . In particular, the near horizon geometry is still
AdS2 × S2, and the vector multiplet scalars are fixed to a value tA(p, q), independent of
their value at infinity.

Cardoso de Wit Kappeli Mohaupt

• Furthermore, the Bekenstein-Hawking-Wald entropy, typically

SBHW = 2π

Z
Σ

∂L
∂Rµνρσ

ε
µν
ε
ρσ
√
hdΩ ∼

1

4
A+ . . .

where εµν is the binormal on the horizon Σ, takes the simple form

SBHW =
iπ

4

h
X̄
I
FI −X

I
F̄I
i
−
π

2
= [W∂WF ]
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evaluated at the attractor point.
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Legendre transform and the OSV fact

• The Legendre trick continues to hold: setting XI = pI + iφI ,

SBHW =
iπ

4

h
(X

I − 2iφ
I
)FI − (X̄

I
+ 2iφ

I
)F̄I
i

+
iπ

4

ˆ
W∂WF − W̄∂W̄ F̄

˜
and using the homogeneity relation XIFI +W∂WF = 2F ,

SBHW =
iπ

2
(F − F̄ ) +

π

2
φ
I
(FI + F̄I) = F(p

I
, φ

I
) + πφ

I
qI

where
F(p

I
, φ

I
) = −π Im

h
F (X

I
= p

I
+ iφ

I
;W

2
= 2

8
)
i

Thus, to leading order, the entropy SBHW (p, q) is the Legendre transform of the free
energy F(p, φ) of a thermodynamical ensemble of black holes with fixed magnetic charge
pI and electric potential φI .
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The OSV conjecture for black hole degeneracies

• This suggests that the thermodynamical ensemble implicit in the BHW entropy is a “mixed”
ensemble, where magnetic charges are treated micro-canonically but electric charges are
treated canonically:

Z(p
I
, φ

I
)

?
= e

F(pI,φI) where Z(p
I
, φ

I
) :=

X
qI∈Λel

Ω(p
I
, qI)e

−φIqI

• Using the relation between the free energy and the topological string, this leads to the
Ooguri-Strominger-Vafa conjecture:X

qI∈Λel

Ω(p
I
, qI)e

−φIqI ?
= |Ψ|2 , Ψtop := exp

„
iπ

2
F (p

I
+ iφ

I
)

«

Conversely, by inverse Laplace transform,

Ω(p
I
, qI)

?
=

Z
dφ

I |Ψtop|2eφ
IqI
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Comments on the OSV conjecture

• In its strongest form, the conjecture provides a way to compute the exact microscopic
degeneracies Ω(pI, qI) from the topological string amplitude F (X,W ).

• In its weaker form, the conjecture is supposed to hold only asymptotically to all orders in
inverse charges.

• For the strongest form to have a chance to hold, one should extend the definition of
F (X,W ) to include non-perturbative effects in W . Conversely, one may hope to
understand the non-perturbative completion of the topological string from a detailed
knowledge of black hole degeneracies.
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Comments on the OSV conjecture

• The conjecture encounters some immediate problems: the sum in Z(p, φ) does not
converge, the mixed ensemble is thermodynamically unstable. The integration contour is
not specified.

• Barring this issue, due to charge quantization Z(p, φ) is formally periodic under imaginary
shifts φI → φI + 2ikI , kI ∈ Z. This is not the case of |Ψtop|2, in fact one rather expectsX

qI∈Λel

Ω(p
I
, qI)e

−πφIqI ?
=
X
kI∈Λ∗

el

Ψ
∗
“
p
I − 2k

I − iφ
I
”

Ψ
“
p
I
+ 2k

I
+ iφ

I
”

• What about symplectic invariance ? holomorphic anomalies ?
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What does Ω(p, q) really count ?

• If log Ω is to satisfy the second principle, it should probably be the absolute number of
states. But if so, is it legal to keep only the F-term interactions ? Moreover, the actual
number of states may change at lines of marginal stability.

• Alternatively, Ω(p, q) may be a particular supersymmetric index, which happens to be
insensitive to D-terms. But the index is sometimes much smaller than the absolute
number, so how about thermodynamics ? Moreover, the index sometimes jumps at special
points on the hypermultiplet space...
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Tests and elaborations of the OSV conjecture

• The proposal has been tested in the case of non-compact CY: O(−m)⊕O(m) → T 2:
BPS states are counted by topologically twisted SYM on N D4-brane wrapped on a
4-cycle O(−m) → T 2, which is equivalent to 2D Yang Mills. At large N , this “factorizes”
into

P
l Ψtop(t+mlgs)Ψtop(t̄−mlgs).

Vafa

• This was generalized for O(−m)⊕O(2g − 2 +m) → Σg, whose topological amplitude
is related to q-deformed 2D Yang-Mills. The agreement with OSV for genus g > 1

however requires modular properties which are less than obvious.
Aganagic Ooguri Saulina Vafa

• Exponentially suppressed corrections in 2D Yang-Mills have been studied, and seem to
require further powers of Ψ on the rhs...

Dijkgraaf Gopakumar Ooguri Vafa

• Some checks have been made against conjecturally exact formulae for black hole
degeneracies in N = 4 theories.

Cardoso de Wit Mohaupt Kappeli; Shih Yin

• Extensive checks have been conducted on small black holes in N = 2, 4
Dabholkar Denef Moore BP
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Large Black Hole degeneracies from OSV

• Recall that the A-model topological string amplitude F (XI,W 2) is an homogeneous
function of degree 2 in (XI,W ): at large volume,

F = −
1

6
CABC

XAXBXC

X0
−

W 2

64 · 24
cAX

A

X0
−

X2
0

(2πi)3

∞X
h=0

X
β

„
πW

4X0

«2h

Nh,βe
2πiβAX

A/X0

where A = 1, . . . nV − 1 runs over a base of 2-cycles of Y , CABC =
R
Y
JAJBJC are

triple intersection numbers, XA/X0 = BA + iV A are the Kähler moduli;
cA =

R
Y
JAc2(T

1,0(X)) and Nh,β are rational numbers known as the Gromov-Witten
invariants. Recall that terms with β = 0 are not exponentially suppressed.

• Assume p0 = 0 for simplicity: the topological free energy is then

F(p, φ) = −
π

6

Ĉ(p)

φ0
+
π

2

CAB(p)φAφB

φ0
+ 2Re(FGW )

Ĉ(p) = C(p) + cAp
A
, C(p) = CABCp

A
p
B
p
C
, CAB(p) = CABCp

C
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Large Black Hole degeneracies from OSV

• LET US DROP FGW and compute the Laplace transform

ΩOSV (p
A
, qA) =

Z
dφ

0
dφ

A
exp

“
F(p, φ) + πφ

A
qA
”

The φA integral is Gaussian, with saddle at φA∗ = −CAB(p)qBφ
0:

ΩOSV (p
A
, qA) =

Z
dφ

0
φ

(nV −1)/2

0 det[CAB(p)]
−1/2

exp

 
−
π

6

Ĉ(p)

φ0
+ πφ

0
q̂0

!

with q̂0 = q0 + 1
2qAC

AB(p)qB.

• The φ0 integral is now of Bessel type, with saddle at φ0
∗ = ±

q
−Ĉ(p)/6q̂0:

ΩOSV (p
A
, qA) = det[CAB(p)]

−1/2
[Ĉ(p)]

(nV +1)/2
Î(nV +1)/2

»
2π

q
−Ĉ(p)q̂0/6

–
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where Iν(z) is a modified Bessel function, with asymptotics

Îν(z) ∼ z
−ν−1

2e
z
“
1 + a/z + b/z

2
+ . . .

”
• Thus, taken literally, the OSV formula predicts the micro-canonical entropy

SOSV (p
A
, qA) ∼ 2π

q
−Ĉ(p)q̂0/6−

nV + 2

2
log[−Ĉ(p)q̂0] + . . .

• The leading square-root term reproduces the tree-level Bekenstein-Hawking entropy
SBH = 2π

p
C(p)q̂0 at large charges.

• The replacement C(p) → Ĉ(p) = C(p) + CAp
A takes into account the leading effect of

R2 corrections to tree-level supergravity. This is consistent with the microscopic counting
based on M5 brane:

2π

q
Ĉ(p)q̂0/6 = 2π

q
(DABCpApBpC + c2ApA/6)q0

As a result, “small black holes” which were singular at tree-level (C(p) = 0) acquire a
smooth horizon due to R2 interaction.

• The logarithmic correction is purely an effect of changing from mixed to micro-canonical
ensemble. The infinite series of power corrections is determined unambiguously.
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The fine print

• Integrals have been carried out formally. Since CAB(p) in general has signature
(1, nV − 2), the gaussian integral needs to be computed by rotating the contour for φA to
the imaginary axis. We have assumed that the φ0 integral picked the correct saddle point.

• In what regime was it correct to neglect the Gromov-Witten contribution ? If one scales all
charges at the same rate, the topological coupling λ ∼ 1/φ0

∗ goes to 0 but the Kahler
classes =tA = pA/φ0

∗ stay of order 1. Thus the GW instantons cannot be neglected.

• It is possible to scale q̂0 faster than pA, but slower than (pA)3, so that the Kahler classes
go to infinity. In this case, the leading correction comes from the tree-level χζ(3)(X0)2,
which perturbs the saddle point. This predicts the leading correction to the entropy

S(p, q) = 2π

q
−Ĉq̂0/6 +

ζ(3)χ

96π2

Ĉ(p)

q̂0

which still grows like a power of the charges. Unfortunately, this cannot be checked against
the microscopic counting, since the Cardy formula does not apply.
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The finer print

• Rather, the regime of interest is the one where the Cardy formula applies: N � c, i.e.
q̂0 � Ĉ(p). In this regime, provided pA 6= 0, the Kahler classes are large, so that
non-degenerate instantons can be consistently neglected.

• However, in this regime φ0
∗ ∼ 1/λ� 1, so that the topological coupling is strong.

Fortunately, the degenerate instantons contributions can be resummed into the
Mac-Mahon function,

ζ(3)

λ2
+

∞X
h=2

λ
2h−2(2h− 1)B2hB2h−2

(2h− 2)(2h)!
= −

∞X
k=1

k log(1− e
−kλ

)−
1

12
log λ+ cte

The Mac-Mahon function is exponentially suppressed at strong coupling, while the log
term can be reabsorbed into a redefinition eFtop → λχ/24eFtop.
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Testing OSV: small black holes

• Our goal is to test the OSV conjecture in cases where black holes degeneracies are
exactly known. For this, restrict to K3-fibered CY, which admit a dual description as
heterotic / K3 × T 2.

• The heterotic string admits a class of perturbative BPS states, known as
Dabholkar-Harvey states:

|osc,N〉L ⊗ |osc, 0〉R ⊗ |ni, wi〉

satisfying the matching condition N − 1 = niw
i. They preserve 8 SUSY, and carry purely

electric charge, in the natural heterotic polarization. It is easy to count them exactly by
using simple modular forms.

• At strong coupling, these states remain stable and become black holes, carrying both
electric and magnetic charges, in the natural type II polarization. In contrast to the general
“4-charge” black holes, they are singular at tree-level, but acquire a smooth horizon due to
R2 interactions.

Sen 95; Dabholkar 04; Kallosh Maloney Dabholkar; Hubeny Maloney Rangamani; Bak Kim Rey
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OSV prediction for small black holes

• For a K3-fibered CY 3-fold, the Kähler moduli split into the modulus X1/X0 of the base,
and the moduli Xa/X0 of the fiber (a = 2, . . . nV − 1). The intersection form
decomposes into

CABCX
A
X
B
X
C

= X
1
CabX

a
X
b
+ CabcX

a
X
b
X
c

• Further consider a state whose only non-vanishing magnetic charge is p1 (D4/K3):

C(p) = 0 , Ĉ(p) = 24p
1
, CAB(p) =

„
0 0

0 p1Cab

«
, q̂0 = q0 +

1

2
C
ab
qaqb/p1

• The dependence on φ1 now disappears from the integrand. Since Ftop is invariant under
monodromies φ1 → φ1 + φ0, it is natural to restrict the integration range to [0, φ0]:

ΩOSV (p
1
, qA) =

Z
dφ

0
φ
nV /2

0 exp

„
−

4πp1

φ0
+ πφ

0
q̂0

«
∼ Î(nV +2)/2

h
4π
p
p1q̂0

i

• Caveat: when pa = 0, the Kähler classes vanish at the saddle point. Strictly speaking, for
such states the OSV formula is meaningless...
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A benchmark case: II/K3× T 2 vs Het/T 6

• On the macroscopic side: thanks to N = 4, Fh>1 = 0. F1 can be extracted from R2

coupling,
fR2 ∼ log T2|η(T )|4 ⇒ F1 = log η

24
(T ) , T = X1/X0

• The gauge group is U(1)6 × U(1)22, but 4 U(1) are part of N = 2 gravitino multiplets,
hence nV = 24. Accordingly,the OSV prediction for small BH degeneracies is

ΩOSV (p
1
, q0) = Î13

h
4π
p
p1q̂0

i
• On the heterotic side, these small BPS BH are dual to Dabholkar Harvey states,

enumerated by

1

η24
:=

1

q
Q∞

k=1(1− qk)
=

∞X
N=0

p24(N)q
N−1

, N − 1 = p
1
q0

• The leading exponential behavior is given by Cardy’s formula
log p24 = 2π

p
24(N − 1)/6. Subleading corrections can be extracted using the

Rademacher formula...
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The Rademacher expansion
Consider a vector-valued modular form fµ=1..r(τ) of weight w < 0,

fµ(τ + 1) = e
2πi∆µfµ(τ) , fµ(−1/τ) = (−iτ)wSµνfν(τ)

with Fourier expansion fµ(τ) = q∆µ
P∞

m=0 Ωµ(m)qm

Theorem: the Fourier coefficients can be expressed as a convergent series

Ων(n) =

∞X
s=1

rX
µ=1

X
m+∆µ<0

s
w−2 Kl(n, ν;m,µ; s)|m+ ∆µ|1−w

×Ωµ(m)× Î1−w

»
4π

s

q
|m+ ∆µ|(n+ ∆ν)

–
where Kl(n, ν;m,µ; s) are generalized Kloosterman sums, equal to S−1

νµ for s = 1 and Îν(z)
is a modified, modified Bessel function of the 1st kind,

Îν(z) = 2π

„
z

4π

«−ν
Iν(z) ∼ z

−ν−1
2e
z
(1 + a/z + b/z

2
+ . . . )
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The Rademacher expansion (cont.)

• All s > 1 contributions are exponentially suppressed wrt to s = 1, yet they are
exponentially large in an absolute sense.

• The Hardy-Ramanujan-Cardy formula emerges by keeping the leading term
s = 1,m = 0, using ∆ = c/24, w = −c/2:

log Ω(n) ∼ 4π
q
|∆|(n+ ∆) +

1

2
(w −

3

2
) log(n+ ∆) + . . .

= 2π

s
c(n+ ∆)

6
−

1

4
(c+ 3) log(n+ ∆) + . . .

• The Rademacher expansion depends only on the polar part

f
−
µ =

X
m+∆µ<0

Ωµ(m)q
m+∆µ

(and modular data). Indeed, one proof is to represent fµ(τ) (or rather its Farey transform
q∂1−w

q f ) as the Poincaré series (i.e. sum over Sl(2, Z) images) of f−µ .
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Back to the bench

• In particular, for the inverse of the Dedekind function, w = −12, ∆ = −1,Ω(0) = 1

hence
p24(N) = Î13

h
4π
p
p1q̂0

i
+ 2

−14
Î13
h
2π
p
p1q̂0

i
+ . . .

• Comparing to the OSV prediction, we find agreement to ALL orders in 1/(p1q0) !
However, the OSV formula fails to reproduce subleading corrections which grow like

e2π
√
p1q0.

• In order to obtain matching, we must drop non-holomorphic contributions from fR2, and
consider the degeneracies of states with arbitrary angular momentum J .

• Note also that the matching relies on little data: only the large volume limit of 1-loop fR2

(which is a universal tree-level term on heterotic side), the number of vector multiplets and
the modular weight.

• This is NOT another test of het/type II duality: we did not really need the heterotic string to
count 1/2 BPS states in type II on K3...
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N = 4 CHL strings

• More general N = 4 models with 0 ≤ k ≤ 22 vector multiplets of N = 4 can be
constructed, either as orbifolds of type II/ K3× T 2 by an Enriques involution, or as freely
acting asymmetric orbifolds of Het/T 6.

• In the untwisted sector of the orbifold, the BPS states are a projection of the DH states in
the Het/T 6 model. Their degeneracies are now counted by a modular form

Zuntw =
1

2
(
θ

η24
+ ψ)

where θ is a partition function for the lattice of electric charges under the 22− k gauge
fields which have been projected out, and ψ enforces the projection. Modular weight:

w =
1

2
(22− k)− 12 = −1− k/2 ⇒ 1− w = (k + 4)/2 = (nV + 2)/2

Degeneracies are dominated by θ/η24, and are in agreement with the OSV prediction.
• In addition, there are BPS states in the twisted sectors, which are counted by modular

forms related to ψ by modular transformation. Their asymptotics appear to be equal to that
of the untwisted, unprojected sector, again vindicating OSV.
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N = 4 CHL strings (a case study)

• Consider the simplest case:

Γ6,22 = E8(−1)⊕ E8(−1)⊕ II
1,1 ⊕ II

5,5

orbifolded by g|P1, P2, P3, P4〉 = e2πiδ·P3|P2, P1, P3, P4〉 This projects out the U(1)

associated to P1 − P2, leaving only the physical electric charges Q = (P1 + P2, P3, P4).
• DH states arise in the untwisted sector by taking the ground state on the right, an arbitrary,

orbifold invariant excitation of the 24 oscillators on the left, and level-matched internal
momentum:

Zuntw =
1

2

 
Z6,6[

0
0]θ

2
E8[1](τ)

η24(τ)
+
Z6,6[

0
1]θE8[1](2τ)

η8(τ)η8(2τ)

!
• From this we need to extract the number of states with given Q = (P1 + P2, P3, P4). For

this, change basis from (P1, P2) to

P1 + P2 = 2Σ + ℘ , P1 − P2 = 2∆− ℘

where S,∆ take values in the E8 root lattice, and P is an element of the finite group
Z = Λr(E8)/2Λr(E8).
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N = 4 CHL strings (cont)

• In order to sum over the “unphysical charges” ∆, introduce E8 level-2 theta functions with
characteristics:

ΘE8[2],℘(τ) :=
X

∆∈E8(1)

e
2πiτ(∆−1

2℘)2

and use

θ
2
E8[1](τ) =

X
P∈E8/2E8

θE8[2],P(τ)θE8[2],P(τ) , θE8[1](2τ) = θE8[2],0(τ)

hence

Zu =
θ2
E8[2],P(τ)

η24(τ)
±

1

η8(τ)η8(2τ)
:= q

∆±
∞X
N=0

d
u
±(N)q

N
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CHL strings, cont.

• In the twisted sector, the situation is simpler:

Zt =
1

2

„
1

η12θ4
4

±
1

η12θ4
3

«
:= q

∆±
∞X
N=0

d
t
±(N)q

N

• Using the Rademacher formula, we find

dimHBPS(Q) = 2
−5
Î9

„
4π
q
Q2/2

«

+Î9

„
4π
q
Q2/4

«8>>>><>>>>:
15 · 2−10 + 2−6e2πiP ·δ , ℘ ∈ O1

2−10 , ℘ ∈ O248

−2−10 , ℘ ∈ O3875

2−10eiπQ
2
, Q ∈ Λ1

+ . . .

Hence we have agreement to all orders with OSV in all sectors. Subleading terms however
are not captured by OSV, and depend crucially on the sector.
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Absolute degeneracies vs. helicity supertraces

• We obtained agreement to all orders between the OSV prediction (at strong gravitational
coupling) and the absolute degeneracy of DH states (at weak coupling). In general
however, we expect that only a suitable index can be trusted in comparing weak and
strong coupling results.

• The natural indexes to invoke are helicity supertraces:

Ωn = Tr(−1)
F
J
n
3

where F is the target space fermion number, and J3 one generator of the little group of a
massive particle in D=3+1. For low n, and large supersymmetry, this index receives only
contributions from short multiplets, while long (non BPS) multiplets cancel out.

• For N = 4 SUSY, the natural index for 1/2 (resp. 1/4) BPS states is Ω4 (resp. Ω6). In
heterotic orbifold constructions, Ω4 is in fact equal to the absolute degeneracy of 1/2-BPS
states, “explaining” agreement.

• For N = 2 SUSY, the natural index is Ω2 ∼ NV −NH. As we shall see, in heterotic
orbifolds this can be much smaller than the absolute degeneracy !
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A few words on N = 2 models

• A number of type II/CY - Het/K3× T 2 dual pairs are known, where OSV can be tested.
While Fh>1 are now 6= 0, the degeneracies of small BH predicted by OSV, to all orders in
1/p1q0, at small p1/q0 are universally given by

ΩOSV = Î(nV +2)/2(4π
q
Q2/2)

• For heterotic asymmetric orbifolds with N = 2 supersymmetry, the DH states can be
counted as before. In contrast to N = 4, in the untwisted sector DH states typically come
in vector/hyper pairs, and the helicity supertrace Ω2 is exponentially smaller than the OSV
prediction. The absolute degeneracies agree with ΩOSV at leading order only.

• In contrast, twisted states are all hypers, and have Ωabs = Ω2 in agreement to ΩOSV to all
orders in 1/Q.

• In a class of models such as Het/K3 with standard embedding, untwisted and twisted
states cannot be distinguished, hence OSV gives the correct result to all orders.

• In other models such as FHSV, untwisted and twisted states can be distinguished by the
modding of their charges, and OSV appears to fail in reproducing either Ωabs or Ω2, unless
some coarse-graining is made.
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An N = 2 example: the FHSV model

• Consider a Z2 orbifold of type II/K3 × T 2, by an Enriques involution of K3 times a shift of
T 2. This is dual to a Z2 orbifold of Het/T 6 by a reversal of T 4 times an exchange of the
two E8.

• The electric charges untwisted/twisted states take value in the lattices

M0 = E8(−1/2)⊕ II
2,2
, M1 = E8(−1/2)⊕ (II

2,2
+ δ)

Define M ′
0 the sublattice of vectors 2P1 ⊕ P2 in M0.

• Absolute degeneracies go as

Ωabs(Q) =

8>>><>>>:
Îν(4π

q
1
2Q

2) +O(eπ
√
Q2/2) Q ∈M ′

0

0 Q ∈M0 −M ′
0

Î7(4π
q

1
2Q

2) Q ∈M1

ν = 13 for generic moduli, but can vary.
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An N = 2 example: the FHSV model (cont)

• Helicity supertraces are counted by

Zu =
26

η6ϑ6
2

, Z
±
t =

1

2

„
26

η6ϑ6
4

±
26

η6ϑ6
3

«

• Using the Rademacher formula, they grow as

Ω2(Q) =

8>>><>>>:
2−8e2πiQ·δ(1− eiπQ

2/2)Î7(2π
q

1
2Q

2) +O(eπ
√
Q2/2) Q ∈M ′

0

0 Q ∈M0 −M ′
0

−2−3Î7(4π
q

1
2Q

2) + 2−11ieiπQ
2
Î7(2π

q
1
2Q

2) +O(eπ
√
Q2/2) Q ∈M1

• Compare to the OSV prediction (χ = 0):

I7

 
4π

r
1

2
Q2

!
∀Q
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Could the OSV formula have been exact ?

• Go back to the benchmark case: exact degeneracies can be extracted by a contour
integral:

p24(N) =
1

2πi

I
q
−N
dq/∆(q) =

Z
dt t

−14
exp

“
π(N−1)

t

”
∆ (e−4πt)

• By contrast, the OSV formula can be rewritten as

ΩOSV (p
1
, q0) ∼

Z
dτ1 dτ2 τ

−14
2

exp
“
π(N−1)
τ2

”
|∆ (e−2πτ2+2πiτ1) |2

• The two agree asymptotically when ∆(q) ∼ q, but the OSV formula does not appear to
make sense non-perturbatively ! Furthermore the fact that ∆ appears on both sides is a
peculiarity of this model !



CERN RTN WINTER SCHOOL - JAN 16-20, 2006 37

An N = 4 exception to OSV

• Let us consider Type IIA/K3 × T 2 at the Z2 orbifold point, and perform a further orbifold
by the “quantum symmetry” acting as -1 on each twisted sector, combined with a shift
along T 2: this gives a type II N = 4 model with 6+6 gauge fields.

• The heterotic dual is unclear; however, another dual description can be obtained by
making a Z2 orbifold of type II/T 4 × T 2 by (−1)FL times a shift on T 2 This projects out all
RR fields, leaving 6+6 vectors. In constrast to the previous (2,2) case, SUSY is realized as
(4,0) on the worldsheet.

Vafa Sen

• The amplitude F1 can be computed at one-loop on the (2,2) case: one finds
F1 ∼ log θ4(T ), which has no perturbative part but only instantons: thus small black holes
remain small, even with R2 corrections !

Kounnas Gregori Obers Pioline Petropoulos

• Just as in the heterotic case, the (4,0) model admits a spectrum of DH states, enumerated
by θ4

i/η
12. The microscopic degeneracies thus grow as Î5(2π

p
2p1q0), not matched by

OSV !
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Issues with duality

• We have seen that taken literally, the OSV formula predicts logarithmic corrections with
depend on magnetic charges only. In our small black hole tests, we got around this by
considering ratios Ω(p, q)/Ω(p, q′).

• When all p and q are taken not to vanish, this problem cannot be dismissed so casually.
Consider e.g. the very special supergravities introduced in Lecture 1. Taking OSV literally,
we find at the semi-classical level

Ω(p
I
, qI) ∼

h
I3(p

]
A + p

0
qA)
i(nv+2)/6

I4(p, q)
−(nv+2)/2

e
πI4(p,q)

where I4 is the quartic invariant of the 4D U-duality group Conf(J), while I3 is the cubic
invariant of the 5D U-duality group Str0(J). The logarithmic correction to the entropy
breaks 4D U-duality !
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A better variational principle

• de Wit and coll. have proposed an alternative ensemble where electric-magnetic duality is
manifest: they note that the attractor equations follow from the variational principle

SBHW (p, q) = 〈Σ(X, X̄, p, q)〉XI,X̄I

Σ(X, X̄, p, q) :=
iπ

4
(X̄

I
FI −X

I
F̄I) + 2iWp,q(X)− 2iW̄p,q(X̄)

and Wp,q = qIX
I − pIFI . Hence they propose

Ω(p, q) =

Z
dX

I
dX̄

I | det=τIJ|eΣ

• Performing the integral over <(XI) semi-classically, one finds a saddle point at
<(XI) = pI . The remaining integral over φI = =(XI) reproduces OSV, except for a
measure factor,

Ω(p, q) ∼ | det=τIJ| eF(p,φ)+πqIφ
I

This cures the problem in the semi-classical approximation – in fact the prefactor
completely disappears ! However, corrections to the saddle point are bound to spoil this
success.
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Reverse engineering

• Rather than extracting BH degeneracies from the topological amplitude, one may try to
construct the BH partition function from our partial knowledge of exact degeneracies.

• In type II/K3× T 2, the lattices of electric charges are

Λ
IIA
elec = D0(q0)⊕D2/T2(q1)⊕D2/γ2(qa)⊕ . . .

Λ
IIA
mag = D6/K3× T

2
(p

0
)⊕D4/K3(p

1
)⊕D4/T2 × γ2(p

a
)⊕ . . .

Exact degeneracies are known for purely electric heterotic states , i.e. for vanishing
D2/T2, D4/T 2 × γ2, D6/K3× T 2.

• Setting p0 = pa = 0, the BH partition function includes terms with q1 = 0:

Z
′
BH =

X
q0,qa∈II3,19

p24

„
1 + p

1
q0 +

1

2
qaC

ab
qb

«
e
−π(q0φ

0+qaφ
a)
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Reverse engineering (cont.)

• Inserting the unity

1 =
X
N

δ

»
N − 1−

1

2
qaC

ab
qb

–
=
X
N

p1−1X
k0=0

1

p1
e

2πik0(N−1−1
2qaC

abqb)/p
1

inside the sum, the sum over N reconstructs the Dedekind function

Z
′
BH =

1

p1

p1−1X
k0=0

e−2πiτqaC
abqb−πφ

aqa

∆(τ)
, τ =

iφ0 + 2k0

2p1

Doing a modular transformation on τ and a Poisson resummation on qa gives

Z
′
BH =

p1−1X
k0=0

X
ka∈II19,3

Z0(φ
A

+ 2ik
A
) , Z0(φ

A
) =

exp

»
−π

2

p1Cabφ
aφb

φ0

–
(p1)2 ∆

“
2ip1
φ0

”
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Reverse engineering (cont.)

• While Z0 looks close to the topological string amplitude, it is in fact different: no |∆|2, and
the argument has no φ1 dependence !

• The sum over translations φA → φA + 2ikA guarantees that the BH partition function has
the expected periodicity due to the charge quantization. Yet much of the information in the
topological string amplitude could be lost in the process of averaging !

• This procedure has been systematized and shows that subleading corrections to the
entropy can be obtained by counting open string vacua for D4-branes on CY.

Strominger Gaiotto; Denef Moore

• It is tempting to conjecture that the exact black hole partition function is a theta series
whose general term is the topological string amplitude. This resonates well with
Kontsevitch’s “very wild guess”

• In an seemingly unrelated development, non-Gaussian theta series have been constructed
based the same Jordan algebras that govern the very special supergravities. It would be
very interesting if invariance under monodromies in the CY moduli space could be realized
in a similar fashion.

Kazhdan Pioline Waldron
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Discussion

• The OSV conjecture for the partition function of BPS black holes has passed several
non-trivial tests, leading to agreement with microscopic degeneracies to all orders in 1/Q2.

• For this to hold, a number of ambiguities had to be lifted: integration contour, holomorphic
anomalies, identification of ΩOSV with helicity supertraces, count states with arbitrary J .

• OSV is very successful in N = 4 models, less so in some N = 2 models. When χ 6= 0,
the saddle point lies at strong coupling of the pointlike instanton series, requiring a
non-perturbative completion of the topological amplitude in this sector.

• At the non-perturbative level, a relation like “ZBH = |eF |2” cannot hold, if only because
the rhs is not periodic in φ modulo 2i. This suggests that the BH partition function may
instead be a theta series built on eF , possibly with interesting automorphic properties.

• Combining a recent analysis of the relation between 4D and 5D BH, the Gopakumar-Vafa
relation between entropy of 5D BH and Ftop and the OSV formula in 4D, leads to a bizarre
relation |eF (1/gs)|2 = eF (gs) also suggestive of automorphicity.
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Open problems

• In principle, one expects the infinite series of tree-level higher derivative corrections to
become important in the singular geometry of Het DH states. The amazing agreement at
leading order suggests some kind of non-renormalization theorem.

• There are also DH states in type IIA/K3 × T 2, with a large entropy 2π
√

2nw. In contrast
to the Het DH states, they are 1/4-BPS, have zero helicity supertrace, but do not seem to
be resolved by R2 corrections.

• Similarly, there are 1/4-BPS DH states in type II/T 6, with the same entropy. The leading
higher derivative corrections are the famous ζ(3)R4, but those are unlikely to give the
correct entropy !

• In a rather orthogonal approach, Sen was able to reproduce the BH entropy to all orders
using a different ensemble, with a chemical potential µ for Q2 rather than Q, and keeping
non-holomorphic corrections. It would be interesting to relate the two approaches...

• An outstanding challenge is to understand subleading corrections to large black holes. A
somewhat naive analysis of the elliptic genus almost gives the right Bessel function...


