Five-brane instantons, topological wave-functions and hypermultiplets

Boris Pioline

LPTHE, Paris

ESI Vienna, 26/07/2010

Motivation

- The study of the vector multiplet moduli space (VM) and BPS spectrum in string vacua with $N=2$ supersymmetries in $D=4$ has had tremendous applications in mathematics and physics: classical mirror symmetry, Gromov-Witten invariants, black hole precision counting, etc...

$$
\operatorname{IIB} / \hat{\mathcal{X}}|\operatorname{IIA} / \mathcal{X}| \mathrm{Het} / K_{3} \times T^{2}
$$

- Understanding the hypermultiplet moduli space (HM) may be even more rewarding: a quantum extension mirror symmetry beyond classical and homological mirror symmetry, new checks of Het/II duality, new geometric invariants, richer automorphic properties...

Hypers = Vectors

- Upon circle compactification to $D=3, \mathrm{VM}$ and HM become two sides of the same coin, exchanged by T-duality along the circle:

$$
\operatorname{IIB} / \hat{\mathcal{X}} \times S^{1}\left|\mathrm{IIA} / \mathcal{X} \times S^{1}\right| \mathrm{Het} / K_{3} \times T^{3}
$$

- In $D=3$, both VM and HM are quaternion-Kähler manifolds:

$$
\begin{aligned}
& \mathrm{HM}_{3}=\mathrm{HM}_{4} \\
& \mathrm{VM}_{3}=\mathrm{c}-\operatorname{map}\left(\mathrm{VM}_{4}\right)+1-\text { loop }+\mathcal{O}\left(e^{-r}\right)+\mathcal{O}\left(e^{-\mathrm{r}^{2}}\right)
\end{aligned}
$$

VM_{3} includes, in addition to VM_{4}, the radius of the circle, the electric and magnetic holonomies of the $D=4$ Maxwell fields, and the NUT potential, dual to the Kaluza-Klein gauge field in $D=3$.

Instantons = Black holes + KKM

- The $\mathcal{O}\left(e^{-r}\right)$ corrections come from BPS states in $D=4$, whose Euclidean wordline winds around the circle: thus VM_{3} encodes the $D=4$ BPS black hole spectrum, with chemical potentials for every electric and magnetic charges, consistently with chamber dependence!

Gunaydin Neitzke BP Waldron, Gaiotto Moore Neitzke, Kontsevich Soibelman

- The $\mathcal{O}\left(e^{-r^{2}}\right)$ corrections come from gravitational instantons of the form $\mathrm{TN}_{k} \times \mathcal{Y}\left(\mathcal{Y}=\hat{\mathcal{X}}, \mathcal{X}, K_{3} \times T^{2}\right)$, i.e. Kaluza-Klein monopoles (in Lorentzian signature, these would have closed timelike curves).

Changing currencies

- On the flip side of the coin, in type II currency, the corrections to HM_{4} instead originate from Euclidean D-branes $\left(\mathcal{O}\left(e^{-1 / g_{s}}\right)\right)$ and Euclidean NS5-branes $\left(\mathcal{O}\left(e^{-1 / g_{s}^{2}}\right)\right)$.
- The reference currency for hypermultiplets is Het $/ K_{3} \times T^{2}$: since the heterotic string coupling is a VM, $H M_{4}$ is exact at heterotic string tree-level! (though it receives 'one-loop' and nonperturbative α^{\prime} corrections)
- Recent progress has instead occurred on the type II side, combining S-duality and mirror symmetry with improved twistor techniques. D-brane instantons are essentially under control (see Alexandrov's talk) except for convergence issues.
- Five-brane instantons will be the main subject of this talk.

> Alexandrov Persson BP, to appear

Automorphy I

- The equivalent constructions

$$
\mathrm{IIB} / \hat{\mathcal{X}} \times S^{1}\left|M / \mathcal{X} \times T^{2}\right| M / K_{3} \times K_{3}^{\prime}
$$

suggest that for any CY threefold \mathcal{X}, HM should have an isometric action of $S L(2, \mathbb{Z})$ "S-duality". This has been used to determine D(-1)-D1 instanton corrections, from known tree level and one-loop corrections.

- Care must be exercised, since dualities in $N=2$ vacua tend to be broken to inite index subgroups, e.g. $\Gamma(2)$ in Seiberg-Witten theory with no flavor. As we shall see, fractional charge shifts in the presence of D3-D5-NS5 will force us to relax some of the $S L(2, \mathbb{Z})$ generators.

Automorphy II

- Ignoring these subtleties, combinations of S-duality with the monodromy group $\operatorname{Mon}(X) \subset \operatorname{Sp}(2 n, \mathbb{Z})$ and the Heisenberg group of shifts of the electric/magnetic/NUT potentials suggest that HM should have a much larger discrete group of isometries, an arithmetic subgroup of $S p(2 n+2, \mathbb{Z})$, that remains to be identified.
- Some qualitative insights into five-brane instanton corrections were gained recently by assuming invariance under $S L(3, \mathbb{Z})$ for non-rigid \mathcal{X}, or the Picard subgroup $S U(2,1, \mathbb{Z}[\sqrt{-d}])$ for rigid \mathcal{X} with complex multiplication. I shall not discuss these works in detail here, although they played an important rôle in shaping the approach below

Topological wave functions I

Finally, let me get to the "topological wave function" part of the title:

- the key point is that in a sector with k five-branes (or KKM) discrete shifts of the RR-axions (or electromagnetic potentials) no longer commute. Instead, they generate a Heisenberg group:

$$
T_{H} \cdot T_{H^{\prime}} \cdot T_{-H} \cdot T_{-H^{\prime}}=e^{i k\left\langle H, H^{\prime}\right\rangle} .
$$

Thus, only a Lagrangian subspace of the lattice Γ of electromagnetic charges can be diagonalized simultaneously, leading to wave-function behavior under changes of polarization.

- The same behavior is known to occur for the topological string amplitude $\Psi_{\text {top }}$. By the GW/DT relation, $\Psi_{\text {top }}$ counts D6-D2-D0 bound states with [D6]=1, or equivalently D5-D1-D(-1) instantons with [D5]=1. By S-duality, $\Psi_{\text {top }}$ should also govern the contribution of a single NS5-brane instanton, bound to arbitrary D-instantons.

Topological wave functions II

- The study of the HM gives a sharp formulation of a relation between the five-brane partition function and topological string amplitude which was anticipated long ago.

Dijkgraaf Verlinde Vonk; Kapustin; Marino Minasian Moore Strominger

- Optimistically, one may hope that HM also allows for a sharp formulation of the OSV conjecture...

Outline

(9) Introduction
(2) Topology of the HM moduli space
(3) Qualitative aspects of five-brane corrections

4 Mirror symmetry, S-duality and (p, k) fivebranes
(5) Conclusion

Outline

(1) Introduction

(2) Topology of the HM moduli space
(3) Qualitative aspects of five-brane corrections

4 Mirror symmetry, S-duality and (p, k) fivebranes
(5) Conclusion

The perturbative metric I

- The HM moduli space in type IIA compactified on the CY 3-fold (family) \mathcal{X} is a quaternion-Kähler manifold $\mathcal{M}=\mathcal{Q}_{c}(\mathcal{X})$ of real dimension $2 b_{3}(\mathcal{X})=4\left(h_{2,1}+1\right)$. It encodes the 4D dilaton $r \equiv$ $e^{\phi} \sim 1 / g_{(4)}^{2}$, complex structure of \mathcal{X}, RR-field C and NS axion σ.
- In the weak coupling limit $r \rightarrow \infty$, the quaternion-Kähler metric on \mathcal{M} is given, to all orders in $1 / r$, by

$$
\begin{aligned}
d s_{\mathcal{M}}^{2}= & \frac{r+2 c}{r^{2}(r+c)} \mathrm{d} r^{2}+\frac{4(r+c)}{r} \mathrm{~d} s_{\mathcal{S} \mathcal{K}}^{2}+\frac{\mathrm{d} s_{T}^{2}}{r} \\
& +\frac{2 c}{r^{2}} e^{\mathcal{K}}\left|X^{\wedge} \mathrm{d} \tilde{\zeta}_{\Lambda}-F_{\Lambda} \mathrm{d} \zeta^{\wedge}\right|^{2}+\frac{r+c}{16 r^{2}(r+2 c)} D \sigma^{2}
\end{aligned}
$$

where $c=-\frac{\chi x}{192 \pi}$ originates from a one-loop correction. Note the curvature singularity at $r=-2 c$ when $\chi \mathcal{X}>0$!

Cecotti Girardello Ferrara; Ferrara Sabharwal
Antoniadis Minasian Theisen Vanhove; Robles-Llana Saueressig Vandoren

Notations I

Complex structure moduli $\Omega=(X, F)$ and RR-axions $C=(\zeta, \tilde{\zeta})$:

$$
X^{\wedge}=\int_{\mathcal{A}^{\wedge}} \Omega, \quad F_{\Lambda}=\int_{\mathcal{B}_{\wedge}} \Omega, \quad \zeta^{\wedge}=\int_{\mathcal{A}^{\wedge}} C, \quad \tilde{\zeta}_{\Lambda}=\int_{\mathcal{B}_{\wedge}} C .
$$

Special Kähler metric on complex structure moduli space $\mathcal{M}_{c}(\mathcal{X})$

$$
\mathrm{d} s_{\mathcal{S K}}^{2}=\partial \overline{\mathcal{L}} \mathcal{K}, \quad \mathcal{K}=-\log \left[\mathrm{i}\left(\bar{X}^{\wedge} F_{\Lambda}-X^{\wedge} \bar{F}_{\Lambda}\right)\right]
$$

Kahler metric on intermediate Jacobian T :

$$
T=\frac{H^{3}(\mathcal{X}, \mathbb{R})}{H^{3}(\mathcal{X}, \mathbb{Z})}, \quad \mathrm{d} s_{T}^{2}=-\frac{1}{2}\left(\mathrm{~d} \tilde{\zeta}_{\Lambda}-\overline{\mathcal{N}}_{\Lambda \Lambda^{\prime}} \mathrm{d} \zeta^{\Lambda^{\prime}}\right) \operatorname{Im} \mathcal{N}^{\wedge \Sigma}\left(\mathrm{d} \tilde{\zeta}_{\Lambda}-\mathcal{N}_{\Sigma \Sigma^{\prime}} \mathrm{d} \zeta^{\Sigma^{\prime}}\right)
$$

Horizontal one-form for NS axion:

$$
D \sigma=\mathrm{d} \sigma+\tilde{\zeta}_{\Lambda} \mathrm{d} \zeta^{\Lambda}-\zeta^{\Lambda} \mathrm{d} \tilde{\zeta}_{\Lambda}+8 c \mathcal{A}_{K}, \quad \mathcal{A}_{K}=\frac{\mathrm{i}}{2}\left(\mathcal{K}_{a} \mathrm{~d} z^{a}-\mathcal{K}_{\bar{a}} \mathrm{~d} \bar{z}^{\bar{a}}\right)
$$

Topology of the RR moduli space I

- At least at weak coupling, HM is foliated by hypersurfaces $\mathcal{C}(r)$ of constant string coupling.
- Quotienting along the NS axion $\sigma, \mathcal{C}(r) / \partial_{\sigma}$ reduces to a torus bundle over $\mathcal{M}_{c}(\mathcal{X})$, with fiber T parametrizing the RR field C. Large gauge transformations require that $\left(\zeta^{\wedge}, \tilde{\zeta}_{\Lambda}\right)$ have integer periodicities.
- This periodicity is consistent with the fact that Euclidean D2-branes wrapping a SLAG submanifold \mathcal{L} induce corrections of the form

$$
\left.\delta \mathrm{d} s^{2}\right|_{\mathrm{D} 2} \sim \exp \left(-8 \pi e^{\phi / 2}\left|Z_{\gamma}\right|-2 \pi \mathrm{i}\left(q_{\wedge} \zeta^{\wedge}-p^{\wedge} \tilde{\zeta}_{\Lambda}\right)\right)
$$

where $Z_{\gamma} \equiv e^{\mathcal{K} / 2}\left(q_{\wedge} X^{\wedge}-p^{\wedge} F_{\Lambda}\right)$ is the central charge, and p^{\wedge}, q_{\wedge} label the integer homology class $[\mathcal{L}]=q_{\wedge} \mathcal{A}^{\wedge}-p^{\wedge} \mathcal{B}_{\Lambda} \in H_{3}(\mathcal{X}, \mathbb{Z})$.

Topology of the NS axion I

- We refer to the torus bundle $\mathcal{C}(r) / \partial_{\sigma}$ as the "intermediate Jacobian" $\mathcal{J}(\mathcal{X})$ of (the CY family) \mathcal{X}. Under a monodromy M in $\mathcal{M}_{C}(\mathcal{X}), T$ changes by symplectic rotations $C \mapsto \rho(M) C$
- Assuming (as we shall justify later from S-duality) that σ is periodic with period 2 , the horizontal one-form $D \sigma$ implies that $e^{-\mathrm{i} \pi \sigma}$ parametrizes the fiber of a circle bundle over $\mathcal{J}(\mathcal{X})$, with first Chern class

$$
c_{1}[\mathcal{C}(r)]=-\omega_{T}-\frac{\chi \mathcal{X}}{24} \omega_{C}
$$

where ω_{T}, ω_{C} are the Kähler forms on T and $\mathcal{M}_{c}(\mathcal{X})$, resp.

Topology of the NS axion II

- Both these terms follow by dimensional reduction from the topological coupling in $D=10$ type IIA supergravity:

$$
\int_{\mathcal{Y}}\left(\frac{1}{6} B \wedge \mathrm{~d} B \wedge \mathrm{~d} B-B \wedge I_{8}\right), \quad I_{8}=\frac{1}{48}\left(p_{2}-\frac{1}{4} p_{1}^{2}\right)
$$

Indeed, on a complex manifold \mathcal{Y},

$$
B \wedge I_{8}=\frac{1}{24} B \wedge\left[c_{4}-c_{1}\left(c_{3}+\frac{1}{8} c_{1}^{3}-\frac{1}{2} c_{1} c_{2}\right)\right] .
$$

Integrating the term in parenthesis on the CY threefold \mathcal{X} produces a coupling $\frac{\chi \mathcal{X}}{24} B \wedge \omega_{c}$ in \mathbb{R}^{4}. Dualizing the two-form B into σ produces the $\chi \chi$ dependent correction to $D \sigma$.

Topology of the NS axion III

- The tree-level term in $D \sigma=\mathrm{d} \sigma+\tilde{\zeta}_{\Lambda} \mathrm{d} \zeta^{\wedge}-\zeta^{\wedge} \mathrm{d} \tilde{\zeta}_{\Lambda}+\ldots$ implies that translations on T must be accompanied with shifts of σ,

$$
T_{(H, p)}:\left\{\begin{array}{lll}
\zeta^{\wedge} & \mapsto & \zeta^{\wedge}+\eta^{\wedge} \\
\tilde{\zeta}_{\Lambda} & \mapsto & \tilde{\zeta}_{\Lambda}+\tilde{\eta}_{\Lambda} \\
\sigma & \mapsto & \sigma+2 p-\tilde{\eta}_{\Lambda} \zeta^{\wedge}+\eta^{\wedge} \tilde{\zeta}_{\Lambda}+c(\eta, \tilde{\eta})
\end{array}\right.
$$

where $H \equiv\left(\eta^{\wedge}, \tilde{\eta}_{\Lambda}\right) \in \mathbb{Z}^{b_{3}}, p \in \mathbb{Z}$ and $c(H)$ defines a quadratic refinement of the intersection form on $H^{3}(\mathcal{X}, \mathbb{Z})$,

$$
\sigma\left(H+H^{\prime}\right)=(-1)^{\left\langle H, H^{\prime}\right\rangle} \sigma(H) \sigma\left(H^{\prime}\right), \quad \sigma(H) \equiv(-1)^{c(H)}
$$

such that $T_{(H, p)}$ satisfies the Heisenberg group rule

$$
T_{(H, p)} T_{\left(H^{\prime}, p^{\prime}\right)}=T_{\left(H+H^{\prime}, p+p^{\prime}+\frac{1}{2}\left\langle H, H^{\prime}\right\rangle\right)}
$$

Topology of the NS axion IV

- Quadratic refinements can be parametrized by characteristics $\Theta=(\theta, \phi) \in\left\{0, \frac{1}{2}\right\}^{b_{3}}$,

$$
c(\eta, \tilde{\eta})=-\eta^{\wedge} \tilde{\eta}_{\Lambda}+2 \tilde{\eta}_{\wedge} \theta^{\wedge}-2 \eta^{\wedge} \phi_{\Lambda} .
$$

- Moreover, the one-loop correction in $D \sigma$ implies that under rescalings of the holomorphic 3-form $\Omega \mapsto e^{f} \Omega$,

$$
\sigma \mapsto \sigma+\frac{\chi \mathcal{X}}{24 \pi} \operatorname{Im}(f)
$$

- These statements can be summarized by saying that $e^{-\mathrm{i} \pi \sigma}$ transforms as a section of $\mathcal{L}^{-\chi \mathcal{X} / 24} \otimes \mathcal{L}_{\Theta}$, where \mathcal{L} is the line bundle over \mathcal{M}_{c} where Ω is valued, and \mathcal{L}_{Θ} is the Theta line bundle over T with characteristics Θ.

Outline

(1) Introduction

(2) Topology of the HM moduli space

(3) Qualitative aspects of five-brane corrections

4 Mirror symmetry, S-duality and (p, k) fivebranes
(5) Conclusion

Qualitative aspects of five-brane corrections I

- Instanton corrections from k fivebranes (or, in VM language, k KKM) must depend on the NS-axion by an overall factor $e^{-\mathrm{i} \pi k \sigma}$,

$$
\left.\delta \mathrm{d} s^{2}\right|_{\text {NS5 }} \sim Z^{(k)}\left(\phi, z^{a}, C\right) e^{-\mathrm{i} \pi k \sigma}
$$

- In order to be well defined under large C-gauge transformations and rescalings of $\Omega, Z^{(k)}$ must be a section of the line bundle $\mathcal{L}^{\chi \chi / 24} \otimes \mathcal{L}_{-\Theta}$.
- Remarkably, the partition function of a chiral five-brane on \mathcal{X} is known to be a holomorphic section of $\mathcal{L}_{-\Theta}$ for fixed \mathcal{X}. We shall argue that it also transforms as $\mathcal{L}^{\chi x} / 24$ under variations of \mathcal{X}.

Witten; Dijkgraaf Verlinde Vonk;Henningson Nilsson Salomonson; Belov Moore; . . .

Gaussian fivebrane partition function I

- In the weak coupling limit, the partition function of a chiral five-brane can be obtained by holomorphic factorization of a non-chiral 3 -form $H=\mathrm{d} \mathcal{B}$ on \mathcal{X}, with Gaussian action such that the bulk 3-form C couples only to the self-dual part of H,

$$
S(H, C)=\pi \int_{\mathcal{X}}(H-C) \wedge \star(H-C)-\mathrm{i} \pi \int_{\mathcal{X}} C \wedge H
$$

- The sum splits over topological sectors $[H]=m_{\wedge} \mathcal{A}^{\wedge}-n^{\wedge} \mathcal{B}_{\Lambda}$. Neglecting quantum fluctuations around $S([H], C)$, inserting a power of the quadratic refinement σ_{Θ}, and Poisson resumming over m_{Λ}, the partition function decomposes into

$$
\sum_{H \in H^{3}(\mathcal{X}, \mathbb{Z})}\left[\sigma_{\Theta}(H)\right]^{k} e^{-k S(H, C)}=N \sum_{\mu \in \Gamma_{m} / k \Gamma_{m}} Z_{\Theta, \mu+\mu^{\prime}}^{(k)}(\mathcal{N}, 0) \overline{Z_{\Theta, \mu-\mu^{\prime}}^{(k)}(\mathcal{N}, C)}
$$

Gaussian fivebrane partition function II

- Here \mathcal{Z} is the Siegel theta series of rank $b_{3}(\mathcal{X})$, level $k / 2$

$$
\mathcal{Z}_{\Theta, \mu}^{(k)}(\mathcal{N}, C)=\sum_{n \in \Gamma_{m}+\mu+\theta} \mathrm{e}^{\frac{k}{2}\left(\zeta^{\wedge}-n^{\wedge}\right) \overline{\mathcal{N}}_{\wedge \Sigma}\left(\zeta^{\Sigma}-n^{\Sigma}\right)+k\left(\tilde{\zeta}_{\Lambda}-\phi_{\Lambda}\right) n^{\wedge}+\frac{k}{2}\left(\theta^{\wedge} \phi_{\Lambda}-\zeta^{\wedge} \tilde{\zeta}_{\Lambda}\right)}
$$

where $\mathrm{e}^{x} \equiv e^{2 \pi \mathrm{i} x}$, and N is a C-independent factor.

- Under large gauge transformations, the variation of \mathcal{Z}

$$
\mathcal{Z}_{\Theta, \mu}^{(k)}(\mathcal{N}, C+H)=\left(\sigma_{\Theta}(H)\right)^{k} \mathrm{e}^{\frac{k}{2}\left(n^{\wedge} \tilde{\zeta}_{\Lambda}-m_{\Lambda} \zeta^{\wedge}\right)} \mathcal{Z}_{\Theta, \mu}^{(k)}(\mathcal{N}, C)
$$

precisely cancels the variation of $e^{-\mathrm{i} \pi \sigma}$!

- The Gaussian approximation breaks down when $|H| \sim 1 / g_{s}$, and $S(H, C)$ should be replaced by the non-linear five-brane action. Presumably this does not affect the above periodicity property.

Bandos et al; Aganagic et al; Cederwall Nilsson Sundell

Gaussian fivebrane partition function III

- The dependence on the metric of \mathcal{X} is notoriously subtle, as a consequence of the $B \wedge I_{8}$ topological term.

Witten; Belov Moore

- On the other hand, the topological string amplitude, which should be related to $Z^{(1)}$ by S-duality, is known to be a section of $\mathcal{L}^{\chi \chi / 24-1}$.

Bershadsky Cecotti Ooguri Vafa

- This strongly suggests that the corrections from a single five-brane should be given by a theta series built on the topological string amplitude:

$$
\mathcal{Z}_{\Theta, \mu}^{(k)}(\mathcal{N}, C)=\sum_{n \in \Gamma_{m}+\mu+\theta} \Psi_{\text {top }}\left(\zeta^{\wedge}-n^{\wedge}\right) \mathrm{e}^{k\left(\tilde{\zeta}_{\Lambda}-\phi_{\Lambda}\right) n^{\wedge}+\frac{k}{2}\left(\theta^{\wedge} \phi_{\wedge}-\zeta^{\wedge} \tilde{\zeta}_{\Lambda}\right)}
$$

where $\Psi_{\text {top }}\left(\zeta^{\Lambda}\right)$ is the top amplitude in the real polarization.

Gaussian fivebrane partition function IV

- For $k>1$, we expect that five-brane corrections will be governed by a non-abelian generalization of $\Psi_{\text {top }}$ which counts rank k Donaldson-Thomas invariants.
- Our strategy will be to pass to type IIB string theory on the mirror $\hat{\mathcal{X}}$, and use S-duality to relate D5-brane instantons to (p, k) fivebranes.

Outline

(1) Introduction
(2) Topology of the HM moduli space
(3) Qualitative aspects of five-brane corrections

4 Mirror symmetry, S-duality and (p, k) fivebranes
(5) Conclusion

Mirror symmetry I

- In type IIB/ $\hat{\mathcal{X}}$, the perturbative metric on HM takes the same form as before, where $z^{a}=b^{a}+\mathrm{i} t^{a}=X^{a} / X^{0}$ are now the Kähler moduli of $\hat{\mathcal{X}}$, and $\left(\zeta^{0}, \zeta^{\wedge}, \tilde{\zeta}_{\Lambda}, \tilde{\zeta}_{0}\right)$ label the periods of the RR field $A=A^{(0)}+A^{(2)}+A^{(4)}+A^{(6)} \in H^{\text {even }}(\hat{\mathcal{X}}, \mathbb{R})$.
- Near the infinite volume point, the prepotential governing $\mathcal{M}_{K}(\hat{\mathcal{X}})$ is

$$
F(X)=-\frac{N\left(X^{a}\right)}{X^{0}}+\frac{1}{2} A_{\wedge \Sigma} X^{\wedge} X^{\Sigma}+\chi_{\hat{\mathcal{X}}} \frac{\zeta(3)\left(X^{0}\right)^{2}}{2(2 \pi \mathrm{i})^{3}}+F_{\mathrm{GW}}(X)
$$

where $N\left(X^{a}\right) \equiv \frac{1}{6} \kappa_{a b c} X^{a} X^{b} X^{c}$, and $A_{\Lambda \Sigma}$ is a constant, real symmetric matrix, defined up to integer shifts.

Mirror symmetry II

- D-instantons are now Euclidean D5-D3-D1-D(-1), described mathematically by rank p^{0} coherent sheaves F on \mathcal{X}. Their charges $\left(p^{\wedge}, q_{\wedge}\right)$ can be expressed in terms of the Chern classes by matching the central charge,

$$
q_{\wedge} X^{\wedge}-p^{\wedge} F_{\Lambda}=e^{-\mathcal{K} / 2} Z_{\gamma}=\int_{\hat{\mathcal{X}}} e^{-(B+\mathrm{i} J)} \operatorname{ch}(F) \sqrt{\operatorname{Td}(\hat{\mathcal{X}})}
$$

leading to

$$
\begin{gathered}
p^{0}=\operatorname{rk}(F), \quad p^{a}=\int_{\gamma^{a}} c_{1}(F) \\
q_{a}=\int_{\gamma_{a}}\left[c_{2}(F)-\frac{1}{2} c_{1}^{2}(F)\right]+p^{0}\left(A_{0 a}-\frac{c_{2, a}}{24}\right)+A_{a b} p^{b}, \\
q_{0}=\int_{\hat{\mathcal{X}}} \operatorname{ch}(F) \operatorname{Td}(\hat{\mathcal{X}})+p^{a}\left(A_{0 a}-\frac{c_{2, a}}{24}\right)+A_{00} p^{0} .
\end{gathered}
$$

Mirror symmetry III

- Noting that $\int_{\hat{\mathcal{X}}} \operatorname{ch}(F) \operatorname{Td}(\hat{\mathcal{X}})$ is integer, being the index of the Dirac operator coupled to F, we see that the charges q_{Λ} are integer iff

$$
\begin{gathered}
A_{00} \in \mathbb{Z}, \quad A_{0 a} \in \frac{c_{2, a}}{24}+\mathbb{Z} \\
\frac{1}{2} \kappa_{a b c} p^{b} p^{c}-A_{a b} p^{b} \in \mathbb{Z} \quad \text { for } \forall p^{a} \in \mathbb{Z}
\end{gathered}
$$

E.g. for the quintic, $\kappa_{a a a}=5, A_{0 a}=25 / 12, A_{a a}=-11 / 2, A_{00}=0$.

- The matrix $A_{\Lambda \Sigma}$ may be set to zero by a non-integer symplectic transformation, leading to non integer electric charges q_{Λ}^{\prime},

$$
\begin{gathered}
q_{\Lambda}^{\prime}=q_{\Lambda}-A_{\wedge \Sigma} p^{\Sigma}, \quad \tilde{\zeta}_{\Lambda}^{\prime}=\tilde{\zeta}_{\Lambda}-A_{\wedge \Sigma} \zeta^{\wedge}, \quad F^{\prime}=F-\frac{1}{2} A_{\wedge \Sigma} X^{\wedge} X^{\Sigma} \\
q_{a}^{\prime} \in \mathbb{Z}-\frac{p^{0}}{24} c_{2, a}-\frac{1}{2} \kappa_{a b c} p^{b} p^{c}, \quad q_{0}^{\prime} \in \mathbb{Z}-\frac{1}{24} p^{a} c_{2, a}
\end{gathered}
$$

Note that $q_{\Lambda} \zeta^{\Lambda}-p^{\wedge} \tilde{\zeta}_{\Lambda}=q_{\Lambda}^{\prime} \zeta^{\Lambda}-p^{\wedge} \tilde{\zeta}_{\Lambda}^{\prime}$.

S-duality in twistor space I

- At zero coupling / infinite volume, the HM metric admits an isometric action of $S L(2, \mathbb{R})$, corresponding to type IIB S-duality in 10 dimensions.
- Any isometry of a QK manifold \mathcal{M} can be lifted to a holomorphic action on its twistor space \mathcal{Z} (a \mathbb{P}^{1} bundle over \mathcal{Z} with a canonical complex contact structure, see Alexandrov's talk). Let t be a complex coordinate on \mathbb{P}^{1} and define the following Darboux coordinates on \mathcal{Z} :

$$
\begin{aligned}
\xi^{\wedge} & =\zeta^{\wedge}+\frac{\tau_{2}}{2}\left(t^{-1} z^{\wedge}-t \bar{z}^{\wedge}\right) \\
\rho_{\Lambda}^{\prime} & =\tilde{\zeta}_{\Lambda}^{\prime}+\frac{\tau_{2}}{2}\left(t^{-1} F_{\Lambda}^{\prime}(z)-t \bar{F}_{\Lambda}^{\prime}(\bar{z})\right) \\
\tilde{\alpha} & =\sigma+\frac{\tau_{2}}{2}\left(t^{-1} W(z)-t \bar{W}(\bar{z})\right)+\frac{\mathrm{i} \chi x}{24 \pi} \log t
\end{aligned}
$$

where $\tau_{2}^{2}=16 e^{(\phi+\mathcal{K})}-\frac{\chi_{\hat{\mathcal{X}}}}{48 \pi}, W(z) \equiv F_{\Lambda}^{\prime}(z) \zeta^{\wedge}-z^{\wedge} \tilde{\zeta}_{\Lambda}^{\prime}$, such that

$$
D t=\mathrm{d} t+p_{+}-\mathrm{i} p_{3} t+p_{-} t^{2} \propto \mathrm{~d} \tilde{\alpha}+\xi^{\wedge} \mathrm{d} \rho_{\Lambda}^{\prime}-\rho_{\Lambda}^{\prime} \mathrm{d} \xi^{\wedge}
$$

S-duality in twistor space II

- $S L(2, \mathbb{R})$ acts on the above Darboux coordinates via

$$
\begin{aligned}
\xi^{0} & \mapsto \frac{a \xi^{0}+b}{c \xi^{0}+d}, \quad \xi^{a} \mapsto \frac{\xi^{a}}{c \xi^{0}+d} \\
\tilde{\xi}_{a}^{\prime} & \mapsto \tilde{\xi}_{a}^{\prime}+\frac{\mathrm{i} c}{4\left(c \xi^{0}+d\right)} \kappa_{a b c} \xi^{b} \xi^{c} \\
\binom{\tilde{\xi}_{0}^{\prime}}{\alpha^{\prime}} & \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{\xi}_{0}^{\prime}}{\alpha^{\prime}} \\
& +\frac{\mathrm{i}}{12} \kappa_{a b c} \xi^{a} \xi^{b} \xi^{c}\left(\begin{array}{c}
\left.-\left[c^{2}\left(a \xi^{0}+b\right)+2 c\right] /\left(c \xi^{0}+d\right)^{2}\right)
\end{array}, \$\left(c \xi^{0}+d\right)\right.
\end{aligned}
$$

where $\tilde{\xi}_{\Lambda}^{\prime}=\frac{\mathrm{i}}{2} \rho_{\Lambda}^{\prime}, \alpha^{\prime}=\left(\tilde{\alpha}+\xi^{\wedge} \rho_{\Lambda}^{\prime}\right) /(4 \mathrm{i})$.

- Rk: the transformations of $\tilde{\xi}_{\lambda}^{\prime}, \alpha^{\prime}$ can be rewritten as
$\Xi_{a} \mapsto \frac{\Xi_{a}}{\left(c \xi^{0}+d\right)^{2}}, \Xi_{0} \mapsto \frac{\Xi_{0}}{\left(c \xi^{0}+d\right)^{5}}$ if so desired.

S-duality in twistor space III

- $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ exchanges $\tilde{\zeta}_{0}^{\prime}$ with $-\frac{1}{2} \sigma+\ldots$, warranting our earlier claim about mod 2 periodicity of the NS-axion σ.
- $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in \Gamma_{\infty}$ acts by

$$
\xi^{0} \mapsto \xi^{0}+b, \quad\left(\xi^{a}, \tilde{\xi}_{a}^{\prime}\right) \mapsto\left(\xi^{a}, \tilde{\xi}_{a}^{\prime}\right), \quad \alpha^{\prime} \mapsto \alpha^{\prime}-b \tilde{\xi}_{0}^{\prime}
$$

- On the other hand, the Heisenberg group of isometries acts holomorphically on \mathcal{Z} by

$$
\begin{aligned}
T_{(H, p)}:\left(\xi^{\wedge}, \rho_{\Lambda}, \tilde{\alpha}\right) & \mapsto\left(\xi^{\wedge}+\eta^{\wedge}, \rho_{\Lambda}+\tilde{\eta}_{\wedge},\right. \\
\tilde{\alpha}+2 p & \left.-\left[\tilde{\eta}_{\wedge} \xi^{\wedge}-\eta^{\wedge} \rho_{\Lambda}\right]-\left\{\eta^{\wedge} \tilde{\eta}_{\Lambda}-2 \tilde{\eta}_{\wedge} \theta^{\wedge}+2 \eta^{\wedge} \phi_{\Lambda}\right\}\right)
\end{aligned}
$$

where $\eta^{\wedge}, \tilde{\eta}_{\wedge}, p \in \mathbb{Z}$.

S-duality in twistor space IV

- Unless $\boldsymbol{A}_{0 \mathrm{a}}$ is integer, the S-duality action $\xi^{0} \mapsto \xi^{0}+b$ is not the same as the Heisenberg shift $\xi^{0} \mapsto \xi^{0}+\eta^{0}$ for $b=\eta^{0}$! the two differ by a shift $\tilde{\xi}_{a} \mapsto \tilde{\xi}_{a}+b c_{0 a} / 24$, which is a fraction of the periodicity expected from charge quantization.
- Assuming that the full $S L(2, \mathbb{Z})$ was preserved at the quantum level, Robles-Llana et al constructed an Eisenstein series which unifies the tree-level $\zeta(3) \chi$ and one-loop $\zeta(2) \chi$ corrections and predicts an infinite series of $\mathrm{D}(-1)$-instanton corrections.
- Under the same assumption, we shall construct a Poincaré series from the known form of D5-D3-D1-D(-1) corrections to \mathcal{Z} and obtain the contributions from k five branes.
- For brevity, we mostly ignore quadratic refinements, characteristics, fractional charge shifts, etc.

A Poincaré series for five-brane instantons I

- For fixed D5-brane charge $p^{0} \neq 0$, the D-instanton corrections to \mathcal{Z} are formally encoded in an holomorphic section of $H^{1}(\mathcal{Z}, \mathcal{O}(2))$ (see Alexandrov's talk) - here and below $\gamma=\left(p^{0}, p^{a}, q_{a}, q_{0}\right)$:

$$
H\left(p^{0}\right)=-\frac{\mathrm{i}}{8 \pi^{2}} \sum_{p^{a}, q_{a}, q_{0}} \sigma(\gamma) \tilde{\Omega}_{\gamma} e^{2 \pi \mathrm{i}\left(p^{\wedge} \rho_{\Lambda}^{\prime}-q_{\Lambda}^{\prime} \xi^{\wedge}\right)}
$$

where $\tilde{\Omega}_{\gamma}$ are rational numbers, related to the integer-valued generalized Donaldson-Thomas invariants by

$$
\tilde{\Omega}(\gamma)=\sum_{d \mid \gamma} \frac{1}{d^{2}} \Omega(\gamma / d), \quad \Omega(\gamma)=\sum_{d \mid \gamma} \frac{1}{d^{2}} \mu(d) \tilde{\Omega}(\gamma / d)
$$

A Poincaré series for five-brane instantons II

- $H\left(p^{0}\right)$ is invariant under $\Gamma_{\infty} \subset S L(2, \mathbb{Z})$. It can be made invariant under the full $S L(2, \mathbb{Z})$ by summing over $\Gamma_{\infty} \backslash S L(2, \mathbb{Z})$:

$$
H_{\mathrm{tot}}=\sum_{p^{0}} \sum_{(c, d)=1} \delta \cdot H\left(p^{0}\right), \quad \delta=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

- Each term can be interpreted as a (p, k) five-brane instanton, where $(p, k)=p^{0}(d,-c)$. Letting $n^{0}=p / k, n^{a}=p^{a} / k$, and using the invariance of \tilde{n}_{γ} under spectral flow

$$
\begin{gathered}
p^{0} \mapsto p^{0}, \quad p^{a} \mapsto p^{a}+\epsilon^{a} p^{0}, \quad q_{a}^{\prime} \mapsto q_{a}^{\prime}-\kappa_{a b c} p^{b} \epsilon^{c}-\frac{1}{2} p^{0} \kappa_{a b c} \epsilon^{b} \epsilon^{c}, \\
q_{0}^{\prime} \mapsto q_{0}^{\prime}-\epsilon^{a} q_{a}^{\prime}+\frac{1}{2} \kappa_{a b c} p^{a} \epsilon^{b} \epsilon^{c}+\frac{1}{6} p^{0} \kappa_{a b c} \epsilon^{a} \epsilon^{b} \epsilon^{c},
\end{gathered}
$$

A Poincaré series for five-brane instantons III

the sum can be rewritten as a non-Gaussian theta series

$$
H_{\mathrm{NS} 5}^{(k)}(\xi, \tilde{\xi}, \alpha)=\sum_{\substack{\mu \in\left(\Gamma_{m} /|k|\right) / \Gamma_{m} \\ n \in \Gamma_{m}+\mu+\theta}} H_{k, \mu}\left(\xi^{\wedge}-n^{\wedge}\right) \mathrm{e}^{k n^{\wedge}\left(\rho_{\Lambda}-\phi_{\Lambda}\right)-\frac{k}{2}\left(\tilde{\alpha}+\xi^{\wedge} \rho_{\Lambda}\right)}
$$

where, up to subtle phases,

$$
H_{k, \mu}\left(\xi^{\wedge}\right)=\sum_{q_{\Lambda} \in \Gamma_{e}} \tilde{\Omega}(\gamma) \mathrm{e}^{-\frac{k N\left(\xi^{a}\right)}{\xi^{0}}+\frac{k}{2} A_{\Lambda \Sigma} \xi^{\wedge} \xi^{\Sigma}+\frac{p^{0}}{k} \frac{\hat{q}_{a} \xi^{a}}{\xi^{0}}+\left(\frac{p^{0}}{k}\right)^{2} \frac{\hat{q}_{0}}{\xi^{0}}}
$$

In this expression, $\gamma=\left(p^{0}, k \mu^{a}, q_{a}, q_{0}\right)$ and \hat{q}_{Λ} are the spectral flow invariants
$\hat{q}_{a}=q_{a}^{\prime}+\frac{k^{2}}{2 p^{0}} \kappa_{a b c} \mu^{b} \mu^{c}, \quad \hat{q}_{0}=q_{0}^{\prime}+\frac{k}{p^{0}} \mu^{a} q_{a}^{\prime}+\frac{k^{3}}{3\left(p^{0}\right)^{2}} \kappa_{a b c} \mu^{a} \mu^{b} \mu^{c}$,

Single fivebrane and topological string amplitude I

- For $k=1, \mu$ can be set to 0 . Using the GW/DT relation

$$
\begin{aligned}
& e^{F_{\text {hol }}\left(z^{a}, \lambda\right)}= e^{-\frac{(2 \pi i)^{3}}{\lambda^{2}}\left(N\left(z^{a}\right)-\frac{1}{2} A_{\Lambda \Sigma} z^{\wedge} z^{\Sigma}\right)-\frac{2 \pi \mathrm{i}}{24} c_{2, a} z^{a}}\left[M\left(e^{-\lambda}\right)\right]^{-\frac{\chi_{\mathcal{X}}}{2}} \\
& \sum_{Q_{a}, J}(-1)^{2 J} N_{D T}\left(Q_{a}, 2 J\right) e^{-2 \lambda J+2 \pi i Q_{a} z^{a}}, \\
& \text { Maulik Nekrasov Okunko Pandharipande }
\end{aligned}
$$

where $M(q)=\Pi\left(1-q^{n}\right)^{-n}$ is the Mac-Mahon function, and $N_{D T}\left(Q_{a}, 2 J\right)$ are the (ordinary) DT invariants, and the relation

$$
e^{F_{\mathrm{hol}}\left(z^{a}, \lambda\right)} \sim e^{-f_{1}\left(\xi^{a} / \xi^{0}\right)}\left(\xi^{0}\right)^{\frac{\chi}{24}-1} \psi_{\mathbb{R}}^{\mathrm{top}}\left(\xi^{\Lambda}\right), \quad \lambda=\frac{2 \pi}{\mathrm{i} \xi^{0}}, \quad z^{a}=\frac{\xi^{a}}{\xi^{0}}
$$

between holomorphic topological amplitude and real polarized topological amplitude, and identifying $Q_{a}=\hat{q}_{a}+\frac{c_{2, a}}{24}, 2 J=\hat{q}_{0}$,

Schwartz Tang

Single fivebrane and topological string amplitude II

- We arrive at a relation between the NS5-brane partition function in type IIB/ $\hat{\mathcal{X}}$ and the A-model topological amplitude on $\hat{\mathcal{X}}$:

$$
H_{k=1}\left(\xi^{\wedge}\right)=e^{-f_{1}\left(\xi^{\mathrm{a}} / \xi^{0}\right)}\left(\xi^{0}\right)^{\frac{\chi}{24}-1}\left[M\left(e^{2 \pi \mathrm{i} / \xi^{0}}\right)\right]^{\frac{x_{\hat{\chi}}}{2}} \psi_{\mathbb{R}}^{\operatorname{top}}\left(\xi^{\wedge}\right) .
$$

Note that $(-1)^{2 J}$ follows from quadratic refinement $\sigma(\gamma)$, we seem to find $\theta^{\wedge}=0, \phi_{0}=A_{00} / 2$, while ϕ_{a} remains undetermined. The prefactors are puzzling, and need further understanding.

- By mirror symmetry, the same formula should relate the NS5-brane partition function in type IIA/X and the B-model topological amplitude on \mathcal{X}, as anticipated by various authors.
- Integrating over the \mathbb{P}^{1} fiber in the weak coupling limit, we recover the partition function of a Gaussian self-dual three-form on \mathcal{X} discussed previously. The auxiliary parameter of DVV is identified as the twistor coordinate t.

Outline

(1) Introduction

(2) Topology of the HM moduli space

(3) Qualitative aspects of five-brane corrections

4) Mirror symmetry, S-duality and (p, k) fivebranes

(5) Conclusion

Conclusion I

- We have determined the topology of the HM moduli space in type IIA/ \mathcal{X} at fixed (weak) coupling:

$$
\mathcal{M}=\mathbb{R}_{r}^{+} \times\left(\begin{array}{ccc}
S_{\sigma}^{1} & \rightarrow & \mathcal{C}(r) \\
& & \downarrow \\
& & \mathcal{J}(\mathcal{X})
\end{array}\right)
$$

where $\mathcal{J}(\mathcal{X})$ is the intermediate Jacobian of the CY family $\mathcal{X}, \mathcal{C}(r)$ is the circle bundle $\mathcal{L}_{\Theta}^{-1} \otimes \mathcal{L}^{-\chi \chi} / 24$, and the characteristics $\Theta \in\left\{0, \frac{1}{2}\right\}^{b_{3}(\mathcal{X})}$ are extra data that must be specified.

- The same holds in type IIB/ $\hat{\mathcal{X}}$ by replacing \mathcal{J} by the torus bundle over $\mathcal{M}_{K}(\hat{\mathcal{X}})$ with fiber $H^{\text {even }}(\hat{\mathcal{X}}, \mathbb{R}) / K(\hat{\mathcal{X}}), b_{3}(\mathcal{X}) \rightarrow 2 b_{2}(\hat{\mathcal{X}})+2$, $\chi_{\mathcal{X}} \rightarrow-\chi_{\hat{\mathcal{X}}}$.
- What is the topology of the full HM space ? Is the singularity at $r=\chi \mathcal{X} / 96 \pi$ resolved by quantum effects?

Conclusion II

- Euclidean D-branes correct the metric at order $e^{-1 / g_{s}}$. They are mostly under control (barring convergence issues). We believe that the quadratic refinement entering in these corrections is the same $\sigma_{\Theta}(\gamma)$ as above.
- NS5-branes correct the metric at order $e^{-1 / g_{s}^{2}}$. We have taken steps in computing these effects, by applying S-duality to D-brane effects. To complete the story, one should resolve subtle phase issues, fix contours, ETC.
- We found some tension between S-duality, Heisenberg invariance and monodromy invariance. Presumably S-duality is broken to a subgroup $\Gamma(N)$ where N is the common denominator of $c_{2 a} / 24$. It would be very interesting to study the sector with no D5/NS5-branes, which should be S-duality invariant by itself.

