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Abstract: Motivated by precision counting of BPS black holes in N = 2 string vacua, I

survey recent advances in understanding quantum corrections to the vector multiplet moduli

space in N = 2 super Yang-Mills field theories and Calabi-Yau compactifications of type II

string theories on R3 × S1. By T-duality and decompactification, the latter is identical to

the hypermultiplet moduli space of the dual type II string theory on the same Calabi-Yau

threefold. In either case, the hyperkähler (respectively, quaternion-Kähler) metric is regular

across lines of marginal stability, the one-instanton effects on one side being reproduced

by multi-instanton effects on the other side, by courtesy of the Kontsevich-Soibelman wall-

crossing formula. I also review an elementary derivation of this wall-crossing formula based

on the quantum mechanics of multi-centered black hole solutions. Finally, I describe some

recent progress in understanding the topology of the moduli space in presence of Kaluza-

Klein monopole / NS5-brane instanton corrections.
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1. Introduction and overview

These are PRELIMINARY notes for a set of 4 one-hour lectures to be given at the “ICTP

School on D-brane Instantons, Wall Crossing and Microstate Counting”, Trieste, Dec. 15-20,

2011. This is based primarily on a series of works [1, 2, 3, 4, 5, 6, 7, 8] with my collaborators

S. Alexandrov, J. Manschot, D. Persson, F. Saueressig, A. Sen and S. Vandoren, whom I

wish to thank for very enjoyable collaborations. The material in Section §2 also relies in

part on the work of D. Gaiotto, G. Moore and A. Neitzke [9].

1.1 Precision counting of black hole micro-states

In searching for a consistent quantum theory of gravity, our most valuable clue is perhaps the

Bekenstein-Hawking area law for black holes, ascribing an entropy SBH = A/4 to an event

horizon of area A � 1 in Planck units. Reproducing this universal law from a statistical

description of the black hole is a necessary requirement on any model of quantum gravity.

A stronger consistency requirement is that the macroscopic and microscopic descriptions

should also agree for finite size systems, where the black hole entropy becomes sensitive to

non-universal quantum corrections to General Relativity.

String theory famously provides a microscopic explanation for the area law, including the

numerical coefficient 1/4, for a large class of supersymmetric (BPS) black hole solutions in

extended supergravity [10]. The reason for restricting to BPS solutions is, as usual, that the

microscopic counting is reliable at weak string coupling, while the macroscopic description

is valid at strong coupling. While some of the BPS states may pair up into long multiplets

and decay as the coupling is varied, the index is immune to long multiplets and can be

meaningfully compared. The agreement between the two descriptions has been verified to

subleading order [11], and in special cases, to all orders in an asymptotic expansion in a

regime of large electromagnetic charges [12] (see e.g. [13, 14] for further discussion and

references).

For vacua with N = 4 supersymmetry, one can go beyond this asymptotic expansion

and, using duality arguments, compute the index for all values of the charges and moduli

exactly, in terms of Fourier coefficients of a certain Siegel modula form [15, 16, 17]. The

dependence on the asymptotic value of the moduli enters as a choice of contour in the

Fourier integral, and the corresponding discontinuity of the index, exponentially suppressed

at large charges, matches the contribution of two-centered 1/2-BPS black hole configurations

which are gained or lost across the wall. The chamber independent part of the index can

be assembled into a Mock modular partition function, and matches the Bekenstein-Hawking

entropy of single-centered black hole configurations, including subleading corrections [?].

The spectrum of 1/8-BPS states in N = 8 string theory is also known in considerable detail

(see e.g. [18] and references therein).

In view of this impressive success for BPS black holes in N ≥ 4 vacua, it is natural

to try and achieve the same precision counting for BPS black holes in vacua with N = 2

unbroken supersymmetries, e.g. in type II string theories compactified on a Calabi-Yau

three-fold X . Unlike the previous case however, the answer is less constrained by duality

symmetries, the only obvious symmetries being the monodromy group of X , and when
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available, the modular group of the “black string” CFT [11]. Wall-crossing phenomena in

N = 2 vacua are also far more severe, the entropy of multi-centered solutions sometimes

dwarfing that of single centered black holes with the same charges [19]. Finally, the micro-

states depend on the detailed geometry of the internal space X , specifically on the number of

stable supersymmetric cycles in a given homology class, which is in general hard to compute.

Yet, the Bekenstein-Hawking-Wald entropy of single-centered black holes [20] suggests a

tantalizing relation between the microscopic index and the topological string amplitude

[21], which remains to be fully uncovered. Recents attempts to establish this relation [22,

23, 24] were based on partition functions in mixed ensembles, which, despite being well-

suited for modular invariance, failed to properly take into account chamber dependence and

monodromy invariance. It is therefore highly desirable to identify an observable which is

sensitive to BPS black holes and which incorporates duality symmetries and wall-crossing

phenomena in a natural way.

1.2 Black holes vs. instantons

One such observable is offered by the low-energy effective action in 2+1 dimensions, after

compactifying the original four-dimensional vacua on a circle of radius R. In order to be

sensitive to BPS black holes only, each carrying 4 fermionic zero-modes, one should restrict

to four-fermion couplings, or equivalently to the two-derivative action.

In three dimensions, all gauge fields can be dualized into scalars, and the effective action

consists of a non-linear supersymmetric sigma model, whose target space M3 includes the

moduli space M4 of the 4D scalars fields, the electric and magnetic Wilson lines (ζΛ, ζ̃Λ) of

the 4D gauge fields around the circle, the radius R and the NUT potential σ (dual to the

Kaluza-Klein gauge field around the circle). For a fixed, large radius R, the fields (ζΛ, ζ̃Λ)

live in a torus T fibered over M4, while σ parametrizes a circle bundle S1
σ over T . The

metric on M3 is schematically

ds2
M3
∼ dR2

R2
+ ds2

M4
+

dζ2 + dζ̃2

R2
+

(dσ + ζdζ̃ − ζ̃dζ̃)2

R4
. (1.1)

In particular, to all orders in 1/R, the metric onM3 has continuous translational isometries

along the torus T and circle S1
σ.

At finite R however, the metric receives exponentially suppressed instanton corrections,

from 4D BPS black holes whose Euclidean worldline winds around the circle [25]. These

corrections break the translational isometries along T to a discrete subgroup and are of the

form

δ ds2
M3
∼ Ω̄(γ, za)R(γ, za) e−2πR|Z(γ,za)|+2πi(pΛζ̃Λ−qΛζΛ) , (1.2)

where γ = (pΛ, qΛ) are the electromagnetic charges carried by the black hole, and |Z(γ, za)|
is the mass of the black hole in 4D Planck units. The prefactor R(γ, za) originates from the

fluctuation determinant in the instanton background, and the “instanton mesure” Ω̄(γ, za)

is closely related to the black hole index Ω(γ, za). There are also additional corrections from

k Kaluza-Klein monopoles (KKM), schematically of the form

δ ds2
M3
∼ e−|k|R

2+iπkσ , (1.3)
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Figure 1: Two-dimensional projection of the root diagram of the discrete symmetry group obtained
by combining monodromy, Heisenberg and S-duality.

which break translations along S1
σ to a discrete subgroup. These effects do not admit a

black hole interpretation (the corresponding Lorentzian configurations have closed time-

like curves). It should be stressed that the black hole corrections (1.2) form a divergent

asymptotic series, due to the exponential growth of the instanton measure Ω̄(γ, za). In fact,

one may argue by Borel-type resummation that the ambiguity of this asymptotic series is

on the order of the KKM corrections (1.3) [5].

By construction, the metric onM3 must be consistent with all dualities of string theory.

In particular, it should be invariant under monodromies inM4 and under the SL(2,Z) type

IIB S-duality (or equivalently, the modular symmetry in M-theory on X×T 2). Moreover, the

metric should also be smooth across walls of marginal stability: just as single particle states

turn into the continuum of multi-particle states across the wall, single-instanton contribu-

tions turn into multi-instanton contributions. Thus, the metric on M3 offers a convenient

packaging of the micro-state degeneracies which naturally incorporates duality symmetries

and chamber dependence.

Even better, the inclusion of Kaluza-Klein monopoles (may) lead to enhanced duality

symmetries, analogous to the genus 2 modular group Sp(2,Z) in N = 4 vacua (see Figure

1). In fact, similar ideas as above suggest that the F 6 couplings in N = 4 string vacua in 3

dimensions should encode the index of 1/4-BPS states in 4 dimensions, and should be given

by an automorphic form of SO(8, n,Z). Similarly, the ∇6R4 couplings in M-theory on T 8

should encode the index of 1/8-BPS states in 4 dimensions, and be given by an automorphic

form of E8(8)(Z).

Finally, we should mention that the same strategy also works for D = 4, N = 2 Yang-

Mills theories with rigid supersymmetry: the exact moduli spaceM4 of the uncompactified

theory (including four-dimensional instantons) can be obtained using techniques introduced

by Seiberg-Witten [26]. Upon compactification on a circle, the low-energy physics can be

described by a non-linear sigma model with target space M3, given by a torus bundle over

M4 [27]. In the large radius limit, the metric on M3 (schematically of the form (1.1), with

the first and last term omitted) is invariant under continuous translations along the torus.
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but instanton effects from D = 4 dyons whose worldline winds along the circle break these

continuous translations to a discrete Abelian subgroup (in fact, similar instanton effects

explain confinement in non-supersymmetric QCD in D = 2 + 1 [28]). The corrections are

qualitatively of the same form as (1.2), where Ω̄(γ, za) are closely related to the BPS index

Ω(γ, za) of D = 4 dyons. In these lectures, we shall discuss the rigid case as well, mainly as

a warm-up for the gravitational set-up.

1.3 Twistors, symplectomorphisms and wall-crossing

For N = 2 theories, the advantages of the observable ds2
M3

come at a price: the metric on

M3 is a tensorial object, and the metric components γij are not gauge invariant. Moreover,

supersymmetry requires that the exact metric onM3 is quaternion-Kähler, i.e. has reduced

holonomy USp(1)×USp(n) ⊂ SO(4n) (for N = 2 gauge theories discussed at the end of the

last paragraph, M3 is hyperkähler, which makes little difference for what we are about to

say). Unlike e.g. special Kähler manifolds, which can be described by a single holomorphic

function (the prepotential), such metrics cannot be described by a simple unconstrained

holomorphic function (in particular,M3 does not admit a global complex structure). Twistor

techniques nevertheless allow to describe quaternion-Kähler manifolds analytically [29, 30,

31, 32]. The trick is to consider the twistor space Z, a non-trivial S2 = CP 1 bundle over

M3 which carries a canonical complex structure, and indeed a canonical complex contact

structure. The latter can be represented by (the kernel of) the local one-form

Dt = dt+ p+ − ip3t+ p−t
2 , p± = −1

2
(p1 ∓ ip2) (1.4)

where ~p is the SU(2) = USp(1) part of the Levici-Civita connection on M3 (the reader

is encouraged to check that Dt transforms homogeneously under SU(2) frame rotations).

Locally, one can always choose Darboux coordinates ξΛ
[i], ξ̃

[i]
Λ , α

[i] (Λ = 0, . . . , n− 1) on Ui ⊂
ZM such that

2 eΦ[i]
Dt

it
= dα[i] + ξΛ

[i] dξ̃
[i]
Λ . (1.5)

The global complex structure on Z is encoded in transition functions between different Dar-

boux coordinate systems on the overlap Ui ∩ Uj which preserve (1.5), i.e. complex contact

transformations. In fact, for the σ-independent corrections (1.2), one can show that the

contact transformations are symplectomorphisms of the complexified torus TC parametrized

by ξΛ
[i], ξ̃

[i]
Λ . In particular, the instanton corrections (1.2) on M3 imply a set of symplecto-

morphisms on Z governed by the BPS invariants Ω(γ, za). The consistency of the complex

contact structure on Z across walls of marginal stability leads to a wall-crossing formula for

Ω(γ, za), initially obtained from purely mathematical reasoning by Kontsevich and Soibel-

man [9, 33]. Incorporating Kaluza-Klein monopole effects in this twistorial description is an

outstanding open problem, to which we shall return below in a slight different set-up.

For N = 2 gauge theories, the above discussion goes through by replacing quaternion-

Kähler by hyperkähler, and complex contact structure by complex symplectic structure. The

twistor space is now a trivial CP 1 bundle overM3, and there are no Kaluza-Klein monopoles

to worry about. In this case, the exact metric onM3 including all instanton effects is known

[9], as we shall review in Section §2.
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1.4 Wall-crossing from black hole halos

While the moduli space M3 of the reduced theory gives a beautiful physical realization of

the Kontsevich-Soibelman (KS) wall-crossing formula, it is perhaps not the most economic

derivation of the latter. The authors of [34] have given a new derivation of the KS formula

based on the idea of supersymmetric galaxies (which furnish a supergravity analog of the

framed BPS states of [35], which does not refer to the moduli spaceM3, but still uses much

of the same underlying mathematics. A more elementary derivation, based on the quantum

mechanics of multi-centered configurations, is as follows [8].

Recall that a wall of marginal stability is characterized by the existence of two charge

vectors γ1, γ2 whose central charge align, argZ(γ1) = argZ(γ2). As a result, multi-centered

configurations whose constituents carry charge in the two-dimensional lattice spanned by

γ1 and γ2 exist only on one side of the wall, and decay on the side. The jump in the

index ∆Ω(Mγ1 + Nγ2) across the wall is entirely due to the loss (or gain) of such multi-

centered configurations, and so is equal to the index of such configurations. Near the wall,

the centers are far apart, and this index naively reduces to the index of the supersymmetric

quantum mechanics of the centers (interacting by Coulomb and Newton forces, as well as

scalar exchange), multiplied by the product of the indices Ω(γi) carried by each center.

When some of the charges of the constituents coincide however, this prescription is not

quite correct, since the centers obey Bose or Fermi statistics (depending on the sign of their

index) and their wave-functions must be appropriately (anti)symmetrized. As we shall see in

§3, it turns out that one can treat all centers as distinguishable (hence obeying Boltzmann

statistics) provided one replaces the integer-valued index Ω(γi) carried by each center by an

effective, rational valied index Ω̄(γi) defined by

Ω̄(γ) =
∑
m|γ

Ω(γ/d)/m2 . (1.6)

This rational invariant is fact the same that determines the instanton corrections (1.2), and

also enters in constructions of modular invariant black hole partition functions [36]. It is also

reminiscent of the multi-covering formula for Gromov-Witten instantons [37], and is indeed

related to it by S-duality (see below).

Having taken care of statistics by this replacement, one may now compute the jump in

the index by quantizing the classical phase space of multi-centered solutions, in the spirit

of [38, 39]. We shall present two equivalent ways of performing this quantization: the first

one, based on quiver quantum mechanics with Abelian gauge groups, leads to the “Higgs

branch” (HB) formula for ∆Ω̄(Mγ1 +Nγ2). The second, based on evaluating the symplectic

volume of the classical phase by localization, leads to the “Coulomb branch” (CB) formula.

Both formulae are completely explicit, and allow to express the jump ∆Ω̄(Mγ1 + Nγ2) in

terms of Ω̄(Mγ1 +Nγ2) on one side of the wall. They are also similar in form to the formula

given by Joyce and Song (JS) for the variation of generalized Donaldson-Thomas invariants

of coherent sheaves [40]. The KS, JS, HB and CB formulae agree in all cases that we have

checked, though a rigorous proof of their equivalence would be highly desirable.
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1.5 Hypermultiplet moduli spaces

We now return to type II string vacua on R3×S1×X . Due to the decoupling of vectors and

hypermultiplets in N = 2 supergravity, the moduli space of scalar fields in four dimensions is

actually a productM4 =MV ×MH , whereMV is a special Kähler manifold parametrized

by the vector multiplet scalars, whileMH is a quaternion-Kähler manifold parametrized by

the hypermultiplet scalars. In type IIA,MV describes the complexified Kähler structure on

X , while MH describes the complex structure of X , together with the periods of the RR

3-form field C on 3-cycles γ ∈ H3(X ,Z), the 4D string coupling g4 and the NS axion ψ. In

type IIB, the situation is reversed.

Upon compactification on a circle, MH goes along for the ride, and the moduli space

M3 also decomposes as

M3 = M̃V ×MH . (1.7)

In particular, the scalars R, ζ, ζ̃, σ appearing in (1.1) are all part of M̃V , and similarly the

instanton corrections (1.2),(1.3) only affect the metric on M̃V . As is well known however,

T-duality along the circle exchanges the two factors in (1.7), while mapping type IIA to type

IIB [25]. Upon decompactifying the dual circle, we therefore conclude that the VM moduli

space M̃V in type IIA (respectively, type IIB) on R3 × S1 × X is isomorphic to the HM

moduli space MH in type IIB (respectively, type IIA) on R4 × X . Under this equivalence,

the radius R on the VM side is mapped to the 4D string coupling 1/g4, while the NUT

potential σ is mapped to the NS axion ψ. In particular, the instanton corrections (1.2),

originally interpreted as Dp-branes wrapped on a p-cycle γ times S1, are now interpreted

as 4D instantons, obtained by wrapping a D(p − 1)-brane on the same cycle γ. Thus, the

problem of computing the BPS spectrum in type IIA (say) on a Calabi-Yau threefold X is

equivalent to that of computing D-instanton corrections to the HM moduli space in type IIB

on the same Calabi-Yau threefold X ! In particular, the SL(2,Z) modular symmetry of type

IIA/S1=M-theory/T 2 is reinterpreted as the S-duality of type IIB string theory. Moreover,

Kaluza-Klein monopole effects on the type IIA side are mapped to NS5-brane instanton

corrections on the type IIB side. S-duality mixes these effects with D5-brane instantons, in

the same way as modular invariance mixes D6-branes with KK monopoles.

At this point, it may appear that the most appropriate way of computing the BPS

spectrum in N = 2 string vacua would be to use heterotic-type IIA duality (whenever

available, i.e. when X is a K3-fibration), and determine the HM moduli space exactly.

Indeed, on the heterotic side, the HM moduli space is in principle entirely computable

in terms of the (0, 4) superconformal sigma model on the heterotic worldsheet, since the

heterotic dilaton is, unlike in type II theories, a vector multiplet. Unfortunately, our current

understanding of this SCFT is rather limited, and the type II (VM or HM) description

remains the most useful one, especially in view of the power of mirror symmetry for CY

compactifications. Using insights from mirror symmetry, S-duality and twistor techniques,

we shall make some headway in obtaining the NS5-brane corrections to the HM moduli space

in D = 4, or equivalently, the Kaluza-Klein monopole corrections to the VM moduli space

in D = 3.
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1.6 Outline

...

2. Seiberg-Witten theories on R3 × S1

2.1 The 4D effective action and BPS spectrum

We consider a gauge theory on R4 with N = 2 supersymmetry, gauge group G of rank r,

and a dynamical scale Λ. The space of vacua admits a Coulomb branch, where the gauge

group is broken to U(1)r (and possibly Higgs or mixed branches, depending on the matter

content). The low-energy dynamics on the Coulomb branch is described by a non-linear

sigma model on a complex r-dimensional manifold M4, which parametrizes the vevs of the

vector multiplet (VM) scalars, coupled to r Abelian gauge fields and fermions. We shall

denote by ua, a = 1 . . . r a generic system of complex coordinates on M4. Supersymmetry

requires that M4 is a (rigid) special Kähler manifold, i.e. a complex manifold equipped

with a rank 2r vector bundle with structure group Sp(r,Z) and a holomorphic symplectic

Lagrangian section Ω(u) = (XΛ(u), FΛ(u)) such that the Kähler metric on M4 is given by

the norm of the section,

ds2
M4

= ∂ua ∂̄ūb̄K dua dūb̄ , K = i(X̄ΛFΛ −XΛF̄Λ) . (2.1)

The adjective Lagrangian above means that the section Ω(u) must embed M4 into a La-

grangian subspace of C2r, i.e. that the two-form dXΛ ∧ dFΛ on M4 must vanish. This

means that, locally, possibly after a symplectic rotation, the entries XΛ of Ω can be taken as

complex coordinates onM4, while the entries FΛ can be obtained as derivatives FΛ = ∂XΛF

of a local function F (XΛ), called the prepotential. The complete N = 2 supersymmetric

effective action at two-derivative order is encoded in the section Ω, in particular the bosonic

part is

S =

∫
∂ua ∂̄ūb̄K dua ∧ ?dūb̄ +

1

4π
Im τΛΣFΛ ∧ ?FΣ +

1

4π
Re τΛΣFΛ ∧ FΣ (2.2)

where FΛ are the r Maxwell fields and τΛΣ = ∂XΛ∂XΣF . A symplectic rotation of the section

Ω amounts to an electric-magnetic duality rotation of the gauge fields (FΛ, ? Im τΛΣFΣ).

The prepotential F can be computed perturbatively at weak coupling (i.e. when all the

vev’s are much larger than Λ), and receives no perturbative correction beyond one-loop [].

This perturbative result is clearly not exact, since it leads to non-positive definite kinetic

terms Im τΛΣ for vev’s of order Λ. In [26, 41], it was shown how to compute the exact

two-derivative action (2.2), including all instanton corrections. The answer involves a family

of Riemann surfaces Σu, fibered over M4, and a certain holomorphic one-form λ, such that

the section Ω is given by periods of λ on a symplectic basis of H1(Σu,Z):

XΛ =

∫
AΛ

λ , FΛ =

∫
BΛ

λ . (2.3)
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For example, for G = SU(2) with no flavor, Σu is the family of elliptic curves1

y2 = (x2 − u)2 − Λ4 , λ = dx/y . (2.4)

Setting Λ = 1 and denoting a = X1, aD = F1, for brevity, one arrives at [42]

a =
1

1 + i
(1− u2)1/4 F

(
−1

4
,
3

4
, 1;

1

1− u2

)
, aD =

i

4
(u2 − 1)F

(
3

4
,
3

4
, 2; 1− u2

)
, (2.5)

leading to the prepotential

F =
ia2

2π

(
2 log

a2

Λ2
−
∞∑
k=0

Fk a
−4k

)
(2.6)

with F1 = 1/25, F2 = 5/214, . . . . The terms Fk, k ≥ 1 correspond to non-perturbative

corrections from k ’t Hooft-Polyakov instantons.

The moduli space M4 is singular at u = ±1 and u = ∞, where the Riemann surface

degenerates. Around these points, the section Ω experiences monodromies

M1 =

(
1 0

−1 1

)
, M−1 =

(
−1 4

−1 3

)
, M∞ =

(
−1 4

0 −1

)
. (2.7)

These are elements in Γ0(4) ⊂ SL(2,Z) = Sp(1,Z), satisfying M1M−1M∞ = 1. The sin-

gularity at u = ∞ originates from the one-loop logarithm, while the singularities at u = 1

and u = −1 correspond to BPS particles of charges (q, p) = ±(0, 1) and ±(2,−1) becoming

massless. Indeed, the mass of a BPS particle of charge (q, p ∈ Γ), where Γ = H1(Σu,Z) is

the charge lattice, is given by the absolute value of the central charge,

M = |Z(γ;u)| , Z(γ;u) = qΛX
Λ − pΛFΛ , (2.8)

which vanishes at u = ± 1 for the above choice of charges. The monodromy around a

singularity where a particle of charge (q, p) becomes massless is, in general,

M =

(
1 + pq q2

−p2 1− pq

)
. (2.9)

In general, the BPS spectrum may be a complicated function of the moduli and param-

eters of the Lagrangian. For one thing, short multiplets of bosonic and fermionic type may

pair up and leave the BPS spectrum (an example of this is the Higgs mechanism, where a

vector multiplet and charged hypermultiplet pair up and leave the spectrum). This problem

may be evaded by consider the index

Ω(γ) = −1

2
Tr (−1)2J3 J2

3 . (2.10)

which is immune to this phenomenon, since a bosonic (half-hypermultiplet) BPS state con-

tributes Ω = +1 while a fermionic (vector-multiplet) BPS state contributes Ω = −2. In

1Here we use the family of curves constructed in [41], which differs from that of [26] by an isogeny.
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(0,−1)

(2n,1)

(2n+2,−1)

u

(2,−1)

(2,0)

Figure 2: Chamber structure of the u-plane and BPS spectrum in N = 2, D = 4 SYM theory with
SU(2) gauge group. The line Im (a/aD) = 0 separates the strong and weak coupling chambers.
The only stable BPS states in the strong coupling chamber are the monopole and dyons with
charges (q, p) = ±(0, 1), ±(2,−1).

addition, a BPS bound state of charge γ may decay into n unbound BPS states with charges

γi, such that γ =
∑

i γi. Since Z is linear in the charges, this is energetically allowed only

when Z(γi) all have the same phase as Z(γ). In particular, for n = 2 the locus

W (γ1, γ2) = {u / arg(Z(γ1;u) = arg(Z(γ2;u)} (2.11)

defines a codimension-one wall in the space of moduli and parameters, known as a wall of

marginal stability. Note that W (γ1, γ2) depends only on the two-plane spanned by γ1 and γ2,

and is invariant under a change of basis in that plane. Across the wall W (γ1, γ2), the index

Ω(γ) for all γ = Mγ1 +Nγ2 will in general jump, due to the gain/loss of BPS bound states

made of constituents with charges in the two-dimensional sublattice spanned by γ1, γ2.

In the rank one case, the answer is quite simple. There is only one wall of marginal

stability, given by the equation Im (a/aD) = 0. This defines a closed (approximately elliptic)

curve in the u plane, which passes through the singularities u = 1 and u = −1, and separates

two chambers, the ’weak coupling’ (outer) and ’strong coupling’ (inner) regions (see Figure

2). Since the monopole ±(0, 1) and dyon ±(2,−1) become massless on the curve, they must

be part of the BPS spectrum in both chambers. In the weak coupling region, the images

±(2n, 1),±(2n + 2,−1), n ∈ Z of these states under the monodromy M∞ must also belong

to the BPS spectrum. Finally, the W-boson, a fermionic multiplet with Ω = −2 and charge

±(2, 0), must also belong to the weak coupling spectrum. It may be shown that these are

in fact the only BPS states in the weak coupling region, while only BPS states in the strong

coupling region are the monopole and dyon [26, 43]. We shall see in (2.56) below that this

is consistent with the Kontsevich-Soibelman wall-crossing formula.

2.2 Circle reduction, semi-flat metric and rigid c-map

Under compactification on a circle of radius R, the geometry of the moduli space M4 and

the BPS spectrum become parts of a more elaborate geometrical structure, the hyperkähler

moduli space M3.
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To see how this arises, consider first the dimensional reduction of the action (2.2) on

R3 × S1: Decomposing the four-dimensional gauge potentials into AΛ = ζΛdx3 +AΛ
3 , where

x3 is the coordinate along S1 and dualizing the three-dimensional gauge potential AΛ
3 into a

scalar field ζ̃Λ, we arrive at a non-linear sigma model on a space M3 of real dimension 4r,

with metric

ds2 = R ds2
M4

+
1

R

(
dζ̃Λ − τΛΣζ

Σ
)

[ Im τ ]ΛΛ′
(

dζ̃Λ′ − τΛ′Σ′ζ
Σ′
)
, (2.12)

where [ Im τ ]ΛΛ′ denotes the inverse of the matrix [ Im τ ]ΛΛ′ . Large gauge transformations

along the circle imply that the coordinates (ζΛ, ζ̃Σ) are periodic with unit period. In fact,

the second term in (2.12) is recognized, up to an overall factor, as the Kähler metric on the

Jacobian torus Tu = H1(Σ,R)/H1(Σu,Z) of the Riemann surface Σu. Due to the flatness of

the metric on this torus, the metric (2.12) is sometimes known as the ’semi-flat’ metric.

The metric (2.12) is an accurate description of the dynamics of the compactified gauge

theory at large radius R. In particular, it is hyperkähler, consistently with N = 4 supersym-

metry in three-dimensions. In fact, it is an example of the “rigid c-map” construction [44],

which produces a hyperkähler manifold of real dimension 4r out of a rigid special Kähler

manifold of real dimension 2r. To see this, note that the metric (2.12) derives from the

Kähler potential

KC = iR(XΛF̄Λ − X̄ΛFΛ) +
1

R
(WΛ + W̄Λ)[ Im τ ]ΛΣ(WΣ + W̄Σ) (2.13)

in complex coordinates XΛ and

WΛ = i
(
ζ̃Λ − τΛΣζ

Λ
)
. (2.14)

Moreover, (2.12) admits the holomorphic symplectic form

ΩC = dWΛ dXΛ (2.15)

It is straightforward to check that the complex structures J1, J2, J3 obtained from the two-

forms Re (Ω), Im (Ω) and ω3 ≡ ∂∂̄KC by raising one index using the metric (2.12), satisfy

the quaternion algebra

Ji Jj = −δij + εijkJk . (2.16)

This proves that the semi-flat metric (2.12) is hyperkähler. We shall elaborate on the hy-

perkähler structure of (2.12) in §2.5 below.

2.3 Circle compactification and electric instantons

At finite radius however, the semi-flat metric (2.12) must be corrected by instanton correc-

tions, coming from BPS states in the four-dimensional theory whose Euclidean worldline

winds around the torus [27]. These instanton corrections to the two-derivative action are the

analog of the instanton corrections to the potential in pure (non-supersymmetric) Yang-Mills

theory in 2+1 dimensions, responsible for confinement [28]. Qualitatively, these corrections

are expected to be of the form

δds2 ∼ Ω(γ;u) e−2πR|Z(γ,za)|+2πi(pΛζ̃Λ−qΛζΛ) . (2.17)
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To see this, we start by considering instanton corrections from purely electric BPS states in

D = 4, namely from the W-boson.

For a U(1) theory on R3×S1 with a single hypermultiplet of electric charge q, the metric

onM3 can be determined exactly using symmetry considerations. The metric falls into the

Gibbons-Hawking ansatz for 4D hyperkähler spaces with one tri-holomorphic isometry,

ds2
M3

= V (~x) d~x2 +
1

V (~x)

(
dζ̃ + A

)2

, (2.18)

where ~x = ( Re a, Im a, ζ/R) are coordinates on R2 × S1 with flat metric. The metric (2.18)

is hyperkähler provided V is harmonic (possibly with singularities) and dA = ?dV . The

potential V is given by a one-loop integral of the hypermultiplet on S1 [45, 25],

V ∼ 2q2

∞∑
m=−∞

∫
d3~k

(2π)3

1(
~k2 + 1

R2 (m+ qζ)2 + q2|a|2
)2 , (2.19)

up to an irrelevant infinite additive constant. Thus,

V =
q2R

4π

∞∑
m=−∞

(
1√

q2R2|a|2 + (qζ +m)2
− κm

)
, (2.20)

where the constants κm are chosen such that the sum is convergent, κm ∼ 1/|m| as |m| → ∞.

To study the behavior in the large |a| regime, one must Poisson-resum over m, leading to

V = −q
2R

4π
log |a/Λ|2 +

q2R

2π

∑
n6=0

K0(2πR|nqa|) e2πinqζ , (2.21)

where Λ depends on the constant in (2.20). The connection A is

A =
iq2

4π

(
log

aΛ̄

āΛ

)
dζ − q2R

4π

(
d log

a

ā

)∑
n6=0

sgn(n)K1(2πR|nqa|) e2πinqζ (2.22)

Keeping only the first term in (2.21) and (2.22), one recovers the semi-flat metric (2.12),

with

τ(a) =
q2

2πi
log(a/Λ) . (2.23)

Since the modified Bessel function behaves as Ks(z) ∼
√

π
2z
e−z as z → 0, the terms with

n 6= 0 in (2.21) and (2.22) are non-perturbative corrections of the form (2.17), with pΛ = 0.

Note that unlike the semi-flat metric, which was singular in codimension 2 (namely at a =

ā = 0), for |q| 6= 1 the exact metric has singularities in codimension 3, at a = ā = 0, qζ ∈ Z,

locally of the form C2/Zq. For q = 1, the exact metric is completely regular.

In general, the metric onM3 involves corrections from all solitons with arbitrary electric

and magnetic charges. It is difficult to compute these corrections from first principles, since

there is in general no choice of frame where all charges would be purely electric. Nevertheless,

we shall see that wall-crossing constraints suggest a natural prescription to incorporate these

corrections, which reduces to the above in the case where all charges are electric.
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2.4 Twistor techniques for hyperkähler manifolds

• By definition, a HK manifold is a Riemannian manifold whose metric is hermitian

with respect to three complex structures J i satisfying the quaternion algebra (2.16).

It follows that M is 4n-dimensional, has reduced holonomy USp(n) ⊂ SO(4n), and

carries a family of complex structures

J(t, t̄) =
1− tt̄
1 + tt̄

J3 +
t+ t̄

1 + tt̄
J2 + i

t− t̄
1 + tt̄

J1 (2.24)

parametrized by t ∈ CP 1 = S2. This complex structure extends to a complex structure

on the twistor space ZM = CP 1 ×M.

• Using the hyperkähler metric on Z, one obtains a triplet of Kähler forms ωi. The

complex two-form

Ω[0](t) = ω+ − it ω3 + t2 ω− , (2.25)

with ω± = −1
2
(ω1 ∓ iω2) is of holomorphic w.r.t. to the complex structure J(t, t̄). Ω[0]

is regular at t = 0, but has a pole at t = ∞. Since it is only defined up to overall

factor, one may instead consider

Ω[∞](t) ≡ t−2 Ω[0](t) = ω− − iω3/t+ ω+/t2 , (2.26)

Ω is then real w.r.t. to the antipodal map t 7→ −1/t̄, in the sense that

Ω[∞](t) = Ω[0](−1/t̄) (2.27)

More generally, one may introduce a covering of CP 1 by open sets Ui, and a complex

two-form Ω[i], holomorphic on Ui, such that

Ω[i] = f 2
ijΩ

[j] mod dt , Ω[̄i](t) = Ω[i](−1/t̄) (2.28)

where fij are the transition functions of the O(1) bundle on CP 1. The knowledge of

Ω(ζ) allows to reconstruct the HK metric by expanding around t = 0 (or any other

point) [46].

• Locally, one can choose complex Darboux coordinates νΛ
[i](t) and µ

[i]
Λ (t) on ZS ,

regular in patch Ui, such that Ω[i] = dµ
[i]
Λ ∧ dνΛ

[i]. On the overlap of two patches

Ui ∩ Uj, they must be related by a complex symplectomorphism [1].,

µ
[i]
Λ = ∂νΛ

[i]
S[ij] , νΛ

[j] = ∂
µ

[j]
Λ
S[ij] , S[ij] = S[ij](νΛ

[i], µ
[j]
Λ , t) . (2.29)

On the overlap Ui ∩ Uj ∩ Uk, the symplectomorphisms S[ij], S[jk], S[ik] must of course

compose in the appropriate way. The symplectomorphism S[ij] must also be conjugate

to S[j̄ī] under real conjugation. Finally, a set of symplectomorphisms S[ij] on Ui ∩ Uj
related by local complex symplectomorphisms in each Uk lead to the same complex

symplectic structure, therefore to the same HK metric.
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• Any triholomorphic isometry of S yields a triplet of moment maps ~µκ = (v, v̄, x),

such that κ · ~ω = d~µκ, or better real global holomorphic section η ∈ H0(Z,O(2)):

η =
v

t
+ x− v̄t (2.30)

• A 4d-dimensional hyperkähler manifold M admitting d commuting tri-holomorphic

isometries κΛ is called “toric hyperkähler ”. In this case one may choose the d moment

maps ν[i] = f 2
i0tη

Λ as “position” coordinates. S[ij] must now be of the form

S[ij] = νΛ
[i]µ

[j]
Λ +H [ij](ηΛ

[i], t) (2.31)

such that, on Ui ∩ Uj,
µ

[i]
Λ − µ

[j]
Λ = ∂ηΛH [ij] (2.32)

The general solution to these gluing conditions is

µ
[i]
Λ (t) = ρΛ +

∑
j

∮
Cj

dt′

2πi t′
t+ t′

2(t′ − t)
∂ηΛH [0j](t′), (2.33)

where κΛ = ∂ρΛ
generate the tri-holomorphic isometries. The Kähler potential K of the

hyperkähler metric then arises by Legendre transform from the “tensor Lagrangian”

L, a function of 3d variables [47, 46],

L(xΛ, vΛ, v̄Λ) =

∮
dt

2πit
H(ηΛ, t) , K(vΛ, v̄Λ, wΛ, w̄Λ) = 〈L−xΛ(wΛ+w̄Λ)〉xΛ (2.34)

The local holomorphic function H [ij] is sometimes called the generalized prepoten-

tial. E.g. H = η2/t+mη log η produces Taub-NUT space with mass parameter m.

• Perturbations away from toric hyperkähler metrics are described by the variations

H [ij]
(1) (ν[i], µ

[j], t) of the generating function S[ij] which preserve the consistency condi-

tions on triple overlaps, reality conditions and are defined up to local symplectomor-

phisms. As such, they correspond to holomorphic sections of H1(Z,O(2)). Eg: the

Atiyah-Hitchin manifold is a deformation of Taub-NUT generated, at linear order in

the large radius limit, by H(1) = η eµ [1].

2.5 The rigid c-map in twistor space

The semi-flat hyperkähler metric (2.12) admits a tri-holomorphic isometric action of the

torus T 2r, corresponding to the vector fields ∂ζΛ and ∂ζ̃Λ . The corresponding moment maps

are

ξΛ = ζΛ +
iR

2

(
t X̄Λ − t−1XΛ

)
(2.35)

ξ̃Λ = ζ̃Λ +
iR

2

(
t F̄Λ − t−1 FΛ

)
(2.36)

Importantly, ξΛ and µΛ provide regular Darboux coordinates on an open patch U1 around

the equator,

dξΛ ∧ dξ̃Λ = t−1 Ω[0](t) . (2.37)
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The combinations

νΛ
[0] = tξΛ , ξ̃

[0]
Λ = ξ̃Λ +

iR

2t
FΛ

(
2t

iR
ξΛ

)
(2.38)

νΛ
[∞] = ξΛ/t , ξ̃

[∞]
Λ = ξ̃Λ −

it

2
F̄Λ

(
− 2

itR
ξΛ

)
(2.39)

are regular at the north and south pole, respectively, and can be chosen as Darboux coordi-

nates in U0 and U∞. The transition functions from U1 to U0 and U∞ are given by

H [10] = −R
2

4t2
F

(
2t

iR
ξΛ

)
, H [1∞] =

R2

4t2
F̄

(
2

itR
ξΛ

)
, (2.40)

where F (X) is the prepotential describing the special Kähler metric on M4. Indeed, the

rigid c-map can be obtained using the Legendre transform construction from the tensor

Lagrangian (after suitabler rescalings) [48, 49]

L = Im

∮
dt

2πit

F
(
tξΛ
)

t2
. (2.41)

2.6 The Ooguri-Vafa metric in twistor space

While the semi-flat metric (2.12) admitted 2r tri-holomorphic isometries, the effect of elec-

tric instantons is to break r of those to a discrete subgroup. The remaining r commuting

isometries nevertheless ensure that the metric can be obtained from the Legendre transform

construction. The Darboux coordinates νΛ = tξΛ can still be chosen as the moment maps

for the U(1)r action generated by ∂ζ̃Λ :

ξΛ = ζΛ +
iR

2

(
t X̄Λ − t−1XΛ

)
(2.42)

The coordinates ξ̃Λ around the equator however differ from the semi-flat result (2.35) by

instanton corrections. By analyzing the Ooguri-Vafa metric (2.18), one finds [9]

ξ̃Λ =ζ̃Λ +
i

2

(
t F̄Λ − t−1 FΛ

)
+

iqΛ

4π

∫
`+

dt′

t′
t′ + t

t′ − t
log
(

1− e2πiqΛξ
Λ
)
− iqΛ

4π

∫
`−

dt′

t′
t′ + t

t′ − t
log
(

1− e−2πiqΛξ
Λ
)
,

(2.43)

where `± are the BPS rays `± = {t : a/t ∈ ±iR+} (or small deformations thereof). In

particular, the coordinates ξ̃Λ are discontinuous across the BPS rays, with discontinuity

∆`± ξ̃Λ = iqΛ log
(

1− e±2πiqΛξ
Λ
)
. (2.44)

This is a symplectic transformation generated by

H [`±] =
1

2π
Li2

(
e±2πiqΛξ

Λ
)

(2.45)

where Li2(z) ≡
∑∞

n=1 z
n/n2 is the dilogarithm function. Eq. (2.43) is then a special case of

the general formula (2.33) obtained earlier in [1].
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2.7 Instanton corrections from mutually non-local solitons

In general, the metric on M3 involves corrections from all BPS solitons in D = 4 with

arbitrary electric and magnetic charges. It is difficult to compute these corrections from first

principles, since there is in general no choice of frame where all charges would be purely

electric (see however the next subsection). Nevertheless, one may try to covariantize the

twistor construction for electric instantons given above under electric-magnetic duality, as

follows. For a given charge vector γ = (pΛ, qΛ), at a fixed point inM4, consider the BPS ray

`(γ) = {t : Z(γ;ua)/t ∈ iR−} . (2.46)

Following [9], we postulate that across the BPS ray `(γ), the Darboux coordinates ξΛ and

ξ̃Λ are related by a symplectomorphism generated by

H [`(γ)] =
1

2π
σ(γ) Ω(γ, u) Li2 (Xγ) , Xγ ≡ e2πi(qΛξ

Λ−pΛξ̃Λ) , (2.47)

where σ(γ) is a quadratic refinement of the symplectic pairing on the charge lattice, i.e. a

function σ : Γ→ U(1) which satisfies

σ(γ + γ′) = (−1)〈γ,γ
′〉 σ(γ)σ(γ′) . (2.48)

The most general solution to this condition is

σ(γ) = e−iπpΛqΛ+2πi(qΛθ
Λ−pΛφΛ) (2.49)

where (θΛ, φΛ) ∈ (Γ⊗ R)/Γ are “characteristics”. They can be absorbed in a shift (ζ, ζ̃) 7→
(ζ − θ, ζ̃ − φ), however the sign e−iπpΛqΛ = ±1 cannot be removed and plays a crucial role in

ensuring consistency with wall-crossing, as we discuss momentarily. For pΛ = 0 and θΛ = 0,

(2.47) reduces to (2.45). As a result, the functions Xγ satisfy the integral equations, for all

γ,

Xγ = X sf
γ exp

[
− 1

2πi

∑
γ′

Ω(γ′;u) 〈γ, γ′〉
∫
`γ′

dt′

t′
t′ + t

t′ − t
log (1− σ(γ′)Xγ′(t′))

]
(2.50)

where

X sf
γ = exp

[
2πi(qΛζ

Λ − pΛζ̃Λ) +
iR

2

(
t Z̄γ − t−1 Zγ

)]
(2.51)

These integral equations are similar to equations arising in the context of the Thermodynamic

Bethe Ansatz [9, 50].

Now, as the point ua in M4 is varied, the location of the BPS rays on the CP 1 fiber

changes. In particular, across a wall of marginal stability two BPS rays through each other.

The metric on M3 should be smooth however, since singularities are only expected when

some state becomes massless. In particular, the total discontinuity of the Darboux coordi-

nates across the two colliding BPS rays should be the same on both sides of the wall. This

is in turn determines the jump of BPS index Ω(γ;ua) across the wall.

To express this in mathematical terms, note that the functions Xγ generate Hamiltonian

vector fields (i.e. infinitesimal symplectomorphisms) δγf = {Xγ, f} of the complex torus
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TC parametrized by ξΛ, ξ̃Λ, where {·, ·} is the (complex) Poisson bracket associated to the

(complex) symplectic form Ω on TC. The Poisson algebra of the functions Xγ

{Xγ,Xγ′} = 〈γ, γ′〉 Xγ+γ′ (2.52)

translates into the Lie algebra of the infinitesimal symplectomorphisms δγ,

[δγ, δγ′ ] = 〈γ, γ′〉 δγ+γ′ (2.53)

The symplectomorphism Uγ across the BPS ray `(γ) is then

U (Ω(γ;ta))
γ (ta) ≡ exp

(
σ(γ) Ω(γ; ta)

∞∑
d=1

δdγ
d2

)
. (2.54)

The consistency of the twistor construction across a wall of marginal stability then requires

that the product

Aγ1,γ2 =
∏

γ=Mγ1+Nγ2,
M≥0,N≥0

Uγ , (2.55)

ordered so that arg(Zγ) decreases from left to right, stays constant across the wall. This

wall-crossing formula was first established by Kontsevich and Soibelman in the context of

Donaldson-Thomas invariants of Calabi-Yau categories. Indeed, it can be checked that the

KS formula reproduces the change of the BPS spectrum in pure Seiberg-Witten SU(2) theory

(as first observed by Denef),

U
(1)
2,−1 · U

(1)
0,1 = U

(1)
0,1 · U

(1)
2,1 · U

(1)
4,1 . . . U

(−2)
2,0 . . . U

(1)
6,−1 · U

(1)
4,−1U

(1)
2,−1 (2.56)

as well as in SU(2) theory with Nf = 1, 2, 3 flavors [9, 51]. More generally, truncating the

KS formula to the algebra spanned by the generators δγ1 , δγ2 , δγ1+γ2 , where γ1 and γ2 are

primitive vectors, and using the BCH formula eX eY = eX+Y+ 1
2

[X,Y ]+..., the identity

U (Ω+(γ1))
γ1

· U (Ω+(γ1+γ2))
γ1+γ2

· U (Ω+(γ2))
γ2

= U (Ω−(γ2))
γ2

· U (Ω−(γ1+γ2))
γ1+γ2

· U (Ω−(γ1))
γ1

(2.57)

implies the primitive wall-crossing formula

∆Ω(γ → γ1 + γ2) = (−1)〈γ1,γ2〉 〈γ1, γ2〉Ω+(γ1) Ω+(γ2) , (2.58)

where the prefactor on the r.h.s. is the index of the angular momentum degrees of freedom

of a 2-centered black hole configuration. In order to obtain the correct sign in this relation,

it is crucial to include the quadratic refinement σ(γ).

Since the operators Ukγ associated to multiples of a given charge vector γ commute with

each other, they may be combined into a single factor

Vγ(t
a) ≡ exp

(∑
k

σ(kγ) Ω̄(kγ; ta) δkγ

)
(2.59)

or, in terms of the transition functions (2.47),

H [`(γ)] =
1

2π
σ(γ) Ω̄(γ, u) e2πi(qΛξ

Λ−pΛξ̃Λ) , (2.60)

for each (non-necessarily primitive) vector γ in the charge lattice. In that sense, the rational

invariants are the ones which most naturally govern the instanton corrections.
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2.8 A weak coupling test

To further test the validity of the above construction, one may compute the leading instanton

correction toM3 in the weak coupling chamber [52, 53]. As usual, it is convenient to compute

corrections to the four-fermion vertex, equal by supersymmetry to the Riemann tensor of the

metric on M3. The instanton configuration of interest is a BPS monopole whose worldline

winds around the circle. Its collective coordinates are the center of motion and angular

“electric” coordinate φ (not to be confused with the circle coordinate x3 !), parametrizing

R3×S1, and four fermions ψ corresponding to the supersymmetries broken by the monopole,

with world-line action

L = M +
1

2
M

(
~̇x2 +

(φ̇)2

|a|2
+ ψψ̇

)
, M =

4π

g2
|a| . (2.61)

The path integral of the collective modes on a circle of radius R is then[√
M

2π(2πR)

]−4+3 ∑
ne∈Z

exp

[
−1

2

|a|2

M

(
ne +

θ

2π

)2

+ ineζ

]
, (2.62)

coming from ψ, ~x, φ, respectively. The fluctuation determinant R in the monopole back-

ground can be computed using Callias index theorem, as first performed by Kaul in the

context of the one-loop correction to the monopole mass [54]. We quote the result and refer

to [52] for the derivation,

logR = −4R|a| cosh−1 Λ

|a|
− 2 log(2πR) +

2

π

∫ ∞
0

dt

cosh t
log
∥∥1− e−2πR|a| cosh t+iζ

∥∥2
. (2.63)

The divergent term can be absorbed in a renormalization of the bare monopole mass and θ

angle, M →Meff = 4π|a|/g2
eff and θ → θeff where

θeff

2π
+

4πi

g2
eff

= τ = F ′′(a) . (2.64)

In total, the coefficient of the four-fermion coupling is given by

29/2π

R|a|1/2

(
2πR

g2
eff

)7/2

exp

(
2

π

∫ ∞
0

dt

cosh t
log
∥∥1− e−2πR|a| cosh t+iζ

∥∥2
)∑

ne

e−S (2.65)

where

S = 2πR

[
4π

g2
eff

|a|+ g2
eff |a|
8π

(
ne +

θeff

2π

)2
]
− ineζ − iζ̃ (2.66)

Remarkably, this agrees exactly with the curvature Raζāζ̃ of the metric onM3 which follows

from the twistor construction ! Note also that S agrees with the weak coupling limit of the

action appearing in (2.17), for p = 1 and q = ne.
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3. Wall-crossing in N = 2 gauge theories / string vacua

3.1 Boltzmannian view of the wall-crossing

• We consider N = 2 supergravity in 4 dimensions (this includes field theories with rigid

N = 2 as a special case). Let Γ = Γe ⊕ Γm be the lattice of electric and magnetic

charges, with symplectic pairing

〈γ, γ′〉 = 〈(pΛ, qΛ), (p′Λ, q′Λ)〉 ≡ qΛp
′Λ − q′ΛpΛ ∈ Z (3.1)

• BPS states preserve 4 out of 8 supercharges, and saturate the bound M ≥ |Z(γ, ta)|
where Z(γ, ta) = eK/2(qΛX

Λ − pΛFΛ) is the central charge/stability data.

• We are interested in the index Ω(γ; ta) = TrH′γ(ta)(−1)2J3 where H′γ(ta) is the Hilbert

space of stable states with charge γ ∈ Γ, with center of motion and fermionic zero

modes factored out.

• The BPS invariants Ω(γ; ta) are locally constant functions of ta, but may jump across

codimension-one subspaces

W (γ1, γ2) = {ta / arg[Z(γ1)] = arg[Z(γ2)]} (3.2)

where γ1 and γ2 are two primitive (non-zero) vectors such that γ = Mγ1 + Nγ2,

M,N ≥ 1.

• We choose γ1, γ2 such that Ω(γ; ta) has support only on the positive cone (root basis

property)

Γ̃ : {Mγ1 +Nγ2, M,N ≥ 0, (M,N) 6= (0, 0)} . (3.3)

• Let c± be the chamber in which arg(Zγ1) ≷ arg(Zγ2). Our aim is to compute ∆Ω(γ) ≡
Ω−(γ)− Ω+(γ) as a function of Ω+(γ) (say).

• Assume that M(γ1),M(γ2) are much greater than the dynamical scale (Λ or mP ). In

this limit, those single-particle states which are potentially unstable across W ) can

be described by classical configurations with n centers of charge Miγ1 + Niγ2 ∈ Γ̃,

satisfying (M,N) =
∑

i(Mi, Ni).

• In addition, in either chamber, there may be multi-centered configurations whose charge

vectors do not lie in Γ̃. However, they remain bound across W and do not contribute

to ∆Ω(γ).

• Assume for definiteness that γ12 < 0. Then multi-centered solutions with charges in Γ̃

exist only in chamber c−, not c+. E.g. two-centered solutions can only exist when [55]

r12 =
1

2

〈α1, α2〉 |Z(α1) + Z(α2)|
Im [Z(α1)Z̄(α2)]

> 0 . (3.4)
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Figure 3: Onion-like structure of the black hole halo configurations relevant for semi-primitive
wall crossing [24]

• At the wall, rij diverges : the single-particle bound state decays into the continuum of

multi-particle states.

• ∆Ω(γ) is equal to the index of the SUSY quantum mechanics of n point-like parti-

cles, each carrying its own set of degrees of freedom with index Ω(γi), interacting via

Newtonian and Coulomb forces.

• For primitive decay γ → γ1 + γ2, the quantization of the phase space of two-centered

configuration reproduces the primitive WCF

∆Ω(γ → γ1 + γ2) = (−1)γ12+1 |γ12|Ω+(γ1) Ω+(γ2) , (3.5)

where (−1)γ12+1 |γ12| is the index of Landau states on a sphere of radius r12 threaded

by a magnetic flux γ1,2, or equivalently the angular momentum degeneracy.

• This generalizes to semi-primitive wall-crossing γ → γ1+Nγ2: the potentially unstable

configurations consist of of a “halo” of ms particles of charge sγ2,
∑
sms = N −m,

orbiting around a “core” of charge γ1 +mγ2, see figure 3. This leads to [24]∑
N≥0 Ω−(1, N) qN∑
N≥0 Ω+(1, N) qN

=
∏
k>0

(
1− (−1)kγ12qk

)k |γ12| Ω+(kγ2)
. (3.6)

• E.g. for γ 7→ γ1 + 2γ2,

∆Ω(1, 2) =Ω+(1 , 0 )

[
2γ12 Ω+(0, 2) +

1

2
γ12 Ω+(0,1)

(
γ12Ω+(0,1) + 1

)]
+ Ω+(1 , 1 )

[
(−1)γ12γ12Ω+(0, 1)

]
.

(3.7)

• The term 1
2
d(d + 1) with d = γ12Ω+(0, 1), reflects the Bose/Fermi statistics of identical

particles, i.e. the projection on (anti)symmetric wave functions.
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• It is instructive to rewrite the semi-primitive wcf using the rational BPS invariants

Ω̄(γ) ≡
∑

d|γ
Ω(γ/d)/d2 , (3.8)

• By the Möbius inversion formula,

Ω(γ) =
∑

d|γ
µ(d) Ω̄(γ/d)/d2 (3.9)

where µ(d) is the Möbius function (i.e. 1 if d is a product of an even number of distinct

primes, −1 if d is a product of an odd number of primes, or 0 otherwise).

• The rational DT invariants Ω̄(γ) appear in the JS formula, in constructions of modular

invariant black hole partition functions, and in instanton corrections to hypermultiplet

moduli spaces.

• In the (1,2) example,

∆Ω̄(1, 2) =Ω̄+(1 , 0 )

[
2γ12 Ω̄+(0, 2) +

1

2
γ12 Ω̄+(0,1)2

]
+ Ω̄+(1 , 1 )

[
(−1)γ12γ12Ω̄+(0, 1)

]
.

(3.10)

is simpler, and manifestly consistent with charge conservation.

• More generally, using the identity
∏∞

d=1(1− qd)µ(d)/d = e−q, or working backwards, the

semi-primitive wcf can be rewritten as∑
N≥0 Ω̄−(1, N) qN∑
N≥0 Ω̄+(1, N) qN

= exp

[
∞∑
s=1

qs(−1)〈γ1,sγ2〉〈γ1, sγ2〉Ω̄+(sγ2)

]
. (3.11)

• Physically, this follows by treating the particles in the halo as distinguishable, each

carrying an effective index Ω̄(sγ2), and applying Boltzmann statistics !

• In general, we expect that the WCF is given by a sum

∆Ω̄(γ) =
∑
n≥2

∑
{α1,...αn}∈Γ̃
γ=α1+···+αn

g({αi})
|Aut({αi})|

∏n

i=1
Ω̄+(αi) , (3.12)

over all unordered decompositions of the total charge vector γ into a sum of n vectors

αi ∈ Γ̃. The symmetry factor |Aut({αi})| is conventional, but natural in Boltzmannian

statistics.

• The KS and JS formulae give a mathematical (implicit/explicit) prediction for the

coefficients g({αi}). After reviewing these formulae, we shall check them against a

physical derivation based on black hole halo picture.
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3.2 The Kontsevich-Soibelman formula

• Consider the Lie algebra A spanned by abstract generators {eγ, γ ∈ Γ}, satisfying the

commutation rule

[eγ1 , eγ2 ] = κ(〈γ1, γ2〉) eγ1+γ2 , κ(x) = (−1)x x . (3.13)

For a given charge vector γ and value of the VM moduli ta, consider the operator

Uγ(t
a) in the Lie group exp(A)

Uγ(t
a) ≡ exp

(
Ω(γ; ta)

∞∑
d=1

edγ
d2

)
(3.14)

The operators eγ / Uγ can be realized as Hamiltonian vector fields / symplectomor-

phisms of a twisted torus.

• The KS wall-crossing formula states that the product

Aγ1,γ2 =
∏

γ=Mγ1+Nγ2,
M≥0,N≥0

Uγ , (3.15)

ordered so that arg(Zγ) decreases from left to right, stays constant across the wall. As

ta crosses W , Ω(γ; ta) jumps and the order of the factors is reversed, but the operator

Aγ1,γ2 stays constant. Equivalently,∏
M≥0,N≥0,
M/N↓

U+
Mγ1+Nγ2

=
∏

M≥0,N≥0,
M/N↑

U−Mγ1+Nγ2
, (3.16)

• The algebra A is infinite dimensional but filtered. The KS formula may be projected

to any finite-dimensional algebra

AM,N = A/{
∑

m>M orn>N

R · emγ1+nγ2} . (3.17)

This projection is sufficient to infer ∆Ω(mγ1 +nγ2) for any m ≤M,n ≤ N , e.g. using

the Baker-Campbell-Hausdorff formula.

• For example, the primitive wcf follows in A1,1 from

exp(Ω̄+(γ1)eγ1) exp(Ω̄+(γ1 + γ2)eγ1+γ2) exp(Ω̄+(γ2)eγ2)

= exp(Ω̄−(γ2)eγ2) exp(Ω̄−(γ1 + γ2)eγ1+γ2) exp(Ω̄−(γ1)eγ1)

and the order 2 truncation of the BCH formula

eX eY = eX+Y+ 1
2

[X,Y ] . (3.18)
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• Noting that the operators Ukγ for different k ≥ 1 commute, one may combine them

into a single factor

Vγ ≡
∞∏
k=1

Ukγ = exp

(
∞∑
`=1

Ω̄(`γ) e`γ

)
, Ω̄(γ) =

∑
m|γ

m−2Ω(γ/m) . (3.19)

and rewrite the KS formula as a product over primitive charge vectors only,∏
M≥0,N≥0,

gcd(M,N)=1,M/N↓

V +
Mγ1+Nγ2

=
∏

M≥0,N≥0,
gcd(M,N)=1,M/N↑

V −Mγ1+Nγ2
, (3.20)

• The semi-primitive formula can be derived similarly by projecting the KS formula to

A1,∞,

V +
γ1
V +
γ1+γ2

V +
γ1+2γ2

· · ·V +
γ2

= V −γ2
· · ·V −γ1+2γ2

V −γ1+γ2
V −γ1

(3.21)

and combining on either side the factors V +
γ1+Nγ2

in a single exponential using the

order-2 BCH formula:

eX
+
1 V +

γ2
= V −γ2

eX
−
1 (3.22)

The Hadamard lemma for eY = V +
γ2

= V −γ2
, X = eX

+
1

eY X e−Y = X + [Y,X] +
1

2!
[Y, [Y,X]] + +

1

3!
[Y, [Y, [Y,X]]] + . . . (3.23)

then leads directly to Z−(1, q) = Z+(1, q)Zhalo(γ1, q), where Z±(1, q) =
∑

N≥0 Ω±(γ1 +

Nγ2) qN .

• By projecting the KS formula to AM,∞, one can obtain ”order M” generalizations of

the semi-primitive WCF, e.g. for M = 2

Z̃−2 (q) = Z̃+
2 (q)Zhalo(2γ1, q) (3.24)

where

Z̃±2 (q) ≡
∞∑
N≥0

Ω̄±(2γ1 +Nγ2) qN

±1

4

∑
N1,N2≥0

κ(|N1 −N2|γ12) Ω̄±(γ1 +N1γ2) Ω̄+(γ1 +N2γ2) qN1+N2 .

(3.25)

and Zhalo(2γ1, q) is the same factor which appeared in the semi-primitive wcf, after

replacing γ1 7→ 2γ1.

• E.g for D6-D0 bound states (i.e. dimension zero sheaves on X ): at large volume, zero

B-field,
D6\D0 0 1 2 3 4

0 · −χ −χ −χ −χ
1 1 0 0 0 . . .

2 0 0 0 0 . . .

3 0 0 0 0 . . .

(3.26)

Ω+(1, 0) = 1 , Ω+(0, n) = −χ (n > 0) . (3.27)
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• As the B-field is increased, one enters the DT chamber, wherein

D6\D0 0 1 2 3 4

0 · −χ −χ −χ −χ
1 1 −χ 1

2
(χ2 + 5χ) −1

6
(χ3 + 15χ2 + 20χ) . . .

2 0 0 −χ −1
6
(χ3 + 15χ2 + 20χ) . . .

3 0 0 0 −χ . . .

(3.28)

• The partition function of rank 1 DT invariants is

Z−(1, q) = [M(−q)]χ , M(q) =
∏
n≥1

1− qn)n (3.29)

• The partition function of rank 2 DT invariants is

Z−(2, q) =
1

4

(
[M(q)]2χ − [M(−q2)]χ

)
− 1

4

∑
n1,n2

κ(|n1 − n2|)Ω−(1, n1) Ω−(1, n2) qn1+n2
(3.30)

• When αi have generic phases, g({αi}) can be computed by projecting the KS formula

to the subalgebra spanned by eP
αj where {αj} runs over all subsets of {αi}.

• E.g., for n = 3, assuming that the phase of the charges are ordered according to

α1, α1 + α2, α1 + α3, α1 + α2 + α3, α2, α2 + α3, α3 , (3.31)

we find

g({α1, α2, α3}) = (−1)α12+α23+α13 α12 (α13 + α23) (3.32)

As we shall see later, this fits the macroscopic index of 3-centered configurations !

• Similarly, for n = 4, assuming the clockwise ordering

α1 , (α1 + α2 , α1 + α3 , α1 + α2 + α3) , α2 ,

(α2 + α3 , α1 + α2 + α4) , α1 + α2 + α3 + α4 , α1 + α3 + α4 ,

α3 , (α1 + α4 , α2 + α4 , α2 + α3 + α4 , α3 + α4) , α4 ,

(3.33)

we find

g({α1, α2, α3, α4}) =(−1)1+
P
i<j αij ×

[〈α1, α2〉 〈α1 + α2, α3〉 〈α1 + α2 + α3, α4〉
+ 〈α1, α3〉 〈α1 + α3, α4〉 〈α2, α1 + α3, α4〉
+〈α2, α3〉 〈α1, α4〉 〈α2 + α3, α1 + α4〉]

(3.34)

which is a prediction for the index of the 4-body SUSY quantum mechanics.
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• KS have proposed a quantum deformation of their formula, which governs wall-crossing

properties of motivic DT invariants Ωref(γ; y, t). Physically, these correspond to the

“refined index”

Ωref(γ, y) = Tr ′H(γ)(−y)2J3 ≡
∑
n∈Z

(−y)n Ωref,n(γ) , (3.35)

where J3 is the angular momentum in 3 dimensions along the z axis (more accurately,

a combination of angular momentum and SU(2)R quantum numbers). As y → 1,

Ωref(γ; y, t)→ Ω(γ; t).

• Caution: this index is protected in N = 2, D = 4 field theories, but not in supergrav-

ity/string theory, where SU(2)R is generically broken.

• To state the formula, consider the Lie algebra A(y) spanned by generators {ẽγ, γ ∈ Γ},
satisfying the commutation rule

[ẽγ1 , ẽγ2 ] = κ(〈γ1, γ2〉) ẽγ1+γ2 , κ(x) =
(−y)x − (−y)−x

y − 1/y
. (3.36)

• To any charge vector γ, attach the operator

Ûγ =
∏
n∈Z

E

(
yn ẽγ
y − 1/y

)−(−1)nΩref,n(γ)

, E(x) ≡ exp

[
∞∑
k=1

(xy)k

k(1− y2k)

]
, (3.37)

where E is the quantum dilogarithm function.

• The motivic version of the KS wall-crossing formula again states that the ordered

product

Âγ1,γ2 =
∏

γ=Mγ1+Nγ2,
M≥0,N≥0

Ûγ , (3.38)

is constant across the wall.

• As before, one may combine the Ûkγ into a single factor

V̂γ =
∏
`≥1

Û`γ = exp

[
∞∑
N=1

Ω̄ref(Nγ, y) ẽNγ

]
(3.39)

where Ω̄ref(Nγ, y) are the “rational motivic invariants”, defined by

Ω̄+
ref(γ, y) ≡

∑
m|γ

(y − y−1)

m(ym − y−m)
Ω+

ref(γ/m, y
m) . (3.40)

• The motivic KS formula becomes∏
M≥0,N≥0>0,

gcd(M,N)=1,M/N↓

V̂ +
Mγ1+Nγ2

=
∏

M≥0,N≥0>0,
gcd(M,N)=1,M/N↑

V̂ −Mγ1+Nγ2
, (3.41)
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• ∆Ω̄ref(γ, y) can be computed using the same techniques as before, e.g. the primitive

wcf read

∆Ωref(γ1 + γ2, y) =
(−y)〈γ1,γ2〉 − (−y)−〈γ1,γ2〉

y − 1/y
Ωref(γ1, y) Ωref(γ2, y) (3.42)

• The refined semi-primitive wall-crossing formula is given by

Z−(1, q, y) = Z+(1, q, y)Zhalo(γ1, q, y) (3.43)

where

Zhalo(γ1, q, y) ≡ exp

(
∞∑
`=1

(−y)〈γ1,`γ2〉 − (−y)−〈γ1,`γ2〉

y − y−1
Ω̄ref(`γ2, y) q`

)
, (3.44)

or in terms of the integer motivic invariants,

Zhalo(γ1, q, y) =
∏

k≥1,n∈Z
1≤j≤k|γ12|

(
1− (−1)k|γ12|qkyn+2j−1−k|γ12|

)(−1)n Ωref,n(kγ2)
(3.45)

3.3 The Joyce-Song formula

• In the context of the Abelian category of coherent sheaves on a Calabi-Yau three-

fold, Joyce & Song have shown that the jump of (generalized, rational) DT invariants

across the wall is given by

∆Ω̄(γ) =
∑
n≥2

∑
{α1,...αn}∈Γ̃
γ=α1+···+αn

g({αi})
|Aut({αi})|

∏n

i=1
Ω̄+(αi) . (3.46)

where the coefficient g is given by

g({αi}) =
1

2n−1
(−1)n−1+

P
i<j〈αi,αj〉

∑
σ∈Σn

L
(
ασ(1), . . . ασ(n)

)
U
(
ασ(1), . . . ασ(n)

) (3.47)

• To formulate the JS formula, we need to introduce S, U and L factors, which are

functions of an ordered list of charge vectors αi ∈ Γ̃, i = 1 . . . n.

• We define S(α1, . . . , αn) ∈ {0,±1} as follows. If n = 1, set S(α1) = 1. If n > 1 and,

for every i = 1 . . . n− 1, either

(a) 〈αi, αi+1〉 ≤ 0 and 〈α1 + · · ·+ αi, αi+1 + · · ·+ αn〉 < 0, or

(b) 〈αi, αi+1〉 > 0 and 〈α1 + · · ·+ αi, αi+1 + · · ·+ αn〉 ≥ 0 , (3.48)

let S(α1, . . . , αn) = (−1)r, where r is the number of times option (a) is realized;

otherwise, S(α1, . . . , αn) = 0.
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• To define the U factor, consider all ordered partitions of the n vectors αi into 1 ≤ m ≤ n

packets {αaj−1+1, · · · , αaj}, j = 1 . . .m, with 0 = a0 < a1 < · · · < am = n, such that

all vectors in each packet have the same phase argZ(αi). Let

βj = αaj−1+1 + · · ·+ αaj , j = 1 . . .m (3.49)

be the sum of the charge vectors in each packet.

• Next, consider all ordered partitions of the m vectors βj into 1 ≤ l ≤ m packets

{βbk−1+1, · · · , βbk}, with 0 = b0 < b1 < · · · < bl = m, k = 1 . . . l, such that the total

charge vectors δk = βbk−1+1 + · · · + βbk , k = 1 . . . l in each packets all have the same

phase argZ(δk).

• Define the U -factor as the sum

U(α1, . . . , αn) ≡
∑
l

(−1)l−1

l
·
∏l

k=1

m∏
j=1

1

(aj − aj−1)!
S(βbk−1+1, βbk−1+2, . . . , βbk) .

(3.50)

over all partitions of αi and βj satisfying the conditions above.

• If none of the phases of the vectors αi coincide, S = U . Contributions with l > 1 arise

only when {αi} can be split into two (or more) packets with the same total charge,

e.g.

U [γ1, γ2, γ1, γ2] = S[γ1, γ2, γ1, γ2]− 1

2
S[γ1, γ2]2 = 1− 1

2
(−1)2 =

1

2
(3.51)

• Finally (departing slightly from JS), define the (Landau) L factor Landau factor L is

a

L(α1, . . . , αn) =
∑
trees

∏
edges(i,j)

〈αi, αj〉 (3.52)

where the sum runs over all labeled trees with n vertices labelled {1, . . . , n}, with edges

oriented from i to j if i < j. There are nn−2 trees, labelled by their Prüfer code, a

sequence of n− 2 numbers in {1, . . . n}.

• To derive the primitive wcf, note that there is only one oriented tree with 2 nodes.

Assuming γ12 < 0, the JS data is then

σ(12) S U L
12 a −1 γ12

21 b 1 −γ12

(3.53)

leading again to

∆Ω(γ → γ1 + γ2) = (−1)γ12 γ12 Ω(γ1) Ω(γ2) , γ12 ≡ 〈γ1, γ2〉 (3.54)
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Figure 4: The 16 labelled trees contributing to four-body decay

• For generic 3-body decay, assuming the same phase ordering as before and taking into

account the 3 possible oriented trees, the JS data

σ(123) S U L
123 bb 1 α12α13 + α13α23 + α12α23

132 b- 0 α12α13 − α13α23 − α12α23

213 ab −1 −α12α23 + α13α23 − α12α13

231 -a 0 α12α13 − α13α23 − α12α23

312 ab −1 α13α23 − α12α23 − α13α12

321 aa 1 α13α23 + α12α13 + α12α23

(3.55)

leads to the same answer as KS,

g({α1, α2, α3}) = (−1)α12+α23+α13 α12 (α13 + α23) (3.56)

• We have checked that JS and KS also agree for generic 4-body decay (involving 16

trees), 5-body decay (125 trees) and for special cases (2,3), (2,4) (up to 1296 graphs !).

• While there is no general proof yet, it seems that the JS formula (derived for Abelian

categories) is equivalent to the classical KS formula (stated for triangulated categories).

• Note that the JS formula involves large denominators and leads to many cancellations.

We shall find a more economic formula which also works at the motivic level.

3.4 The “Higgs branch” formula

• An alternative formula can be given using the Higgs branch description of the multi-

centered configuration, namely the quiver with n nodes {1 . . . n} of dimension 1 and

αij arrows from i to j.
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• Since αi lie on a 2-dimensional sublattice Γ̃, the quiver has no oriented closed loop.

Reineke’s formula gives

gref =
(−y)−

P
i<j αij

(y − 1/y)n−1

∑
partitions

(−1)s−1y2
P
a≤b

P
j<i αjim

(a)
i m

(b)
j , (3.57)

where
∑

runs over all ordered partitions of γ = α1 + · · · + αn into s vectors β(a)

(1 ≤ a ≤ s, 1 ≤ s ≤ n) such that

1. β(a) =
∑

im
(a)
i αi with m

(a)
i ∈ {0, 1},

∑
a β

(a) = γ

2. 〈
∑b

a=1 β
(a), γ〉 > 0 ∀ b with 1 ≤ b ≤ s− 1

• The formula agrees with KS/JS/Coulomb for n = 2, 3, 4, 5 !

3.5 The “Coulomb branch” formula

• The moduli space Mn of BPS configurations with n centers in N = 2 SUGRA is

described by solutions to Denef’s equations [55]

n∑
j=1...n,j 6=i

αij
|~ri − ~rj|

= ci ,

{
ci = 2 Im [e−iαZ(αi)]

α = arg[Z(α1 + · · ·αn)]
. (3.58)

• Mn is a compact symplectic manifold of dimension 2n− 2, and carries an Hamil-

tonian action of SU(2) [39]:

ω =
1

2

∑
i<j

αij
d~rij ∧ d~rij · ~rij

|rij|3
, ~J =

1

2

∑
i<j

αij
~rij
|rij|

(3.59)

• Quantizing the internal degrees of freedom of the multi-centered configurations amounts

to quantizing the symplectic space Mn. The index is given, at least when |αij| �
1, y → 1, by

g({αi}, y) =
(−1)

P
i<j αij−n+1

(2π sinh ν/ν)n−1

∫
Mn

ωn−1 e2νJ3 , ν ≡ log y (3.60)

We conjecture that this is exact for all αij, y.

• By the Duistermaat-Heckmann theorem, the integral localizes to the fixed points of

the action of J3, i.e. collinear multi-centered configurations along the z-axis, such that

n∑
j=1...n,j 6=i

αij
|zi − zj|

= ci , J3 =
1

2

∑
i<j

αij sign(zi − zj) . (3.61)

• These are classified by permutations σ describing the order of zi along the axis. Let

S(t) be the set of permutations allowed by Denef’s equations. Localization leads to

the Coulomb branch formula

gref({αi}, y) =
(−1)

P
i<j αij+n−1

(y − y−1)n−1

∑
σ∈S(t)

s(σ) y
P
i<j αij sign(σ(j)−σ(i)) . (3.62)

where s(σ) = (−1)#{i;σ(i+1)<σ(i)} originates from Hessian(J3).
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• For n ≤ 5, we find perfect agreement with JS/KS !

g(α1, α2; y) = (−1)α12
sinh(να12)

sinh ν
(3.63)

g(α1, α2, α3; y) = (−1)α13+α23+α12
sinh(ν(α13 + α23)) sinh(να12)

sinh2 ν
, (3.64)

4. Hypermultiplet moduli spaces in type II string vacua

4.1 Perturbative HM moduli space in type IIA and local c-map

• The HM moduli space in type IIA compactified on a CY 3-fold (family) X is a

quaternion-Kähler manifold M of real dimension 2b3(X ) = 4(h2,1 + 1). The same

space arises as the VM moduli space in type IIB compactified on X × S1. We shall

mainly use the hypermultiplet language.

• M ≡ Qc(X ) encodes

1. the 4D dilaton R ≡ 1/g(4),

2. the complex structure of the CY family X ,

3. the periods of the RR 3-form C on X ,

4. the NS axion σ, dual to the Kalb-Ramond B-field in 4D

• To write down the metric explicitly, let us choose a symplectic basis AΛ,BΛ, Λ =

0 . . . h2,1 of H3(X ,Z).

• The complex structure moduli space Mc(X ) may be parametrized by the periods

Ω(za) = (XΛ, FΛ) ∈ H3(X ,C) of the (3,0) form

XΛ =

∫
AΛ

Ω3,0 , FΛ =

∫
BΛ

Ω3,0 , (4.1)

up to holomorphic rescalings Ω 7→ efΩ.

• Mc(X ) is endowed with a special Kähler metric

ds2
SK = ∂∂̄K , K = − log[i(X̄ΛFΛ −XΛF̄Λ)] (4.2)

and a C× bundle L with connection AK = i
2
(Kadza −Kādz̄ā).

• Ω transforms as Ω 7→ efρ(M) Ω under a monodromy M in Mc(X ), where ρ(M) ∈
Sp(b3,Z).

• Topologically trivial harmonic C-fields on X may be parametrized by the real periods

C = (ζΛ, ζ̃Λ)

ζΛ =

∫
AΛ

C, ζ̃Λ =

∫
BΛ

C . (4.3)
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• Large gauge transformations require that C lives in the intermediate Jacobian torus

C ∈ T = H3(X ,R)/H3(X ,Z) (4.4)

i.e. that (ζΛ, ζ̃Λ) have unit periodicities. This is consistent with D-instanton charge

quantization, as we shall discuss later.

• T carries a canonical symplectic form and complex structure induced by the Hodge

?X , hence a Kähler metric

ds2
T = −1

2
(dζ̃Λ − N̄ΛΛ′dζ

Λ′) ImN ΛΣ(dζ̃Λ −NΣΣ′dζ
Σ′) (4.5)

where N is the (Weil) period matrix ( ImN < 0),

NΛΛ′ = τ̄ΛΛ′ + 2i
[ Im τ ·X]Λ[ Im τ ·X]Λ′

XΣ Im τΣΣ′XΣ′
. (4.6)

while τΛΣ = ∂XΛ∂XΣF is the Griffiths period matrix.

• Under monodromies, C 7→ ρ(M)C . We shall refer to the total space of the torus

bundle T → Jc(X )→Mc(X ) as the (Weil) intermediate Jacobian of X .

• At tree level, i.e. in the strict weak coupling limit R = ∞, the quaternion-Kähler

metric on M is given by the c-map metric [44, 56]

ds2
M =

4

R2
dR2 + 4 ds2

SK +
ds2
T

R2
+

1

16R4
Dσ2 . (4.7)

where

Dσ ≡ dσ + 〈C, dC〉 = dσ + ζ̃ΛdζΛ − ζΛdζ̃Λ (4.8)

This follows by circle reduction followed by T-duality.

• The c-map metric admits continuous isometries

TH,κ : (C, σ) 7→ (C +H, σ + κ+ 〈C,H〉) (4.9)

where H ∈ H3(X ,R) and κ ∈ R, satisfying the Heisenberg group relation

TH1,κ1TH2,κ2 = TH1+H2,κ1+κ2+ 1
2
〈H1,H2〉 . (4.10)

In addition, the metric is invariant under rescalings generated by the Euler vector field

R∂R + ζΛ∂ζΛ + ζ̃Λ∂ζ̃Λ + 2σ∂σ . (4.11)

• The one-loop correction deforms the metric on M into [57, 58, 59, 60]

ds2
M =4

R2+2c

R2(R2+c)
dR2 +

4(R2+c)

R2
ds2
SK +

ds2
T

R2

+
2 c

R4
eK |X Λdζ̃Λ − FΛdζΛ|2 +

R2 + c

16R4(R2 + 2c)
Dσ2 .

(4.12)

where

Dσ = dσ + 〈C, dC〉+8cAK , c = −χ(X )

192π
(4.13)
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• The one-loop correction to grr was computed by reducing the CP-even R4 coupling

in 10D on X . The correction to Dσ can be obtained with less effort by reducing the

topological coupling in D = 10 type IIA supergravity:∫
Y

(
1

6
B ∧ dC ∧ dC −B ∧ I8

)
, I8 =

1

48
(p2 −

1

4
p2

1) (4.14)

On a complex 10-manifold,

B ∧ I8 =
1

24
B ∧

[
c4 − c1

(
c3 +

1

8
c3

1 −
1

2
c1c2

)]
. (4.15)

Integrating on X and using c4 = 0, c3 = χ(X ), c1 = −ωc leads to∫
d4x

[
ReNΛΣ(dCΛ + ζΛdB) ∧ dζΣ − χ(X )

24π
B ∧ ωc

]
(4.16)

where CΛ =
∫
AΛ C. Dualizing the two-forms CΛ, B into ζ̃Λ, σ produces the one-form

Dσ indicated previously.

• The one-loop corrected metric is presumably exact to all orders in 1/R. It will re-

ceive O(e−R) and O(e−R
2
) corrections from D-instantons and NS5-brane instantons,

eventually breaking all continuous isometries.

• Note the curvature singularity at finite distance R2 = −2c when χ(X ) > 0 ! This

should hopefully be resolved by instanton corrections.

• The Heisenberg isometries continue to hold, but the Euler isometry is broken. Mon-

odromies in Mc(X ) now act non-trivially on σ. This has important implications for

the topology of the HM moduli space, as we now discuss.

4.2 Topology of the HM moduli space

• At weak coupling, M is foliated by hypersurfaces C(R) of constant string coupling.

We shall now discuss the topology of the leaves C(R), which is independent of R.

• Quotienting by translations along the NS axion σ, C/∂σ reduces to the interme-

diate Jacobian Jc(X ), in particular C lives in the intermediate Jacobian torus

T = H3(X ,R)/H3(X ,Z), and its components (ζΛ, ζ̃Λ) have integer periodicities. This

is consistent with the fact that Euclidean D2-branes wrapping a special Lagrangian

submanifold in integer homology class γ = qΛAΛ − pΛBΛ ∈ H3(X ,Z) induce cor-

rections of the form

δds2|D2 ∼ exp

(
−8π
|Zγ|
g(4)

− 2πi〈γ, C〉
)
, (4.17)

where Zγ ≡ eK/2(qΛX
Λ − pΛFΛ) is the central charge.

• Continuous translations along σ will be broken by NS5-brane instantons to discrete

shifts σ 7→ σ+ 2 (in our conventions). Thus eiπσ parametrizes the fiber of a circle

bundle C over Jc(X ), to be determined.
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• The horizontal one-form Dσ = dσ + 〈C, dC〉 − χ(X )
24π
AK implies that

c1(C) = d

(
Dσ

2

)
= ωT +

χ(X )

24
ωc (4.18)

where ωT = dζ̃Λ ∧ dζΛ, ωc = − 1
2π

dAK are the Kähler forms on T and Mc(X ), respec-

tively. The second term in (4.18) has non-integer periods, which indicates that the

circle bundle C is in fact a twisted bundle. We shall return to this shortly.

• NS5-brane instantons with charge k ∈ Z are expected to produce corrections to the

metric of the form

δds2|NS5 ∼ exp
(
−4π|k|/g2

(4) − ikπσ
)
Z(k)(za, C) , (4.19)

where Z(k) = Tr (F 2(−1)F ) is the (twisted) partition function of the world-volume

theory on a stack k five-branes. For this to be globally well-defined, Z(k) must

be a section of Ck.

• Recall that the type IIA NS5-brane supports a self-dual 3-form flux H = i?H, together

with its SUSY partners. The partition function of a self-dual form is known to be a

holomorphic section of a non-trivial line bundle LkNS5 over the space of metrics and

C fields [67, 68, 69, 70, 71, 72, 73, 74, 75]. Moreover, the restriction LNS5|T is known

to be a line bundle with first Chern class c1 = ωT . To specify this bundle, one must

choose holonomies σ(H) ∈ U(1) around each cycle H ∈ H3(X ,Z), such that

σ(H +H ′) = (−1)〈H,H
′〉 σ(H)σ(H ′) . (4.20)

Thus, σ(H) defines a quadratic refinement of the intersection form on H3(X ,Z). (not

to be confused with the NS-axion σ !). The general solution can be parametrized by

characteristics Θ ∈ H3(X ,R)/H3(X ,Z) (notation: E(x) ≡ e2πix)

σ(H) = E

(
−1

2
nΛmΛ + 〈H,Θ〉

)
, H = (nΛ,mΛ) (4.21)

The bundle (LΘ)k is then defined by the twisted periodicity condition

Z(N , C +H) = σkΘ(H) E

(
k

2
〈H,C〉

)
Z(N , C) (4.22)

Note that σ(H) need not be ±1, and Θ may depend on the metric of X . It can be

computed in principle from M-theory [72]. Note that σ(H) may be a priori different

from the quadratic refinement appearing in D-instantons corrections, though S-duality

suggests that the two should be related.

• At weak coupling, the partition function of a chiral five-brane can be obtained by

holomorphic factorization of the partition function of a non-chiral 3-form H = dB on
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X , with Gaussian action. This leads to a Siegel theta series of rank b3(X ), level

k/2 satisfying the above periodicity property:

Z(k)
µ (N , C) = N

∑
n∈Γm+µ+θ

E

(
k

2
(ζΛ − nΛ)N̄ΛΣ(ζΣ − nΣ) + k(ζ̃Λ − φΛ)nΛ +

k

2
(θΛφΛ − ζΛζ̃Λ)

)
,

(4.23)

where Γm is a Lagrangian sublattice of Γ = H3(X ,Z), N is a C-independent normaliza-

tion factor, and µ runs over (Γm/k)/Γm, i.e. over the |k|b3/2 independent holomorphic

sections of LkΘ. Plugging into (4.19), we arrive at the 5-brane instanton action in the

weak coupling limit,

S = 4π
|k|
g2

(4)

+ ikπσ+ iπk(ζΛ−nΛ)N̄ΛΣ(ζΣ−nΣ) + 2πik(ζ̃Λ−φΛ)nΛ + iπk(θΛφΛ− ζΛζ̃Λ)

(4.24)

• The Gaussian approximation breaks down when |H| ∼ 1/gs, and S(H,C) should be

replaced by the non-linear five-brane action. The partition function will no longer

be holomorphic, but will satisfy the same transformation property under large gauge

transformations.

• For the coupling e−iπkσZ(k) to be invariant under large gauge transformations, eiπσ

must also transform as a section of LΘ. Therefore, σ must pick up additional

shifts under discrete translations along T ,

T ′H,κ : (C, σ) 7→
(
C +H, σ + κ+ 〈C,H〉−1

2
nΛmΛ + 〈H,Θ〉

)
(4.25)

where H ≡ (nΛ,mΛ) ∈ Zb3 , p ∈ Z. This is also necessary in order that large gauge

transformations form a group,

T ′H2,κ2
T ′H1,κ1

= T ′
H1+H2,κ1+κ2+ 1

2
〈H1,H2〉+c(H1)+c(H2)−c(H1+H2)

. (4.26)

where σ(H) = (−1)2c(H). The r.h.s. is of the form T ′H3,κ3
with κ3 ∈ Z, thanks to the

cocycle property of σ(H).

• The second term in c1(C) = ωT + χX
24
ωc implies that eiπσ in addition transforms as a

section of LχX /24 under monodromies. More specifically, under a monodromy M , σ

must transform as

σ 7→ σ +
χ(X )

24π
Im fM+2κ(M) , (4.27)

where fM is a local holomorphic function onMc(X ) determined by the rescaling Ω3,0 7→
efMΩ3,0 of the holomorphic 3-form around the monodromy, and κ(M) is again an

undetermined constant defined modulo 1. This constant reflects the ambiguity in

choosing the 24-th root of unity in the monodromy transformations, and further in

picking its logarithm, which are presently not well understood. This is analogous to

trying to find the transformation properties of log η under SL(2,Z).

• To summarize,M is (at least at weak coupling) foliated by hypersurfaces C which are

topologically a circle bundle L−χ(X )/24 ⊗ LΘ over the intermediate Jacobian Jc(X ).
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4.3 Perturbative HM moduli space in type IIB

• The HM moduli space in type IIB compactified on a CY 3-fold X̂ is a QK manifold

M≡ QK(X̂ ) of real dimension 4(h1,1 + 1)

1. the 4D dilaton R ≡ 1/g(4),

2. the complexified Kähler moduli za = ba + ita = Xa/X0

3. the periods of C = C(0) + C(2) + C(4) + C(6) ∈ Heven(X̂ ,R)

4. the NS axion σ

• In type IIB/X̂ , the perturbative metric on HM takes the same form as before, where

are now the Kähler moduli of X̂ , and (ζ0, ζΛ, ζ̃Λ, ζ̃0) label the periods of the RR field .

• Near the infinite volume point, MK(X̂ ) is governed by

F (X) = −N(Xa)

X0
+

1

2
AΛΣX

ΛXΣ + χ(X̂ )
ζ(3)(X0)2

2(2πi)3
+ FGW(X) (4.28)

where N(Xa) ≡ 1
6
κabcX

aXbXc, κabc is the cubic intersection form, AΛΣ is a constant,

real symmetric matrix, defined up to integer shifts and FGW are Gromov-Witten in-

stanton corrections:

FGW(X) = − (X0)2

(2πi)3

∑
kaγa∈H+

2 (X̂ )

n
(0)
ka

Li3

[
E

(
ka
Xa

X0

)]
(4.29)

The integers n
(0)
ka

count the number of rational curves (i.e. genus 0 holomorphic curves)

on X̂ in homology class kaγ
a. The trilogarithm function Li3(z) =

∑
n≥1 z

n/n3 takes

care of multicovering effects.

• The perturbative HM metric is as in IIA, with c = χ(X̂ )/192π. Quantum mirror

symmetry implies Qc(X ) = QK(X̂ ). At the perturbative level, this reduces to classical

mirror symmetry SKIIA(X ) = SKIIB(X̂ ).

• D-instantons are now Euclidean D5-D3-D1-D(-1), described mathematically by coher-

ent sheaves E on X̂ . Their charge vector γ is related to the Chern classes via the

Mukai map

qΛX
Λ − pΛFΛ = e−K/2Zγ =

∫
X̂
e−(B+iJ) ch(E)

√
Td(X̂ ) (4.30)

or, in components,

p0 = rk(E) , pa =

∫
γa
c1(E) (4.31)

qa =

∫
γa

[
c2(E)− 1

2
c2

1(E)

]
+ p0

(
A0a −

c2,a

24

)
+ Aabp

b ,

q0 =

∫
X̂

ch(E) Td(X̂ ) + pa
(
A0a −

c2,a

24

)
+ A00p

0.

(4.32)
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• Noting that
∫
X̂ ch(E) Td(X̂ ) is integer, being the index of the Dirac operator coupled

to F , we see that the charges qΛ are integer iff

A00 ∈ Z , A0a ∈
c2,a

24
+ Z , (4.33)

1

2
κabcp

bpc − Aabpb ∈ Z for ∀pa ∈ Z . (4.34)

E.g. for the quintic, κaaa = 5, A0a = 25/12, Aaa = −11/2, A00 = 0. Under these

conditions, the D-instanton charge vector γ lies in Heven(X̂ ,Z), and the RR multiform

C takes values in the symplectic Jacobian T = Heven(X̂ ,R)/Heven(X̂ ,Z).

• It is often convenient to eliminate AΛΣ by a non-integer symplectic transformation,

leading to non-integer electric charges q′Λ,

q′Λ = qΛ − AΛΣp
Σ , ζ̃ ′Λ = ζ̃Λ − AΛΣζ

Λ , F ′ = F − 1

2
AΛΣX

ΛXΣ (4.35)

q′a ∈ Z−p0

24
c2,a −

1

2
κabcp

bpc, q′0 ∈ Z− 1

24
pac2,a , (4.36)

• In particular, monodromies ba 7→ ba + εa , εa ∈ Z around the large volume point are

most conveniently described in the primed frame: they act on the axions

ζ0 7→ ζ0 , ζa 7→ ζa + εaζ0 , ζ̃ ′a 7→ ζ̃ ′a − κabcζbεc −
1

2
ζ0κabcε

bεc ,

ζ̃ ′0 7→ ζ̃ ′0 − εaζ̃ ′a +
1

2
κabcζ

aεbεc +
1

6
ζ0κabcε

aεbεc , σ 7→ σ + 2κaε
a

(4.37)

and on the charge lattice as

p0 7→ p0 , pa 7→ pa + εap0 , q′a 7→ q′a − κabcpbεc −
1

2
p0κabcε

bεc ,

q′0 7→ q′0 − εaq′a +
1

2
κabcp

aεbεc +
1

6
p0κabcε

aεbεc ,
(4.38)

in such a way that qΛζ
Λ − pΛζ̃Λ = q′Λζ

Λ − pΛζ̃ ′Λ stays invariant. The constant shift of

σ in (4.37) originates from the κ(M) term in (4.27). For p0 6= 0, the combinations

q̂a = q′a +
1

2
κabc

pbpc

p0
, q̂0 = q′0 +

paq′a
p0

+
1

3
κabc

papbpc

(p0)2
, (4.39)

are invariant under (4.38). In general, the monodromy may cross lines of marginal

stability, and Ω(γ; za) is not necessarily invariant.

• In the absence of worldsheet instanton corrections, i.e. retaining only the first two terms

in (4.28) and omitting the one-loop correction, the HM metric admits an isometric

action of SL(2,R), corresponding to type IIB S-duality in 10 dimensions. This action

is most easily described in the “primed” frame, using coordinates

ζ0 = τ1 , ζa = −(ca − τ1b
a) ,

ζ̃ ′a = ca +
1

2
κabc b

b(cc − τ1b
c) , ζ̃ ′0 = c0 −

1

6
κabc b

abb(cc − τ1b
c) ,

σ = −2(ψ +
1

2
τ1c0) + ca(c

a − τ1b
a)− 1

6
κabc b

acb(cc − τ1b
c) .

(4.40)

– 36 –



In terms of these coordinates, a S-duality transformation δ =
(
a b

c d

)
∈ SL(2,Z) acts by

τ 7→ aτ + b

cτ + d
, ta 7→ ta|cτ + d| , ca 7→ ca + εa(δ) ,(

ca

ba

)
7→
(
a b

c d

)(
ca

ba

)
,

(
c0

ψ

)
7→
(
d −c
−b a

)(
c0

ψ

) (4.41)

where εa(δ) is an a priori unspecified constant. In order for the S-duality action

τ1 7→ τ1 + b to agree with the Heisenberg shift ζ0 7→ ζ0 + b, one must choose

εa(δ) = −c2,a ε(δ) , (4.42)

where ε(δ) is the multiplier system of the Dedekind eta function,

η

(
aτ + b

cτ + d

)
/η(τ) = E(ε(δ)) (cτ + d)1/2 . (4.43)

• This is consistent with the multiplier system E(−c2ap
aε(δ)) of the D4-D2-D0 partition

function, which should describe D-instanton corrections to VM3 with vanishing D6-

brane charge in type IIA/X [24].

4.4 Twistor techniques for quaternion-Kähler manifolds

• Recall that a Riemannian manifold of real dimension 4n is quaternion-Kähler if its

holonomy group is (exactly) Sp(n) × Sp(1). M is then Einstein. SUGRA requires

negative scalar curvature. Let ~p be the Sp(1) part of the Levi-Civita connection,

d~p+ ~p ∧ ~p = ν
2
~ω the quaternionic 2-forms.

• M does not admit a (global) complex structure. Instead, it is more convenient to study

its twistor space Z. This is a complex contact manifold of real dimension 4n + 2,

endowed with a (non-holomorphic) projection π : Z →M with CP 1 fibers, and a real

structure acting as the antipodal map on CP 1 [31, 32].

• Equivalently, one may consider the hyperkähler cone S, a C2/Z2 bundle overM, or C×

bundle over Z, which carries a canonical hyperkähler metric with homothetic Killing

vector and SU(2) isometric action [61, 49, 2]. The complex contact structure on Z is

the projectivization of the complex symplectic structure on S.

• The complex contact structure on Z is given by the kernel of the (1, 0)-form Dt (which

transforms homogeneously under Sp(1) = SU(2) frame rotations)

Dt = dt+ p+ − ip3t+ p−t
2 (4.44)

Moreover, M carries a Kahler-Einstein metric

ds2
Z =

|Dt|2

(1 + tt̄)2
+
ν

4
ds2
M (4.45)
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• Locally, there exists a “contact potential” Φ(xµ, t) and Darboux complex coordinates

α, ξ, ξ̃ such that

X = 2 eΦ Dt

t
= dα + ξΛdξ̃Λ . (4.46)

Φ provides a Kähler potential K on Z via eK = (1 + tt̄)eRe(Φ)/|t|.

• The complex contact structure can be specified globally by providing contactomor-

phisms on the overlap of two Darboux coordinate patches. Those are conveniently

specified by a Hamilton function S[ij](ξΛ
[i], ξ̃

[j]
Λ , α

[j]):

ξΛ
[j] = f−2

ij ∂
ξ̃
[j]
Λ
S[ij] , ξ̃

[i]
Λ = ∂ξΛ

[i]
S[ij] ,

α[i] = S[ij] − ξΛ
[i]∂ξΛ

[i]
S[ij] , eΦ[i] = f 2

ij e
Φ[j] ,

(4.47)

where f 2
ij ≡ ∂α[j]S[ij] = X [i]/X [j].

• S[ij] are subject to consistency conditions S[ijk], gauge equivalence under local contact

transformations S[i], and reality constraints.

• For generic choices of S[ij], the moduli space of solutions of the above gluing

conditions, regular in each patch, is finite dimensional, and equal to M itself.

• On each patch Ui, u
[i]
m = (ξΛ

[i], ξ̃
[i]
Λ , α

[i]) admit a Taylor expansion in t around ζi, whose

coefficients are functions on M. The functions u
[i]
m(t, xµ) parametrize the ”twistor

line” over xµ ∈M.

• The metric on M can be obtained by expanding X [i] and du
[i]
m around ti, extracting

the SU(2) connection ~p and a basis of (1, 0) forms on M in almost complex structure

J(ti), and using d~p+ 1
2
~p× ~p = ν

2
~ω.

• Deformations ofM correspond to deformations of S[ij], so are parametrized byH1(Z,O(2)).

• Any (infinitesimal) isometry κ of M lifts to a holomorphic isometry κZ of Z. The

moment map construction [62] provides an element of H0(Z,O(2)), given locally by

holomorphic functions

µκ = κZ · X = eΦ
(
µ+ t

−1 − iµ3 + µ−t
)
. (4.48)

The moment map of the Lie bracket [κ1, κ2] is the contact-Poisson bracket {µκ1 , µκ2}PB.

The zeros of µ canonically associate a (local) complex structure Jκ to κ.

• Toric QK manifolds are those which admit d + 1 commuting isometries. In this

case, one can choose µ[i] as the position coordinates. The transition functions must

then take the form

S[ij] = α[j] + ξΛ
[i] ξ̃

[j]
Λ −H

[ij] , (4.49)

where H [ij] depends on ξΛ
[i] only.
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• More generally, one can consider ”nearly toric QK”, where H [ij] is a general function

but its derivatives wrt to ξ̃
[j]
Λ , α

[j] are taken to be infinitesimal. For one unbroken

isometry κ, ∂α[j]H [ij] = 0.

• The twistor lines can then be obtained by Penrose-type integrals, e.g. (in case with

one isometry, no ”anomalous dimensions”)

ξΛ
[i] = ζΛ +

Y Λ

t
− tȲ Λ − 1

2

∑
j

∮
Cj

dt′

2πit′
t′ + t

t′ − t
∂
ξ̃
[j]
Λ
H [+j](t′) (4.50)

eΦ[i] =
1

4

∑
j

∮
Cj

dt′

2πit′
(
t′−1Y Λ − t′Ȳ Λ

)
∂ξΛ

[j]
H [+j](ξ(t′), ξ̃(t′)) (4.51)

The locus t = 0 defines the complex structure Jκ associated to the unbroken continuous

isometry.

4.5 The local c-map in twistor space

• Let us now return to the HM moduli space MH in type IIA compactified on X. The

twistor space of the tree-level metric (4.7) is governed by the transition functions [63]

H
[0+]
pert =

i

2
F (ξΛ) , H

[0−]
tree =

i

2
F̄ (ξΛ) (4.52)

The one-loop corrected metric (4.12) is governed by the same transition function, but

allowing for a logarithmic singularity in the Darboux coordinate α at the north and

south pole: the Darboux coordinates around the equator are given [upon defining

ξ̃Λ ≡ −2iξ̃
[0]
Λ , α̃ ≡ 4iα[0] + 2iξ̃

[0]
Λ ξ

Λ,W (z) ≡ FΛζ
Λ −XΛζ̃Λ] by

ξΛ = ζΛ +
(
t−1XΛ − t X̄Λ

)
/g2

s ,

ξ̃Λ = ζ̃Λ +
(
t−1FΛ − t F̄Λ

)
/g2

s ,

α̃ = σ +
(
t−1W − t W̄

)
/g2

s −
iχX̂
24π

log t ,

(4.53)

• The large volume monodromy ba 7→ ba + εa onM lifts to a holormorphic action on the

twistor space Z,

ξ0 7→ξ0 , ξa 7→ ξa + εaξ0 , ξ̃′a 7→ ξ̃′a − κabcξbεc −
1

2
κabcε

bεcξ0 ,

ξ̃′0 7→ ξ̃′0 − ξ̃′aεa +
1

2
κabcξ

aεbεc +
1

6
κabcε

aεbεcξ0 , α̃ 7→ α̃ + 2κaε
a .

(4.54)

Similarly, the Heisenberg action (4.25) lifts to a holomorphic action on ZM given by

T ′(H,κ) :
(
ξΛ, ξ̃Λ, α̃

)
7→
(
ξΛ + ηΛ, ξ̃Λ + η̃Λ,

α̃ + 2κ− η̃Λξ
Λ + ηΛξ̃Λ −

(
ηΛη̃Λ − 2η̃Λθ

Λ + 2ηΛφΛ

))
,

(4.55)

where ηΛ, η̃Λ, κ ∈ Z. Thus, the quotient of ZM by translations along ∂α̃ defines a

complexified torus TC, parametrized by the coordinates (ξΛ, ξ̃Λ) and their complex

conjugates, while eiπα̃ parametrizes the fiber of a C×-bundle LC
Θ over TC.
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• The S-duality action (4.41) can be lifted to a holomorphic action on Z [64, 65, 3], e.g.

in the patch U0

ξ0 7→ aξ0 + b

cξ0 + d
, ξa 7→ ξa

cξ0 + d
, ξ̃′a 7→ ξ̃′a +

c

2(cξ0 + d)
κabcξ

bξc − c2,aε(δ) ,(
ξ̃′0
α′

)
7→
(
d −c
−b a

)(
ξ̃′0
α′

)
+

1

6
κabcξ

aξbξc
(

c2/(cξ0 + d)

−[c2(aξ0 + b) + 2c]/(cξ0 + d)2

)
.

(4.56)

where α′ = (α̃ + ξΛρ′Λ)/(4i). This reproduces the action (4.41) on the base together

with a SU(2) action along the fiber,

t 7→ cτ2 + t(cτ1 + d) + t|cτ + d|
(cτ1 + d) + |cτ + d| − tcτ2

. (4.57)

• The transformation rule of ρ′a can be summarized by saying that E(paρ′a) transforms

like the automorphy factor of a multi-variable Jacobi form of index mab = 1
2
κabcp

c and

multiplier system E(−c2ap
aε(δ)).

• The tree-level, large volume contact potential eΦ =
τ2
2

2
V (ta), though not invariant,

transforms so that KZ undergoes a Kähler transformation,

eΦ 7→ eΦ

|cτ + d|
, KZ 7→ KZ − log(|cξ0 + d|) , X [i] → X [i]

cξ0 + d
(4.58)

4.6 D-instanton corrections

• Restoring the worldsheet instanton and one-loop corrections, the perturbative contact

potential eΦ no longer transforms homogeneously,

eΦ =
τ 2

2

2
V − χY ζ(3)

8(2π)3
τ 2

2 −
χY

192π

+
τ 2

2

4(2π)3

∑
qaγa∈H+

2 (Y )

n0,qa Re
[
Li3
(
e2πiqaza

)
+ 2πqat

a Li2
(
e2πiqaza

)] (4.59)

• SL(2,Z) invariance can be restored by summing over images [65],:

τ
k/2
2 Lik(e

2πiqaza)→
′∑

m,n

τ
k/2
2

|mτ + n|k
e−Sm,n,q , (4.60)

where Sm,n,q = 2πqa|mτ + n| ta − 2πiqa(mc
a + nba) is the action of an (m,n)-string

wrapped on qaγ
a.

• After Poisson resummation on n→ q0, we get a sum over D(-1)-D1 bound states

eΦ =
τ 2

2

2
V

+
τ2

8π2

∑
q0∈Z,qaγa∈H+

2 (Y )

n(0)
qa

∞∑
m=1

|qΛX
Λ|

m
cos
(
2πmqΛζ

Λ
)
K1

(
2πm |qΛX

Λ|τ2

) (4.61)
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• Going back to type IIA variables, these are interpreted as Euclidean D2 wrapped on

SLAG in a Lagrangian subspace of H3(X,Z) (A-cycles only). These effects correct the

mirror map into [66]

ζ̃a = ζ̃(0)
a +

1

8π2

∑
qa

n0,q

∑
n∈Z,m 6=0

mτ1 + n

m|mτ + n|2
e−Sm,n,q , . . . (4.62)

• In the ”one instanton” approximation, the contributions of B-cycles can be restored

by symplectic invariance [3]:

eΦ = · · ·+ τ2

8π2

∑
γ

σ(γ)nγ(z
a)

∞∑
m=1

|Wγ|
m

cos (2πmΘγ)K1 (2πm |Wγ|) (4.63)

where Wγ ≡
1

2
τ2

(
qΛX

Λ − pΛFΛ

)
, Θγ ≡ qΛζ

Λ − pΛζ̃Λ , (4.64)

and the quadratic refinement σ(γ) is inserted for consistency with wall-crossing, as in

§2.7.

• This can be lifted to an infinitesimal deformation of the contact structure on Z, gen-

erated by

H =
i

2(2π)2

∑
γ; Re (Wγ)>0

σ(γ)σ(γ)nγ Li2

(
e−2πi(qΛξ

Λ−pΛξ̃Λ)
)
. (4.65)

• Note that S-duality has turned Li3 in the worldsheet instanton sum into Li2 in the

D-instanton sum.

• Beyond the “one-instanton” approximation (but still neglecting NS5-instantons), the

twistor space can be described as follows. For fixed za, consider all ”BPS rays” `(γ) =

{t : ±Wγ/t ∈ iR−} on S2.

• The contact structure on Z is obtained by gluing Darboux coordinate patches on each

sector, using a contact transformation Uγ generated by

S[ij]
γ = α[j] + ξΛ

[i] ξ̃
[j]
Λ +

i

2(2π)2
σ(γ)nγ Li2

(
e−2πi(qΛξ

Λ
[i]
−pΛξ̃

[j]
Λ )
)
. (4.66)

• As za ∈ MV is varied, the BPS rays may cross. The invariants nγ should transform

so as to leave the contact structure intact. By the same token as in §2.7, this will

be the case provided nγ(z
a) satisfies the Kontsevich-Soibelman wall-crossing formula.

By T-duality, nγ(z
a) should be equal to the generalized Donaldson-Thomas invariants

Ω(γ, t). In terms of the rational invariants,

S[ij]
γ = α[j] + ξΛ

[i] ξ̃
[j]
Λ +

i

2(2π)2
σ(γ) Ω̄(γ, t) e−2πi(qΛξ

Λ
[i]
−pΛξ̃

[j]
Λ ) . (4.67)

Since Ω(γ, t) grows exponentially fast, the D-instanton series must be treated as a

divergent asymptotic series [5].
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Figure 5: Melon-like structure of the twistor fiber over a fixed point in moduli space

4.7 Towards NS5-brane / Kaluza-Klein monopole corrections

On the type IIB side, the NS5-brane instanton corrections can be obtained by S-duality from

the D5-brane corrections. Starting with the generating function (4.65) for p0 D5-branes, pa

D3-branes, qa D1-branes, q0 D-instantons, we apply an S-duality transformation

δ =

(
a b

−k/p0 p/p0

)
∈ SL(2,Z) , (4.68)

where (p, k) 6= (0, 0) are two integers with greatest common divisor (gcd) p0, and the integers

(a, b), ambiguous up to the addition of (k/p0,−p/p0), are chosen such that ap + bk = p0.

Using (4.56), one arrives at

Hk,p,γ̂ =
σ(γ)

4π2
Ω̃(γ) E

(
−k

2
Sα +

p0 (kq̂a(ξ
a − na) + p0q̂0)

k2(ξ0 − n0)
+ a

p0q′0
k
− c2,ap

aε(δ)

)
, (4.69)

where n0 ≡ p/k, na ≡ pa/k, valued in Z/k and

Sα ≡ α̃ + (ξΛ − 2nΛ)ξ̃′Λ + 2
N(ξa − na)
ξ0 − n0

. (4.70)

The function Hk,p,γ̂ describes the discontinuity of the Darboux coordinates across the image

of the BPS ray `γ under (4.57). The set of functions Hk,p,γ̂ provides (at least formally) a

holomorphic section of H1(Z,O(2)) which is by construction invariant under S-duality. It

also turns out that the set of functions is invariant under the Heisenberg and monodromy

actions (4.55), (4.54), subject to two caveats: i) this invariance seems to require that the

index Ω̄(γ, za) be invariant under the spectral flow action (4.38), which is not true in general

and ii) the set is only invariant up to some constant phases, which depend on the quadratic

refinements. In spite of our inability to resolve these important issues, we boldly forge ahead.
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Instanton corrections to the metric on M can in principle be obtained by performing

the contour integrals (4.51). For simplicity, we shall treat the set of functions Hk,p,γ̂ as a

holomorphic section of H1(Z,O(−2)), which by the Penrose transform formula

Ψ =
∑
j

∫
Cj

dt

t
eΦ[j](t) H [ij]

(
ξΛ

[i](t), ξ̃
[j]
Λ (t), α[j](t)

)
, (4.71)

produces a scalar valued “harmonic” function on M (here, ”harmonic” means that Ψ is

annihilated by a certain set of second-order partial differential operators determined by the

quaternion-Kähler structure on M).

In the weak coupling limit, the contour integral (4.71) is dominated by saddle points

with classical action

Sk,p,γ̂ = 4π |Wk,p,γ̂|+ 2πi

[
−(pc0 + kψ + paca) +

p− kτ1

k|p− kτ |2
(
N(p̃a)− p0q̂ap̃

a + (p0)2q̂0

)
(4.72)

+
ba

2k

(
1

3
κabc(pb

b − kcb)(3p̃c + pbc − kcc) + κabcp̃
bp̃c − 2p0q̂a

)
−a
k
q′0p

0 + c2,ap
aε(δ)

]
.

where γ̂ is the “reduced charge vector” (pa, q̂a, q̂0) and p̃a ≡ pa+kca−pba, and the “generalized

central charge” is

Wk,p,γ̂ ≡ δ ·Wγ =
τ2

2|p− kτ |2
[
N (p̃a − i|p− kτ |ta)− p0q̂a (p̃a − i|p− kτ |ta) + (p0)2q̂0

]
,

(4.73)

This is the expected action for (p, k)5-branes, related by S-duality to the usual D5- brane

instanton action

Sγ = 4π|Wγ|+ 2πi(q′Λζ
Λ − pΛζ̃ ′Λ), (4.74)

where

Wγ =
τ2

2

(
N(pa − p0za)

(p0)2
− q̂a(p

a − p0za)

p0
+ q̂0

)
. (4.75)

In the weak coupling limit τ2 →∞, the the (p, k)5-brane reduces to

Sk,p,γ̂ = 2π|k|V τ 2
2 +πik

(
σ + ζΛζ̃ ′Λ − 2nΛζ̃ ′Λ − N̄ΛΣ(ζΛ − nΛ)(ζΣ − nΣ)

)
− 2πimΛz

Λ . (4.76)

where n0 = p/k, na = pa/k,ma = p0q̂a/k,m0 = ap0q′0/k − c2,ap
aε(δ). For mΛ = 0, one

recovers the chiral 5-brane action (4.24). At zero coupling g(4) = 0 the sum over mΛ decouples

and produces a metric dependent normalization factor. Setting k = 1 for simplicity and using

the DT/GW relation [77, 78]

eFhol(z,λ) = λ−
χ(X̂ )

24
εGW [M(e−λ)](

1
2
−εDT)χ(X̂ ) eFpol

∑
Qa,J

(−1)2JNDT (Qa, 2J) e−2λJ+2πiQaza , (4.77)

where M(q) =
∏

(1− qn)−n is the Mac-Mahon function and ZDT is the partition function of

(ordinary, rank 1) Donaldson-Thomas invariants

ZDT ≡
∑
Qa,J

(−1)2J NDT (Qa, 2J) e−2λJ+2πiQaza . (4.78)
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we arrive at

Ψ ∼ τ2 e
f1−K (z̄Λ Im τΛΣz̄

Σ)−1/2
∑

n∈Γm+θ

t
−1−χ(X̂ )

24
s e−2πinΛφΛ−πik(σ+ζΛζ̃′Λ−2nΛζ̃′Λ−N̄ΛΣ(ζΛ−nΛ)(ζΣ−nΣ)) ,

(4.79)

Thus, we find that NS5-brane instanton corrections in the weak coupling limit are indeed

given by a Gaussian theta series, with an unexpected flux-dependent insertion and a normal-

ization factor proportional to the one-loop topological amplitude ef1 . Since ef1 transforms

as a section of L1−χ(X )
24 under monodromies, this is in broad agreement with the topology

of the NS-axion circle bundle σ. While this result is satisfying, it is clear that our present

understanding of NS5/KKM instanton corrections is still very sketchy. The complete an-

swer presumably requires a generalization of the KS wall-crossing formula which involves

products of contact transformations rather than just symplectomorphism. Unfortunately or

fortunately, this generalization does not seem to be available on the mathematical (black)

market for now, and it is a great challenge to try and uncover it.
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